
More on the Cox PH model

I. Confidence intervals and hypothesis tests

– Two methods for confidence intervals

– Wald tests and likelihood ratio tests

– Interpretation of parameter estimates

– An example with real data from an AIDS
clinical trial

II. Predicted survival under proportional hazards

III. Predicted medians and P-year survival

1

I. Constructing Confidence intervals and tests for
the Hazard Ratio (see H & L 4.2, Collett 3.4):

Many software packages provide estimates of β, but the haz-
ard ratio HR= exp(β) is usually the parameter of interest.

We can use the delta method to get standard errors for
exp(β̂):

V ar(ĤR) = V ar(exp(β̂)) = exp(2β̂)V ar(β̂)

Constructing confidence intervals for exp(β)
Two options: (assuming that β is a scalar)

I. Using se(exp β̂) obtained above via the delta method as
se(exp β̂) =

√
[V ar(exp(β̂))], calculate the endpoints as:

[L,U ] = [ÔR − 1.96 se(ÔR), ÔR + 1.96 se(ÔR)]

II. Form a confidence interval for β̂, and then exponentiate
the endpoints.

[L,U ] = [eβ̂−1.96se(β̂), eβ̂+1.96se(β̂)]

Which approach do you think would be the most
preferable?
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Hypothesis Tests:

For each covariate of interest, the null hypothesis is

Ho : HRj = 1 ⇔ βj = 0

A Wald test1 of the above hypothesis is constructed as:

Z =
β̂j

se(β̂j)
or χ2 =

 β̂j

se(β̂j)
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This test for βj = 0 assumes that all other terms in the
model are held fixed.

Note: if we have a factor A with a levels, then we would need
to construct a χ2 test with (a − 1) df, using a test statistic
based on a quadratic form:

χ2
(a−1) = β̂

′
AV ar(β̂A)−1β̂A

where βA = (β2, ..., βa)′ are the (a − 1) coefficients cor-
responding to Z2, ..., Za (or Z1, ..., Za−1, depending on the
reference group).

1The first follows a normal distribution, and the second follows a χ2 with 1 df.
STATA gives the Z statistic, while SAS gives the χ2

1 test statistic (the p-values
are also given, and don’t depend on which form, Z or χ2, is provided)
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Likelihood Ratio Tests:

Suppose there are (p + q) explanatory variables measured:

Z1, . . . , Zp, Zp+1, . . . , Zp+q

and proportional hazards are assumed.

Consider the following models:

• Model 1: (contains only the first p covariates)

λi(t,Z)
λ0(t)

= exp(β1Z1 + · · · + βpZp)

• Model 2: (contains all (p + q) covariates)

λi(t,Z)
λ0(t)

= exp(β1Z1 + · · · + βp+qZp+q)

These are nested models. For such nested models, we can
construct a likelihood ratio test of

H0 : βp+1 = · · · = βp+q = 0

as:

χ2
LR = −2

[
log(L̂(1)) − log(L̂(2))

]

Under Ho, this test statistic is approximately distributed as
χ2 with q df.
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Some examples using the Stata stcox command:

Model 1:

. use mac

. stset mactime macstat

. stcox karnof rif clari, nohr

failure _d: macstat
analysis time _t: mactime

Cox regression -- Breslow method for ties

No. of subjects = 1151 Number of obs = 1151
No. of failures = 121
Time at risk = 489509

LR chi2(3) = 32.01
Log likelihood = -754.52813 Prob > chi2 = 0.0000

-----------------------------------------------------------------------
_t |
_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-------------------------------------------------------------
karnof | -.0448295 .0106355 -4.215 0.000 -.0656747 -.0239843

rif | .8723819 .2369497 3.682 0.000 .4079691 1.336795
clari | .2760775 .2580215 1.070 0.285 -.2296354 .7817903

-----------------------------------------------------------------------
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Model 2:

. stcox karnof rif clari cd4, nohr

failure _d: macstat
analysis time _t: mactime

Cox regression -- Breslow method for ties

No. of subjects = 1151 Number of obs = 1151
No. of failures = 121
Time at risk = 489509

LR chi2(4) = 63.74
Log likelihood = -738.66225 Prob > chi2 = 0.0000

-------------------------------------------------------------------------
_t |
_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------
karnof | -.0368538 .0106652 -3.456 0.001 -.0577572 -.0159503

rif | .880338 .2371111 3.713 0.000 .4156089 1.345067
clari | .2530205 .2583478 0.979 0.327 -.253332 .7593729
cd4 | -.0183553 .0036839 -4.983 0.000 -.0255757 -.0111349

-------------------------------------------------------------------------
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Notes:

• If we omit the nohr option, we will get the estimated
hazard ratio along with 95% confidence intervals using
Method II (i.e., forming a CI for the log HR (beta), and
then exponentiating the bounds)
------------------------------------------------------------------------

_t |
_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------
karnof | .9638171 .0102793 -3.456 0.001 .9438791 .9841762

rif | 2.411715 .5718442 3.713 0.000 1.515293 3.838444
clari | 1.28791 .3327287 0.979 0.327 .7762102 2.136936
cd4 | .9818121 .0036169 -4.983 0.000 .9747486 .9889269

------------------------------------------------------------------------

• We can also compute the hazard ratio ourselves, by ex-
ponentiating the coefficients:

HRcd4 = exp(−0.01835) = 0.98

Why is this HR so close to 1, and yet still
highly significant?

What is the interpretation of this HR?

• The likelihood ratio test for the effect of CD4 is twice
the difference in minus log-likelihoods between the two
models:

χ2
LR = 2 ∗ (754.533 − (738.66)) = 31.74

How does this test statistic compare to the Wald χ2 test?
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• In the mac study, there were three treatment arms (rif,
clari, and the rif+clari combination). Because we have
only included the rif and clari effects in the model,
the combination therapy is the “reference” group.

• We can conduct an overall test of treatment using the
test command in Stata:

. test rif clari

( 1) rif = 0.0
( 2) clari = 0.0

chi2( 2) = 17.01
Prob > chi2 = 0.0002

for a 2 df Wald chi-square test of whether both treatment
coefficients are equal to 0. This test command can be
used to conduct an overall test for any number of effects.

• The test command can also be used to test whether
there is a difference between the rif and clari treat-
ment arms:

. test rif=clari

( 1) rif - clari = 0.0

chi2( 1) = 8.76
Prob > chi2 = 0.0031
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Some examples using SAS PROC PHREG

proc phreg data=alloi;
model dthtime*dthstat(0)=mlogrna cd4grp1 cd4grp2 combther

/ risklimits;
cd4level: test cd4grp1, cd4grp2;
title1 ’Proportional hazards regression model for time to Death’;
title2 ’Baseline viral load and CD4 predictors’;

proc phreg data=alloi;
model dthtime*dthstat(0)=mlogrna cd4grp1 cd4grp2 combther decrs8 incrs8

/ risklimits;
cd4level: test cd4grp1, cd4grp2;
wk8resp: test decrs8, incrs8;

Notes:

• The “risklimits” option on the model statement provides 95%
confidence intervals using Method II from page 2. (i.e., forming
a CI for the log HR (beta), and then exponentiating the bounds)

• The “test” statement has the following form:

Label: test varname1, varname2, ..., varnamek;

for a k df Wald chi-square test of whether the k coefficients are
all equal to 0.

• We can use the same approach described by Freedman to assess
the effects of intermediate endpoints (incrs8, decrs8) on the
treatment effect (i.e., assess their use as surrogate markers).
The percentage of treatment effect explained, γ, is estimated
by:

γ̂ = 1 − β̂trt,M2

β̂trt,M1

where M1 is the model without the intermediate endpoint and
M2 is the model with the marker.
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OUTPUT FROM PROC PHREG (Model 1)

Proportional hazards regression model for time to Death
Baseline viral load and CD4 predictors

Data Set: WORK.ALLOI
Dependent Variable: DTHTIME Time to death (days)
Censoring Variable: DTHSTAT Death status (1=died,0=censored)
Censoring Value(s): 0
Ties Handling: BRESLOW

Summary of the Number of
Event and Censored Values

Percent
Total Event Censored Censored

690 89 601 87.10

Testing Global Null Hypothesis: BETA=0

Without With
Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1072.543 924.167 148.376 with 4 DF (p=0.0001)
Score . . 189.702 with 4 DF (p=0.0001)
Wald . . 127.844 with 4 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr >
Variable DF Estimate Error Chi-Square Chi-Square

MLOGRNA 1 0.833237 0.17808 21.89295 0.0001
CD4GRP1 1 2.364612 0.32436 53.14442 0.0001
CD4GRP2 1 1.171137 0.34434 11.56739 0.0007
COMBTHER 1 -0.497161 0.24389 4.15520 0.0415
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OUTPUT FROM PROC PHREG, continued

Output from “risklimits” and “test” statements

Analysis of Maximum Likelihood Estimates

Conditional Risk Ratio and
95% Confidence Limits

Risk
Variable Ratio Lower Upper Label

MLOGRNA 2.301 1.623 3.262 log baseline rna (roche assay)
CD4GRP1 10.640 5.634 20.093 CD4<=100
CD4GRP2 3.226 1.643 6.335 100<CD4<=200
COMBTHER 0.608 0.377 0.981 Combination therapy with AZT/ddI/ddC/Nvp

Linear Hypotheses Testing

Wald Pr >
Label Chi-Square DF Chi-Square

CD4LEVEL 55.0794 2 0.0001
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OUTPUT FROM PROC PHREG, (Model 2)

Proportional hazards regression model for time to Death
Baseline viral load and CD4 predictors

Data Set: WORK.ALLOI
Dependent Variable: DTHTIME Time to death (days)
Censoring Variable: DTHSTAT Death status (1=died,0=censored)
Censoring Value(s): 0
Ties Handling: BRESLOW

Summary of the Number of
Event and Censored Values

Percent
Total Event Censored Censored

690 89 601 87.10

Testing Global Null Hypothesis: BETA=0

Without With
Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1072.543 912.009 160.535 with 6 DF (p=0.0001)
Score . . 198.537 with 6 DF (p=0.0001)
Wald . . 132.091 with 6 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr >
Variable DF Estimate Error Chi-Square Chi-Square

MLOGRNA 1 0.893838 0.18062 24.48880 0.0001
CD4GRP1 1 2.023005 0.33594 36.26461 0.0001
CD4GRP2 1 1.001046 0.34907 8.22394 0.0041
COMBTHER 1 -0.456506 0.24687 3.41950 0.0644
DECRS8 1 -0.410919 0.26383 2.42579 0.1194
INCRS8 1 -0.834101 0.32884 6.43367 0.0112
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OUTPUT FROM PROC PHREG, continued

Output from “risklimits” and “test” statements

Analysis of Maximum Likelihood Estimates

Conditional Risk Ratio and
95% Confidence Limits

Risk
Variable Ratio Lower Upper Label

MLOGRNA 2.444 1.716 3.483 log baseline rna (roche assay)
CD4GRP1 7.561 3.914 14.606 CD4<=100
CD4GRP2 2.721 1.373 5.394 100<CD4<=200
COMBTHER 0.633 0.390 1.028 Combination therapy with AZT/ddI/ddC/Nvp
DECRS8 0.663 0.395 1.112 Decrease>=0.5 log rna at week 8?
INCRS8 0.434 0.228 0.827 Increase>=50 CD4 cells, week 8?

Linear Hypotheses Testing

Wald Pr >
Label Chi-Square DF Chi-Square

CD4LEVEL 37.6833 2 0.0001
WK8RESP 10.4312 2 0.0054

The percentage of treatment effect explained by including
the RNA and CD4 response to treatment by Week 8 is:

γ̂ = 1 − −0.456
−0.497

≈ 0.08

or 8%. The percentage of treatment effect on time to first
opportunistic infection or death is much higher (about 24%).
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II. Predicted Survival using PH

The Cox PH model says that λi(t,Z) = λ0(t) exp(βZ).
What does this imply about the survival function, Sz(t), for
the i-th individual with covariates Zi?

For the baseline (reference) group, we have:

S0(t) = e− ∫ t
0 λ0(u)du = e−Λ0(t)

This is by definition of a survival function (see intro notes).

For the i-th patient with covariates Zi, we have:

Si(t) = e− ∫ t
0 λi(u)du = e−Λi(t)

= e− ∫ t
0 λ0(u) exp(βZi)du

= e− exp(βZi)
∫ t
0 λ0(u)du

=
[
e− ∫ t

0 λ0(u)du
]exp(βZi)

= [S0(t)]
exp(βZi)

(This uses the mathematical relationship [eb]a = eab)
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Say we are interested in the survival pattern for single males
in the nursing home study. Based on the previous formula,
if we had an estimate for the survival function in the refer-
ence group, i.e., Ŝ0(t), we could get estimates of the survival
function for any set of covariates Zi.

How can we estimate the survival function, S0(t)?

We could use the KM estimator, but there are a few disad-
vantages of that approach:

• It would only use the survival times for observations con-
tained in the reference group, and not all the rest of the
survival times.

• It would tend to be somewhat choppy, since it would
reflect the smaller sample size of the reference group.

• It’s possible that there are no subjects in the dataset
who are in the “reference” group (ex. say covariates are
age and sex; there is no one of age=0 in our dataset).
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Instead, we will use a baseline hazard estimator which takes
advantage of the proportional hazards assumption to get a
smoother estimate.

Ŝi(t) = [Ŝ0(t)]exp(β̂Zi)

Using the above formula, we substitute β̂ based on fitting the
Cox PH model, and calculate Ŝ0(t) by one of the following
approaches:

• Breslow estimator (Stata)

• Kalbfleisch/Prentice estimator (SAS)
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(1) Breslow Estimator:

Ŝ0(t) = exp−Λ̂0(t)

where Λ̂0(t) is the estimated cumulative baseline hazard:

Λ̂(t) =
∑

j:τj<t

 dj∑
k∈R(τj) exp(β1Z1k + . . . βpZpk)



(2) Kalbfleisch/Prentice Estimator

Ŝ0(t) =
∏

j:τj<t
α̂j

where α̂j, j = 1, ...d are the MLE’s obtained by assum-
ing that S(t;Z) satisfies

S(t;Z) = [S0(t)]e
βZ

=
 ∏
j:τj<t

αj


eβZ

=
∏

j:τj<t
αeβZ

j
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Breslow Estimator: further motivation

The Breslow estimator is based on extending the concept
of the Nelson-Aalen estimator to the proportional hazards
model.

Recall that for a single sample with no covariates, theNelson-
Aalen Estimator of the cumulative hazard is:

Λ̂(t) =
∑

j:τj<t

dj

rj

where dj and rj are the number of deaths and the number
at risk, respectively, at the j-th death time.

When there are covariates and assuming the PH model above,
one can generalize this to estimate the cumulative baseline
hazard by adjusting the denominator:

Λ̂(t) =
∑

j:τj<t

 dj∑
k∈R(τj) exp(β1Z1k + . . . βpZpk)



Heuristic: The expected number of failures in (t, t+ δt) is

dj ≈ δt × ∑
k∈R(t)

λ0(t)exp(zkβ̂)

Hence,

δt × λ0(tj) ≈ dj∑
k∈R(t) exp(zkβ̂)

18



Kalbfleisch/Prentice Estimator: further motivation

This method is analogous to the Kaplan-Meier Estimator.
Consider a discrete time model with hazard (1 − αj) at the
j-th observed death time.

(Note: we use αj = (1 − λj) to simplify the algebra!)

Thus, for someone with z=0, the survivorship function is

S0(t) =
∏

j:τj<t
αj

and for someone with Z �= 0, it is:

S(t;Z) = S0(t)e
βZ

=
 ∏
j:τj<t

αj


eβZ

=
∏

j:τj<t
αeβZ

j

The likelihood contributions under this model are:

• for someone censored at t: S(t;Z)

• for someone who fails at tj:

S(t(j−1);Z) − S(tj;Z) =
 ∏
k<j

αj


eβz

[1 − αeβZ

j ]

The solution for αj satisfies:

∑
k∈Dj

exp(Zkβ)

1 − α
exp(Zkβ)
j

=
∑

k∈Rj

exp(Zkβ)

(Note what happens when Z = 0)
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Obtaining Ŝ0(t) from software packages

• Stata provides the Breslow estimator of S0(t;Z), but not
predicted survivals at specified covariate values..... you
have to construct these yourself

• SAS uses the Kalbfleisch/Prentice estimator of the base-
line hazard, and can provide estimates of survival at ar-
bitrary values of the covariates with a little bit of pro-
gramming.

In practice, they are incredibly close! (see Fleming and
Harrington 1984, Communications in Statistics)
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Using Stata to Predict Survival

The Stata command basesurv calculates the predicted sur-
vival values for the reference group, i.e., those subjects with
all covariates=0.

(1) Baseline Survival:
To obtain the estimated baseline survival Ŝ0(t), follow
the example below (for the nursing home data):

. use nurshome

. stset los fail

. stcox married health, basesurv(prsurv)

. sort los

. list los prsurv
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Estimating the Baseline Survival with Stata

los prsurv

1. 1 .99252899
2. 1 .99252899
3. 1 .99252899
4. 1 .99252899
5. 1 .99252899

.

.

.
22. 1 .99252899
23. 2 .98671824
24. 2 .98671824
25. 2 .98671824
26. 2 .98671824
27. 2 .98671824
28. 2 .98671824
29. 2 .98671824
30. 2 .98671824
31. 2 .98671824
32. 2 .98671824
33. 2 .98671824
34. 2 .98671824
35. 2 .98671824
36. 2 .98671824
37. 2 .98671824
38. 2 .98671824
39. 2 .98671824
40. 3 .98362595
41. 3 .98362595

.

.

.

Stata creates a predicted baseline survival estimate for
every observed event time in the dataset, even if there
are duplicates.
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(2) Predicted Survival for Subgroups
To obtain the estimated survival Ŝi(t) for any other sub-
group (i.e., not the reference or baseline group), follow
the Stata commands below:

. predict betaz, xb

. gen newterm=exp(betaz)

. gen predsurv=prsurvˆnewterm

. sort married health los

. list married health los predsurv
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Predicting Survival for Subgroups with Stata

married health los predsurv

1. 0 2 1 .9896138
8. 0 2 2 .981557
11. 0 2 3 .9772769
13. 0 2 4 .9691724
16. 0 2 5 .9586483

................................................................
300. 0 3 1 .9877566
302. 0 3 2 .9782748
304. 0 3 3 .9732435
305. 0 3 4 .9637272
312. 0 3 5 .9513916
................................................................
768. 0 4 1 .9855696
777. 0 4 2 .9744162
779. 0 4 3 .9685058
781. 0 4 4 .9573418
785. 0 4 5 .9428996
.
.
.
1468. 1 4 1 .9806339
1469. 1 4 2 .9657326
1472. 1 4 3 .9578599
1473. 1 4 5 .9239448
................................................................
1559. 1 5 1 .9771894
1560. 1 5 2 .9596928
1562. 1 5 3 .9504684
1564. 1 5 4 .9331349
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Using SAS to Predict Survival

The SAS command BASELINE calculates the predicted sur-
vival values at the event times for a given set of covariate
values.

(1) To get the estimated baseline survival Ŝ0(t), create a
dataset with 0’s for values of all covariates in the model

(2) To get the estimated survival Ŝi(t) for any other sub-
group (i.e., not the reference or baseline group), create a
data set which inputs the baseline values of the covari-
ates for the subgroup of interest.

For either case, we then supply the corresponding dataset
name to the BASELINE command under PROC PHREG.

By giving the input dataset several lines, each corresponding
to a different combination of covariate values, we can com-
pute predicted survival values for more than one group at
once.

25

(1) Baseline Survival Estimate

(note that the baseline survival function does not correspond
to any observations in our sample, since health status values
range from 2-5)

*** Estimating Baseline Survival Function under PH;
data inrisks;
input married health;
cards;

0 0
;

proc phreg data=pop out=survres;
model los*fail(0)=married health;
baseline covariates=inrisks out=outph survival=ps/nomean;

proc print data=outph;
title1 ’Nursinghome data: Baseline Survival Estimate’;
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Estimating the Baseline Survival with SAS

Nursinghome data: Baseline Survival Estimate

OBS MARRIED HEALTH LOS PS

1 0 0 0 1.00000
2 0 0 1 0.99253
3 0 0 2 0.98672
4 0 0 3 0.98363
5 0 0 4 0.97776
6 0 0 5 0.97012
7 0 0 6 0.96488
8 0 0 7 0.95856
9 0 0 8 0.95361
10 0 0 9 0.94793
11 0 0 10 0.94365
12 0 0 11 0.93792
13 0 0 12 0.93323
14 0 0 13 0.92706
15 0 0 14 0.92049
16 0 0 15 0.91461
17 0 0 16 0.91017
18 0 0 17 0.90534
19 0 0 18 0.90048
20 0 0 19 0.89635
21 0 0 20 0.89220
22 0 0 21 0.88727
23 0 0 22 0.88270

.

.

.
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(2) Predicted Survival Estimate for Subgroup

The following SAS commands will generate the predicted
survival probability for each combination of covariates, at
every observed event time in the dataset.

*** Estimating Baseline Survival Function under PH;
data inrisks;
input married health;
cards;

0 2
0 5
1 2
1 5
;

proc phreg data=pop out=survres;
model los*fail(0)=married health;
baseline covariates=inrisks out=outph survival=ps/nomean;

proc print data=outph;
title1 ’Nursinghome data: predicted survival by subgroup’;
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Survival Estimates by Marital and Health Status

Nursinghome data: Predicted Survival by Subgroup

OBS MARRIED HEALTH LOS PS

1 0 2 0 1.00000
2 0 2 1 0.98961
3 0 2 2 0.98156
4 0 2 3 0.97728

................................................................
171 0 2 184 0.50104
172 0 2 185 0.49984
................................................................
396 0 5 0 1.00000
397 0 5 1 0.98300
398 0 5 2 0.96988
399 0 5 3 0.96295
................................................................
474 0 5 78 0.50268
475 0 5 80 0.49991
................................................................
791 1 2 0 1.00000
792 1 2 1 0.98605
793 1 2 2 0.97527
794 1 2 3 0.96955
................................................................
897 1 2 108 0.50114
898 1 2 109 0.49986
................................................................
1186 1 5 0 1.00000
1187 1 5 1 0.97719
1188 1 5 2 0.95969
1189 1 5 3 0.95047
................................................................
1233 1 5 47 0.50519
1234 1 5 48 0.49875
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We can get a visual picture of what the propor-
tional hazards assumption implies by looking at
these four subgroups

S u b g r o u p S i n g l e ,  h e a l t h y S i n g l e ,  u n h e a l t h
M a r r i e d ,  h e a l t h y M a r r i e d ,  u n h e a l t

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

L O S
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
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III. Predicted medians and P-year survival

Predicted Medians
Suppose we want to find the predicted median survival for an
individual with a specified combination of covariates (e.g., a
single person with health status 5).

Three possible approaches:

(1) Calculate the median from the subset of individuals with
the specified covariate combination (using KM approach)

(2) Generate predicted survival curves for each combination
of covariates, and obtain the medians directly
OBS MARRIED HEALTH LOS PREDSURV

171 0 2 184 0.50104
172 0 2 185 0.49984

474 0 5 78 0.50268
475 0 5 80 0.49991

897 1 2 108 0.50114
898 1 2 109 0.49986

1233 1 5 47 0.50519
1234 1 5 48 0.49875

Recall that previously we defined the median as the
smallest value of t for which Ŝ(t) ≤ 0.5, so the medians
from above would be 185, 80, 109, and 48 days for single
healthy, single unhealthy, married healthy, and married
unhealthy, respectively.
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(3) Generate the predicted survival curve from the estimated
baseline hazard, as follows:

We want the estimated median (M) for an individual
with covariates Zi. We know

S(M ;Z) = [S0(M)]e
βZi = 0.5

Hence, M satisfies (multiplying both sides by e−βZi):

S0(M) = [0.5]e
−βZ

Ex. Suppose we want to estimate the median survival
for a single unhealthy subject from the nursing home
data. The reciprocal of the hazard ratio for unhealthy
(health=5) is: e−0.165∗5 = 0.4373, (where β̂ = 0.165 for
health status)

So, we want M such that S0(M) = (0.5)0.4373 = 0.7385

So the median for single unhealthy subject is the 73.8th

percentile of the baseline group.

OBS MARRIED HEALTH LOS PREDSURV

79 0 0 78 0.74028
80 0 0 80 0.73849
81 0 0 81 0.73670

So the estimated median would still be 80 days. Note: simi-
lar logic can be followed to estimate other quantiles besides
the median.
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Estimating P-year survival

Suppose we want to find the P-year survival rate for an indi-
vidual with a specified combination of covariates, Ŝ(P ;Zi)

For an individual with Zi = 0, the P-year survival can be
obtained from the baseline survivorship function, Ŝ0(P )

For individuals with Zi �= 0, it can be obtained as:

Ŝ(P ;Zi) = [Ŝ0(P )]e
β̂Zi

Notes:

• Although I say “P-year” survival, the units of time in a
particular dataset may be days, weeks, or months. The
answer here will be in the same units of time as the
original data.

• If β̂Zi is positive, then the P-year survival rate for the i-
th individual will be lower than for a baseline individual.

Why is this true?
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