Model Selection in Survival Analysis

Suppose we have a censored survival time that we want to
model as a function of a (possibly large) set of covariates.
Two important questions are:

e How to decide which covariates to use

e How to decide if the final model fits well

To address these topics, we'll consider a new example:

Survival of Atlantic Halibut - Smith et al

Survival Tow Diff  Length Handling Total
Obs  Time  Censoring Duration in  of Fish Time log(catch)
# (min)  Indicator ~ (min.)  Depth  (cm) (min.)  In(weight)

100 353.0 1 30 15 39 5 5.685
109 111.0 1 100 5 44 29 8.690
113 64.0 0 100 10 93 4 5.323

1 100 10 44 4 5.323

116 500.0

Hosmer & Lemeshow
Chapter 5: Model Development

Chapter 6: Assessment of Model Adequacy
(sections 6.1-6.2)

Process of Model Selection

Collett (Section 3.6) has an excellent discussion of various
approaches for model selection. In practice, model selection
proceeds through a combination of

e knowledge of the science
e trial and error, common sense
e automatic variable selection procedures

— forward selection
— backward selection

— stepwise selection

Many advocate the approach of first doing a univariate anal-
ysis to “screen” out potentially significant variables for con-
sideration in the multivariate model (see Collett).

Let’s start with this approach.



Univariate KM plots of Atlantic Halibut survival

(continuous variables have been dichotomized)

Towing Duration Length of fish

Automatic Variable selection procedures
in Stata and SAS

Statistical Software:
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Which covariates look like they might be important?

e Stata: sw command before cox command

e SAS: selection= option on model statement of
proc phreg

Options:
(1) forward
(2) backward

(3) stepwise

(4) best subset (SAS only, using score option)

One drawback of these options is that they can only handle
variables one at a time. When might that be a disadvantage?



Collett’s Model Selection Approach
Section 3.6.1

This approach assumes that all variables are considered to
be on an equal footing, and there is no a priori reason to
include any specific variables (like treatment).

Approach:

(1) Fit a univariate model for each covariate, and identify
the predictors significant at some level py, say 0.20.

(2) Fit a multivariate model with all significant univariate
predictors, and use backward selection to eliminate non-
significant variables at some level p,, say 0.10.

(3) Starting with final step (2) model, consider each of the
non-significant variables from step (1) using forward se-
lection, with significance level ps3, say 0.10.

(4) Do final pruning of main-effects model (omit variables
that are non-significant, add any that are significant),
using stepwise regression with significance level py. At
this stage, you may also consider adding interactions be-
tween any of the main effects currently in the model,
under the hierarchical principle.

Collett recommends using a likelihood ratio test for all vari-
able inclusion /exclusion decisions.

Stata Command for Forward Selection:

Forward Selection —> use pe(«) option, where « is the

significance level for entering a variable into the model.

. use halibut

. stset survtime censor

. sw cox survtime towdur depth length handling logcatch,

> dead(censor)

pe(.05)

begin with empty model

p = 0.0000 < 0.0500 adding handling
p = 0.0000 < 0.0500 adding logcatch
p = 0.0010 < 0.0500 adding  towdur
p = 0.0003 < 0.0500 adding 1length
Cox Regression -- entry time O Number of obs = 294
chi2(4) = 84.14
Prob > chi2 = 0.0000
Log Likelihood = -1257.6548 Pseudo R2 = 0.0324
survtime |
censor | Coef. Std. Err. z P>zl [95% Conf. Intervall
handling | .0548994 .0098804 5.5566  0.000 .0355341 .0742647
logcatch | -.1846548 .051015 -3.620 0.000 .2846423  -.0846674
towdur | .5417745 .1414018 3.831 0.000 .2646321 .818917
length | -.0366503 .0100321 -3.6563 0.000 -.0563129 -.0169877




Stata Command for Backward Selection:

Backward Selection —> use pr(«) option, where «a is
the significance level for a variable to remain in the model.

. sw cox survtime towdur depth length handling logcatch,
> dead(censor) pr(.05)

begin with full model

p = 0.1991 >= 0.0500 removing depth

Cox Regression -- entry time O Number of obs = 294

chi2(4) = 84.14

Prob > chi2 = 0.0000

Log Likelihood = -1257.6548 Pseudo R2 = 0.0324
survtime |

censor | Coef. Std. Err. z P>zl [95% Conf. Intervall

towdur | .5417745 .1414018 3.831 0.000 .2646321 .818917

logcatch | -.1846548 .051015 -3.620 0.000 -.2846423 -.0846674

length | -.0366503 .0100321 -3.653 0.000 -.0563129 -.0169877

handling | .0548994 .0098804 5.556 0.000 .0355341 .0742647

Stata Command for Stepwise Selection:

Stepwise Selection = use both pe(.) and pr(.) options,
with pr(.) > pe(.)

. sw cox survtime towdur depth length handling logcatch,
> dead(censor) pr(0.10) pe(0.05)

begin with full model

p = 0.1991 >= 0.1000 removing depth

Cox Regression -- entry time O Number of obs = 294

chi2(4) = 84.14

Prob > chi2 = 0.0000

Log Likelihood = -1257.6548 Pseudo R2 = 0.0324
survtime |

censor | Coef. Std. Err. z P>|z| [95% Conf. Intervall

towdur | .5417745 .1414018 3.831 0.000 .2646321 .818917

handling | .0548994 .0098804 5.556 0.000 .0355341 .0742647

length | -.0366503 .0100321 -3.653 0.000 -.0563129 -.0169877

logcatch | -.1846548 .051015 -3.620 0.000 -.2846423 -.0846674

It is also possible to do forward stepwise regression by in-
cluding both pr(.) and pe(.) options with forward option



SAS programming statements for model selection

data fish;

infile ’fish.dat’;

input ID SURVTIME CENSOR TOWDUR DEPTH LENGTH HANDLING LOGCATCH;
run;

title ’Survival of Atlantic Halibut’;
**x automatic variable selection procedures;
proc phreg data=fish;
model survtime*censor(0)= towdur depth length handling logcatch
/selection=stepwise slentry=0.1 slstay=0.1 details;
title2 ’Stepwise selection’;
run;

proc phreg data=fish;
model survtime*censor(0)= towdur depth length handling logcatch
/selection=forward slentry=0.1 details;
title2 ’Forward selection’;
run,

proc phreg data=fish;
model survtime*censor(0)= towdur depth length handling logcatch
/selection=backward slstay=0.1 details;
title2 ’Backward selection’;
run;

proc phreg data=fish;
model survtime*censor(0)= towdur depth length handling logcatch
/selection=score;
title2 ’Best subsets selection’;
run,

Final model for stepwise selection approach

Variable

TOWDUR
LENGTH
HANDLING
LOGCATCH

DF

N

Survival of Atlantic Halibut
Stepwise selection

The PHREG Procedure

Analysis of Maximum Likelihood Estimate

Parameter Standard Wald
Estimate Error Chi-Square Chi
0.007740 0.00202 14.68004

-0.036650 0.01003 13.34660
0.054899 0.00988 30.87336

-0.184655 0.05101 13.10166

Analysis of Variables Not in the Model

Score Pr >
Variable Chi-Square Chi-Square
DEPTH 1.6661 0.1968

Residual Chi-square = 1.6661 with 1 DF (p=0

S

Pr >
-Square

0.0001
0.0003
0.0001
0.0003

.1968)

Risk
Ratio

1.008
0.964
1.056
0.831

NOTE: No (additional) variables met the 0.1 level for entry into the

mo

del.

Var
Entered

HANDLING
LOGCATCH
TOWDUR
LENGTH

Summary of Stepwise Procedure

iable Number Score Wald
Removed In Chi-Square Chi-Squ

1 47.1417

2 18.4259

3 11.0191

4 13.4222
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Pr >

are Chi-Square

0.0001
0.0001
0.0009
0.0002



Output from PROC SAS “score” option Best multivariate model for all 3 options

NUMBER OF SCORE ~ VARIABLES INCLUDED Survival of Atlantic Halibut
VARIABLES VALUE IN MODEL Best Multivariate Model

1 47.1417  HANDLING The PHREG Procedure
1 29.9604 TOWDUR
1 12.0058  LENGTH Data Set: WORK.FISH
1 4.2185 DEPTH Dependent Variable: TIME
1 1.4795 LOGCATCH Censoring Variable: CENSOR

- - - - Censoring Value(s): O
2 65.6797  HANDLING LOGCATCH Ties Handling: BRESLOW
2 59.9515  TOWDUR HANDLING
2 56.1825  LENGTH HANDLING
2 51.6736  TOWDUR LENGTH Summary of the Number of
2 47.2229  DEPTH HANDLING Event and Censored Values
2 32.2509 TOWDUR LOGCATCH
2 30.6815  TOWDUR DEPTH Percent
2 16.9342  DEPTH LENGTH Total Event Censored Censored
2 14.4412  LENGTH LOGCATCH
2 9.1575  DEPTH LOGCATCH 294 273 21 7.14
3 76.8829  LENGTH HANDLING LOGCATCH
3 76.3454  TOWDUR HANDLING LOGCATCH Testing Global Null Hypothesis: BETA=0
3 75.5291  TOWDUR LENGTH HANDLING
3 69.0334 DEPTH HANDLING LOGCATCH Without With
3 60.0340 TOWDUR DEPTH HANDLING Criterion Covariates Covariates Model Chi-Square
3 56.4207 DEPTH LENGTH HANDLING
3 55.8374  TOWDUR LENGTH LOGCATCH -2 LOG L 2599.449 2515.310 84.140 with 4 DF (p=0.0001)
3 52.4130 TOWDUR DEPTH LENGTH Score . . 94.006 with 4 DF (p=0.0001)
3 34.7563  TOWDUR DEPTH LOGCATCH Wald . . 90.247 with 4 DF (p=0.0001)
3 24.2039 DEPTH LENGTH LOGCATCH
4 94.0062 TOWDUR LENGTH HANDLING LOGCATCH Analysis of Maximum Likelihood Estimates
4 81.6045 DEPTH LENGTH HANDLING LOGCATCH
4 77.8234  TOWDUR DEPTH HANDLING LOGCATCH Parameter Standard Wald Pr > Risk
4 75.5556  TOWDUR DEPTH LENGTH HANDLING Variable DF Estimate Error Chi-Square Chi-Square Ratio
4 59.1932 TOWDUR DEPTH LENGTH LOGCATCH

-- - -- -- -- - TOWDUR 1 0.007740 0.00202 14.68004 0.0001 1.008
5 96.1287  TOWDUR DEPTH LENGTH HANDLING LOGCATCH LENGTH 1 -0.036650 0.01003 13.34660 0.0003 0.964

-- - - -- -- - - HANDLING 1 0.054899 0.00988 30.87336 0.0001 1.056

LOGCATCH 1 -0.184655 0.05101 13.10166 0.0003 0.831
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Notes:

e When the halibut data was analyzed with the forward,
backward and stepwise options, the same final model was
reached. However, this will not always be the case.

e Variables can be forced into the model using the lockterm
option in Stata and the include option in SAS. Any
variables that you want to force inclusion of must be
listed first in your model statement.

e Stata uses the Wald test for both forward and backward
selection, although it has an option to use the likelihood
ratio test instead (lrtest). SAS uses the score test to
decide what variables to add and the Wald test for what
variables to remove.

e [f you fit a range of models manually, you can apply the
AIC criteria described by Collett:

minimize AIC = —2 log(L) + (a * q)
where ¢ is the number of unknown parameters in the
model and « is typically between 2 and 6 (they suggest
a=3).
The model is then chosen which minimizes the AIC (sim-
ilar to maximizing log-likelihood, but with a penalty for
number of variables in the model)
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Questions:

e When might we want to force certain variables into the
model?
(1) to examine interactions
(2) to keep main effects in the model

(3) to calculate a score test for a paricular effect

e Would it be possible to get different final models from
SAS and Stata?

e Based on what we've seen in the behavior of Wald tests,
would SAS or Stata be more likely to add a covariate to
a model in a forward selection model?

e If we use the AIC criteria with @ = 3, how does that
compare to the likelihood ratio test?

14



Assessing overall model fit

How do we know if the model fits well?

e Always look at univariate plots (Kaplan-Meiers)

Construct a Kaplan-Meier survival plot for each of the impor-
tant predictors, like the ones shown at the beginning of these
notes.

e Check proportionality assumption (this will be the topic
of the next lecture)

e Check residuals!

(a) generalized (Cox-Snell)
(b) martingale

¢) deviance

)
(c)
(d) Schoenfeld
(e) weighted Schoenfeld

15

Residuals for survival data are slightly different than for
other types of models, due to the censoring. Before we start
talking about residuals, we need an important basic result:

Inverse CDF':

If T; (the survival time for the i-th individual) has
survivorship function S;(t), then the transformed
random variable S;(T;) (i.e., the survival function
evaluated at the actual survival time 7;) should
be from a uniform distribution on [0, 1], and hence
—log[S;(T;)] should be from a unit exponential dis-
tribution

More mathematically:
If T, ~ St
then S;(T;) ~ Uniform|0,1]
and —logS;(T;) ~ FExponential(1)

16



(a) Generalized (Cox-Snell) Residuals:

The implication of the last result is that if the model is cor-
rect, the estimated cumulative hazard for each individual at
the time of their death or censoring should be like a censored
sample from a unit exponential. This quantity is called the
generalized or Coz-Snell residual.

Here is how the generalized residual might be used. Suppose
we fit a PH model:

S(t:2) = [S)(6)"
or, in terms of hazards:

Nt; Z) = Ao(t)exp(82)
= )\0<t) eXp<6121 + 6222 et 6ka‘>

After fitting, we have:
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So, for each person with covariates Z;, we can get

S(t:2:) = [Solt)] P2

This gives a predicted survival probability at each time ¢ in
the dataset (see notes from the previous lecture).

Then we can calculate

A

Ai = = log[S(T}; Z)))

In other words, first we find the predicted sur-
vival probability at the actual survival time for
an individual, then log-transform it.

18



Example: Nursing home data

Say we have

e a single male

e with actual duration of stay of 941 days (X; = 941)

We compute the entire distribution of survival probabilities
for single males, and obtain S(941) = 0.260.

A~

— log[S(941, single male)] = —1log(0.260) = 1.347

We repeat this for everyone in our dataset. These should be
like a censored sample from an exponential (1) distribution
if the model fits the data well.

Based on the properties of a unit exponential model

e plotting — log(S(t)) vs t should vield a straight line
e plotting log[— log S(¢)] vs log(t) should yield a straight
line through the origin with slope=1.

M and

To convince yourself of this, start with S(t) = e
calculate log[— log S(t)]. What do you get for the slope and

intercept?

(Note: this does not necessarily mean that the underlying
distribution of the original survival times is exponentiall)
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Obtaining the generalized residuals from Stata

e ['it a Cox PH model with the stcox command, along
with the mgale (newvar) option

e Use the predict command with the csnell option

e Define a survival dataset using the Cox-Snell residuals
as the “pseudo” failure times

e Calculate the estimated KM survival
e Take the log|— log(S(t))] based on the above
e Generate the log of the Cox-Snell residuals

e Graph log|— log S(t)] vs log(?)

. stcox towdur handling length logcatch, mgale(mg)
. predict csres, csnell

. stset csres censor

. sts list

. sts gen survcs=s

. gen lls=log(-log(survcs))

. gen loggenr=log(csres)

. graph 1ls loggenr

20



Does the exponential model fit?

+

! ot

. . . . .
+
4

Log of SURVIVAL

Allison states “Cox-Snell residuals... are not very informative for
Cox models estimated by partial likelihood.” He instead prefers

deviance residuals (later).
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Obtaining the generalized residuals from SAS

The generalized residuals can be obtained from SAS
after fitting a PH model using the output statement with
the logsurv option.

proc phreg data=fish;
model survtime*censor(0) = towdur handling logcatch length;
output out=phres logsurv=genres;

**x* take negative log Pr(survival) at each persons survtime;
data phres;

set phres;

genres=-genres,;

**xx Now we treat the generalized residuals as the input dataset;
*xx to evaluate whether the assumption of an exponential;
**x* distribution is appropriate;
proc lifetest data=phres outsurv=survres;
time genres*censor(0);

data survres;
set survres;
11s=log(-log(survival));
loggenr=log(genres) ;

proc gplot data=survres;

plot lls*loggenr;
run;

22



(b) Martingale Residuals

(see Fleming and Harrington, p.164)

Martingale residuals are defined for the i-th individual as:

A

T, = 5¢-—-/\(1})

Properties:

e r;’s have mean 0
e range of 7;’s is between —oo and 1
e approximately uncorrelated (in large samples)

e Interpretation: - the residual r; can be viewed as the
difference between the observed number of deaths (0 or
1) for subject i between time 0 and 7T}, and the expected
numbers based on the fitted model.

23

The martingale residuals can be obtained from Stata
using the mgale option shown previously.

Once the martingale residual is created, you can plot it versus
the predicted log HR (i.e., BZ;), or any of the individual
covariates.

. stcox towdur handling length logcatch, mgale(mg)
. predict betaz=xb

. graph mg betaz

. graph mg logcatch

. graph mg towdur

. graph mg handling

. graph mg length

24



The martingale residuals can be obtained from SAS Martingale Residuals
after ﬁttlng a PH mOdel using the Outle‘t Statement Wlth Martingale residuals vs towing duration Martingale residuals vs length of fish
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(c) Deviance Residuals

One problem with the martingale residuals is that they tend
to be asymmetric.

A solution is to use deviance residuals. For person i,
these are defined as a function of the martingale residuals

(ri):

A~

D, = sign(f’i)\/—Q[ﬂ + dilog(6; — ;)]

In Stata, the deviance residuals are generated using the same
approach as the Cox-Snell residuals.

. stcox towdur handling length logcatch, mgale(mg)

. predict devres, deviance

and then they can be plotted versus the predicted log(HR)
or the individual covariates, as shown for the Martingale
residuals.

In SAS, just use resdev option instead of resmart.

Deviance residuals behave much like residuals from OLS re-
gression (i.e., mean=0, s.d.=1). They are negative for obser-
vations with survival times that are smaller than expected.
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(d) Schoenfeld Residuals Schoenfeld Residuals

. . Schoenfeld resids for towing vs survival time
These are defined at each observed failure time as:

ri; = Zij(t:) — Z;(t;)

0 +

E:
P +

Notes:

e represent the difference between the observed covariate

and the average over the risk set at that time *‘”ﬁ

#

0
0
0
0
0
10
0
0
0
0
0

0 W0 W M0 S0 60 T O %010 L0 b
Survival Time

e calculated for each covariate

e not defined for censored failure times.

Schoenfeld resids for log(catch) vs survival time
e useful for assessing time trend or lack or proportionality,
based on plotting versus event time

e,
e sum to zero, have expected value zero, and are uncorre- Co
3 * * ! s + +
lated (in large samples) ala T .
A,
g&* fjv N *
wo

+

In Stata, the Schoenfeld residuals are generated in the stcox

command itself, using the schoenf (newvar(s)) option: D100 200 %0 40 S0 600 T00 800 %00 1000 1100 120

Survival Time

. stcox towdur handling length logcatch, schoenf (towres handres lenres
logres)

. graph towres survtime

In SAS, add to the output line
RESSCH=namel name2 namek

for up to k regressors in the model.
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Schoenfeld resids for length vs survival time
0

N0 W0 A M0 S0 S0 T KO %010 0 g
Survival Tine

Schoenfeld resids for handling vs survival time
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(e) Weighted Schoenfeld Residuals

These are actually used more often than the previous un-
weighted version, because they are more like the typical OLS
residuals (i.e., symmetric around 0).

They are defined as:

where V is the estimated variance of ,B The weighted resid-
uals can be used in the same way as the unweighted ones to
assess time trends and lack of proportionality.

In Stata, use the command:

. stcox towdur length logcatch handling depth, scaledsch(towres2
> lenres2 logres2 handres2 depres2)

. graph logres2 survtime

In SAS, add to the output line
WTRESSCH=namel name2 namek

for up to k regressors in the model.
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Weighted Schoenfeld Residuals

Weighted Schoenfeld resids for towing vs time
0
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Schoenfeld resids for log(catch) vs time
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A
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N

W0 0 00 0 10 10 1
Survival Time
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Schoenfeld resids for length vs time

WO W0 T N0 L o 1
Survival Time

Schoenfeld resids for handling vs time
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Using Residual plots to explore relationships Splus Plots of Martingale Residuals for Cox Model
containing only towing duration as a predictor,

[f you calculate martingale or deviance residuals without any vs other covariates

covariates in the model and then plot against covariates, you
obtain a graphical impression of the relationship between the
covariate and the hazard.

In Splus, it is easy to do this (also possible in stata using the

— —
“estimate” option)
o o
S =
. ) 8 g =
** read in the dataset and fit a cox PH model & ' & '
fish_read.table(’fish.data’,header=T) O o N
o e 1 e 1
x_fish$towdur 2 )
fishres_coxreg(fish$time, fish$censor, x, resid="martingale",iter.max=0) ™ ™
** the 2 commands below set up the postscript file, with 4 graphs ¥ odee e oA e
postscript("fishres.plt" ,horizontal=F,height=10,width=7)
par (mfrow=c(2,2) ,oma=c(0,0,2,0)) 0 10 30 50 30 40 50
depth Length
** plot the martingale residuals vs each of the other covariates
** and add a lowess smoothed fit to the plot
plot(fish$depth, fishres$resid, xlab="depth")
lines(lowess(fish$depth,fishres$resid,iter=0))
i i
plot(fish$length, fishres$resid, xlab="length")
lines(lowess(fish$length,fishres$resid,iter=0)) o o
o o
(%] (%]
plot(fish$handling, fishres$resid, xlab="handling") 3,_; \n (;1; \n
lines(lowess(fish$handling,fishres$resid,iter=0)) @ N 4 N
N ' < '
o @
plot(fish$logcatch, fishres$resid, xlab="logcatch") T . T .
lines(lowess(fish$logcatch,fishres$resid,iter=0)) ' '
< . o o . < . o o
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(f) Deletion diagnostics

Deletion diagnostics are defined generally as:
6 =B — B

In other words, they are the difference between the estimated
regression coefficient using all observations and that without
the ¢-th individual. This can be useful for assessing the in-
fluence of an individual.

In SAS PROC PHREG, we use the dfbeta option:
(Note that there is a separate dfbeta calculated for each of
the predictors.)

proc phreg data=fish;
model survtime*censor (0)=towdur handling logcatch length;
id id;
output out=phinfl dfbeta=dtow dhand dlogc dlength ld=lrchange;

proc univariate data=phinfl;
var dtow dhand dlogc dlength lrchange;
id id;

run;

The proc univariate procedure will supply the 5 smallest val-
ues and the 5 largest values. The “id” statement means that
these will be labeled with the value of id from the dataset.

35

(g) Other Influence diagnostics

Other influence diagnostics:

The LD option is another method for checking influence. It
calculates how much the log-likelihood (x2) would change if
the 7-th person was removed from the sample.

LD; = 2|logL(B) — logL(B_,)]

B = MLE for all parameters with everyone included
B,i = MLE with ¢-th subject omitted

Again, the proc univariate procedure in SAS will identify
the observations with the largest and smallest values of the
lrchange diagnostic measure.
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Can we improve the model?

The plots appear to have some structure, which indicate that
we could be leaving something out. It is always a good idea
to check for interactions:

In this case, there are several important interactions. I used
a backward selection model forcing all main effects to be
included, and considering all pairwise interactions. Here are
the results:

Parameter Standard Wald Pr > Risk
Variable DF Estimate Error Chi-Square Chi-Square Ratio
TOWDUR 1 -0.075452 0.01740 18.79679 0.0001 0.927
DEPTH 1 0.123293 0.06400 3.71107 0.0541 1.131
LENGTH 1 -0.077300 0.02551 9.18225 0.0024 0.926
HANDLING 1 0.004798 0.03221 0.02219 0.8816 1.005
LOGCATCH 1 -0.225158 0.07156 9.89924 0.0017 0.798
TOWDEPTH 1 0.002931  0.0004996 34.40781 0.0001 1.003
TOWLNGTH 1 0.001180 0.0003541 11.10036 0.0009 1.001
TOWHAND 1 0.001107  0.0003558 9.67706 0.0019 1.001
DEPLNGTH 1 -0.006034 0.00136 19.77360 0.0001 0.994
DEPHAND 1 -0.004104 0.00118 12.00517 0.0005 0.996
Interpretation:

Handling alone doesn’t seem to affect survival, unless it is
combined with a longer towing duration or shallower trawl-
ing depths.
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An alternative modeling strategy when we have
fewer covariates

With a dataset with only 5 main effects, it would make sense

to consider interactions from the start. How many would
there be?

e Fit model with all main effects and pairwise interactions

e Then use backward selection to eliminate non-significant
pairwise interactions (remember to force the main effects
into the model at this stage)

e Once non-significant pairwise interactions have been elim

inated, you could consider backwards selection to elim-
inate any non-significant main effects that are not in-
volved in remaining interaction terms

e After obtaining final model, use residuals to check fit of
model.
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