
Modeling of Survival Data

Now we will explore the relationship between survival and
explanatory variables by modeling. In this class, we consider
two broad classes of regression models:

• Proportional Hazards (PH) models
λ(t;Z) = λ0(t)Ψ(Z)

Most commonly, we write the second term as:

Ψ(Z) = eβZ

Suppose Z = 1 for treated subjects and Z = 0 for un-
treated subjects. Then this model says that the hazard
is increased by a factor of eβ for treated subjects versus
untreated subjects (cβ might be < 1).

This is an example of a semi-parametric model.

• Accelerated Failure Time (AFT) models
log(T ) = µ + βZ + σw

where w is an “error distribution”. Typically, we place
a parametric assumption on w:

– exponential, Weibull, Gamma
– lognormal
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Covariates:

In general, Z is a vector of covariates of interest.

Z may include:

• continuous factors (eg, age, blood pressure),
• discrete factors (gender, marital status),
• possible interactions (age by sex interaction)

Discrete Covariates:
Just as in standard linear regression, if we have a discrete
covariate A with a levels, then we will need to include (a−1)
dummy variables (U1, U2, . . . , Ua) such that Uj = 1 if A =
j. Then

λi(t) = λ0(t) exp(β2U2 + β3U3 + · · · + βaUa)
(In the above model, the subgroup with A = 1 or U1 = 1 is
the reference group.)

Interactions:
Two factors, A and B, interact if the hazard of death de-
pends on the combination of levels of A and B.

We usually follow the principle of hierarchical models, and
only include interactions if all of the corresponding main
effects are also included.
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The example I just gave was based on a proportional hazards
model, but the description of the types of covariates we might
want to include in our model applies to both the AFT and
PH model.

We’ll start out by focusing on the Cox PH model, and ad-
dress some of the following questions:

• What does the term λ0(t) mean?

• What’s “proportional” about the PH model?
• How do we estimate the parameters in the model?
• How do we interpret the estimated values?
• How can we construct tests of whether the covariates
have a significant effect on the distribution of survival
times?

• How do these tests compare to the logrank test or the
Wilcoxon test?
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The Cox Proportional Hazards model

λ(t;Z) = λ0(t) exp(βZ)

This is the most common model used for survival data.

Why?

• flexible choice of covariates
• fairly easy to fit
• standard software exists

References: Collett, Chapter 3*
Lee, Chapter 10*
Hosmer & Lemeshow, Chapters 3-7
Allison, Chapter 5
Cox and Oakes, Chapter 7
Kleinbaum, Chapter 3
Klein and Moeschberger, Chapters 8 & 9
Kalbfleisch and Prentice

Note: some books (like Collett and H & L) use h(t;X) as
their standard notation for the hazard instead of λ(t;Z), and
H(t) for the cumulative hazard instead of Λ(t).
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Why do we call it proportional hazards?

Think of the first example, where Z = 1 for treated and Z =
0 for control. Then if we think of λ1(t) as the hazard rate
for the treated group, and λ0(t) as the hazard for control,
then we can write:

λ1(t) = λ(t;Z = 1) = λ0(t) exp(βZ)
= λ0(t) exp(β)

This implies that the ratio of the two hazards is a constant,
φ, which does NOT depend on time, t. In other words, the
hazards of the two groups remain proportional over time.

φ =
λ1(t)
λ0(t)

= eβ

φ is referred to as the hazard ratio.

What is the interpretation of β here?
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The Baseline Hazard Function

In the example of comparing two treatment groups, λ0(t) is
the hazard rate for the control group.

In general, λ0(t) is called the baseline hazard function,
and reflects the underlying hazard for subjects with all co-
variates Z1, ..., Zp equal to 0 (i.e., the “reference group”).

The general form is:

λ(t;Z) = λ0(t) exp(β1Z1 + β2Z2 + · · · + βpZp)

So when we substitute all of the Zj’s equal to 0, we get:

λ(t,Z = 0) = λ0(t) exp(β1 ∗ 0 + β2 ∗ 0 + · · · + βp ∗ 0)
= λ0(t)

In the general case, we think of the i-th individual having a
set of covariates Zi = (Z1i, Z2i, ..., Zpi), and we model their
hazard rate as some multiple of the baseline hazard rate:

λi(t,Zi) = λ0(t) exp(β1Z1i + · · · + βpZpi)
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This means we can write the log of the hazard ratio for the
i-th individual to the reference group as:

log
λi(t)
λ0(t)

 = β1Z1i + β2Z2i + · · · + βpZpi

The Cox Proportional Hazards model is a
linear model for the log of the hazard ratio

One of the biggest advantages of the framework of the Cox
PH model is that we can estimate the parameters β which
reflect the effects of treatment and other covariates without
having to make any assumptions about the form of λ0(t).

In other words, we don’t have to assume that λ0(t) follows
an exponential model, or a Weibull model, or any other par-
ticular parametric model.

That’s what makes the model semi-parametric.

Questions:

1. Why don’t we just model the hazard ratio,
φ = λi(t)/λ0(t), directly as a linear function of the
covariates Z?

2. Why doesn’t the model have an intercept?
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How do we estimate the model parameters?

The basic idea is that under PH, information about β can
be obtained from the relative orderings (i.e., ranks) of the
survival times, rather than the actual values. Why?

Suppose T follows a PH model:

λ(t;Z) = λ0(t)eβZ

Now consider T ∗ = g(T ), where g is a monotonic increasing
function. We can show that T ∗ also follows the PH model,
with the same multiplier, eβZ.

Therefore, when we consider likelihood methods for estimat-
ing the model parameters, we only have to worry about the
ranks of the survival times.
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Likelihood Estimation for the PH Model

Kalbfleisch and Prentice derive a likelihood involving only
β and Z (not λ0(t)) based on the marginal distribution of
the ranks of the observed failure times (in the absence of
censoring).

Cox (1972) derived the same likelihood, and generalized it
for censoring, using the idea of a partial likelihood

Suppose we observe (Xi, δi,Zi) for individual i, where

• Xi is a censored failure time random variable

• δi is the failure/censoring indicator (1=fail,0=censor)
• Zi represents a set of covariates

The covariates may be continuous, discrete, or time-varying.
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Suppose there are K distinct failure (or death) times, and
let τ1, ....τK represent the K ordered, distinct death times.

For now, assume there are no tied death times.

Let R(t) = {i : xi ≥ t} denote the set of individuals who
are “at risk” for failure at time t.

More about risk sets:

• I will refer toR(τj) as the risk set at the jth failure time
• I will refer to R(Xi) as the risk set at the failure time of
individual i

• There will still be rj individuals in R(τj).
• rj is a number, whileR(τj) identifies the actual subjects
at risk
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What is the partial likelihood?

Intuitively, it is a product over the set of observed death
times of the conditional probabilities of seeing the observed
deaths, given the set of individuals at risk at those times.

At each death time τj, the contribution to the likelihood is:

Lj(β) = Pr(individual j fails|1 failure from R(τj))

=
Pr(individual j fails| at risk at τj)∑

"∈R(τj) Pr(individual " fails| at risk at τj)

=
λ(τj;Zj)∑

"∈R(τj) λ(τj;Z")

Under the PH assumption, λ(t;Z) = λ0(t)eβZ, so we get:

Lpartial(β) =
K∏
j=1

λ0(τj)eβZj

∑
"∈R(τj) λ0(τj)e

βZ�

=
K∏
j=1

eβZj

∑
"∈R(τj) e

βZ�
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Another derivation:

In general, the likelihood contributions for censored data fall
into two categories:

• Individual is censored at Xi:

Li(β) = S(Xi) = exp[−
∫ Xi

0
λi(u)du]

• Individual fails at Xi:

Li(β) = S(Xi)λi(Xi) = λi(Xi) exp[−
∫ Xi

0
λi(u)du]

Thus, everyone contributes S(Xi) to the likelihood, and only
those who fail contribute λi(Xi).

This means we get a total likelihood of:

L(β) =
n∏
i=1
λi(Xi)δi exp[−

∫ Xi

0
λi(u)du]

The above likelihood holds for all censored survival data,
with general hazard function λ(t). In other words, we haven’t
used the Cox PH assumption at all yet.
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Now, let’s multiply and divide by the term
[∑
j∈R(Xi) λi(Xi)

]δi:

L(β) =
n∏

i=1

 λi(Xi)∑
j∈R(Xi) λi(Xi)

δi
 ∑

j∈R(Xi)
λi(Xi)


δi

exp[−
∫ Xi

0
λi(u)du]

Cox (1972) argued that the first term in this product con-
tained almost all of the information about β, while the sec-
ond two terms contained the information about λ0(t), i.e.,
the baseline hazard.

If we just focus on the first term, then under the Cox PH
assumption:

L(β) =
n∏
i=1

 λi(Xi)∑
j∈R(Xi) λi(Xi)


δi

=
n∏
i=1

 λ0(Xi) exp(βZi)∑
j∈R(Xi) λ0(Xi) exp(βZj)


δi

=
n∏
i=1

 exp(βZi)∑
j∈R(Xi) exp(βZj)


δi

This is the partial likelihood defined by Cox. Note that it
does not depend on the underlying hazard function λ0(·).
Cox recommends treating this as an ordinary likelihood for
making inferences about β in the presence of the nuisance
parameter λ0(·).
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A simple example:

individual Xi δi Zi
1 9 1 4
2 8 0 5
3 6 1 7
4 10 1 3

Now let’s compile the pieces that go into the partial likeli-
hood contributions at each failure time:

ordered
failure Likelihood contribution

j time Xi R(Xi) ij
[
eβZi/

∑
j∈R(Xi) e

βZj
]δi

1 6 {1,2,3,4} 3 e7β/[e4β + e5β + e7β + e3β]

2 8 {1,2,4} 2 1

3 9 {1,4} 1 e4β/[e4β + e3β]

4 10 {4} 4 e3β/e3β = 1

The partial likelihood would be the product of these four
terms.
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Notes on the partial likelihood:

L(β) =
n∏
j=1

 eβZj

∑
"∈R(Xj) e

βZ�


δj

=
K∏
j=1

eβZj

∑
"∈R(τj) e

βZ�

where the product is over the K death (or failure) times.

• contributions only at the death times

• the partial likelihood is NOT a product of independent
terms, but of conditional probabilities

• There are other choices besides Ψ(Z) = eβZ, but this
is the most common and the one for which software is
generally available.
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Partial Likelihood inference

Inference can be conducted by treating the partial likelihood
as though it satisfied all the regular likelihood properties.

The log-partial likelihood is:

"(β) = log

 n∏
j=1

eβZj

∑
"∈R(τj) e

βZ�


δj

= log

 K∏
j=1

eβZj

∑
"∈R(τj) e

βZ�



=
K∑
j=1

βZj − log[
∑

"∈R(τj)
eβZ�]



=
K∑
j=1

lj(β)

where lj is the log-partial likelihood contribution at the j-th
ordered death time.
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Suppose there is only one covariate (β is one-dimensional):

The partial likelihood score equations are:

U(β) =
∂

∂β
"(β) =

n∑
j=1

δj

Zj −
∑
"∈R(τj)Z"e

βZ�

∑
"∈R(τj) e

βZ�



We can express U(β) intuitively as a sum of “observed” mi-
nus “expected” values:

U(β) =
∂

∂β
"(β) =

n∑
j=1

δj(Zj − Z̄j)

where Z̄j is the “weighted average” of the covariate Z over
all the individuals in the risk set at time τj. Note that β is
involved through the term Z̄j.

The maximum partial likelihood estimators can be found by
solving U(β) = 0.
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Analogous to standard likelihood theory, it can be shown
(though not easily) that

(β̂ − β)
se(β̂)

∼ N(0, 1)

The variance of β̂ can be obtained by inverting the second
derivative of the partial likelihood,

var(β̂) ∼
− ∂2

∂β2
"(β)


−1

From the above expression for U(β), we have:

∂2

∂β2
"(β) =

n∑
j=1

δj

−
∑
"∈R(τj)(Zj − Z̄j)2eβZ�

∑
"∈R(τj) e

βZ�



Note:

The true variance of β̂ ends up being a function of β, which

is unknown. We calculate the “observed” information by

substituting in our partial likelihood estimate of β into the

above formula for the variance
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Simple Example for 2-group comparison: (no ties)

Group 0: 4+, 7, 8+, 9, 10+ =⇒ Zi = 0

Group 1: 3, 5, 5+, 6, 8+ =⇒ Zi = 1

ordered failure Number at risk Likelihood contribution
j time Xi Group 0 Group 1

[
eβZi/

∑
j∈R(Xi) e

βZj
]δi

1 3 5 5 eβ/[5 + 5eβ]

2 5 4 4 eβ/[4 + 4eβ]

3 6 4 2 eβ/[4 + 2eβ]

4 7 4 1 eβ/[4 + 1eβ]

5 9 2 0 e0/[2 + 0] = 1/2

Again, we take the product over the likelihood contributions,
then maximize to get the partial MLE for β.

What does β represent in this case?
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Notes

• The “observed” information matrix is generally used be-
cause in practice, people find it has better properties.
Also, the “expected” is very hard to calculate.

• There is a nice analogy with the score and informa-
tion matrices from more standard regression problems,
except that here we are summing over observed death
times, rather than individuals.

• Newton Raphson is used by many of the computer pack-
ages to solve the partial likelihood equations.
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Fitting Cox PH model with Stata

Uses the “stcox” command.

First, try typing “help stcox”

----------------------------------------------------------------------
help for stcox
----------------------------------------------------------------------

Estimate Cox proportional hazards model
---------------------------------------

stcox [varlist] [if exp] [in range]
[, nohr strata(varnames) robust cluster(varname) noadjust
mgale(newvar) esr(newvars)
schoenfeld(newvar) scaledsch(newvar)
basehazard(newvar) basechazard(newvar) basesurv(newvar)
{breslow | efron | exactm | exactp} cmd estimate noshow
offset level(#) maximize-options ]

stphtest [, km log rank time(varname) plot(varname) detail
graph-options ksm-options]

stcox is for use with survival-time data; see help st. You must
have stset your data before using this command; see help stset.

Description
-----------
stcox estimates maximum-likelihood proportional hazards models on st data.

Options (many more!)
-------
nohr reports the estimated coefficients rather than hazard ratios; i.e.,

b rather than exp(b). Standard errors and confidence intervals are
similarly transformed. This option affects how results are displayed,
not how they are estimated.
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Ex. Leukemia Data

. stcox trt

Iteration 0: log likelihood = -93.98505
Iteration 1: log likelihood = -86.385606
Iteration 2: log likelihood = -86.379623
Iteration 3: log likelihood = -86.379622
Refining estimates:
Iteration 0: log likelihood = -86.379622

Cox regression -- Breslow method for ties

No. of subjects = 42 Number of obs = 42
No. of failures = 30
Time at risk = 541

LR chi2(1) = 15.21
Log likelihood = -86.379622 Prob > chi2 = 0.0001

------------------------------------------------------------------------------
_t |
_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
trt | .2210887 .0905501 -3.685 0.000 .0990706 .4933877

------------------------------------------------------------------------------

. stcox trt , nohr

(same iterations for log-likelihood)

Cox regression -- Breslow method for ties

No. of subjects = 42 Number of obs = 42
No. of failures = 30
Time at risk = 541

LR chi2(1) = 15.21
Log likelihood = -86.379622 Prob > chi2 = 0.0001

------------------------------------------------------------------------------
_t |
_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
trt | -1.509191 .4095644 -3.685 0.000 -2.311923 -.7064599

------------------------------------------------------------------------------
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Fitting PH models in SAS - PROC PHREG

Ex. Leukemia data

Title ’Cox and Oakes example’;
data leukemia;

input weeks remiss trtmt;
cards;

6 0 1
6 1 1
6 1 1
6 1 1 /* data for 6MP group */
7 1 1
9 0 1
etc
1 1 0
1 1 0 /* data for placebo group */
2 1 0
2 1 0
etc
;

proc phreg data=leukemia;
model weeks*remiss(0)=trtmt;
title ’Cox PH Model for leukemia data’;

run;
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PROC PHREG Output:

The PHREG Procedure

Data Set: WORK.LEUKEM
Dependent Variable: FAILTIME Time to Relapse
Censoring Variable: FAIL
Censoring Value(s): 0
Ties Handling: BRESLOW

Summary of the Number of
Event and Censored Values

Percent
Total Event Censored Censored

42 30 12 28.57

Testing Global Null Hypothesis: BETA=0

Without With
Criterion Covariates Covariates Model Chi-Square

-2 LOG L 187.970 172.759 15.211 with 1 DF (p=0.0001)
Score . . 15.931 with 1 DF (p=0.0001)
Wald . . 13.578 with 1 DF (p=0.0002)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk
Variable DF Estimate Error Chi-Square Chi-Square Ratio

TRTMT 1 -1.509191 0.40956 13.57826 0.0002 0.221
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Fitting PH models in S-plus: coxph function

Here are some of the data in leuk.dat:

t f x
1 1 0
1 1 0
2 1 0
2 1 0
3 1 0
...
19 0 1
20 0 1
22 1 1
23 1 1
25 0 1
32 0 1
32 0 1
34 0 1
35 0 1

leuk_read.table("leuk.dat",header=T)

#specify Breslow handling of ties
print(coxph(Surv(t,f) ˜ x, leuk, method="breslow"))

#specify Efron handling of ties (default)
print(coxph(Surv(t,f) ˜ x, leuk))
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coxph Output:

Call:
coxph(formula = Surv(t, f) ˜ x, data = leuk, method = "breslo

coef exp(coef) se(coef) z p
x -1.51 0.221 0.41 -3.68 0.00023

Likelihood ratio test=15.2 on 1 df, p=0.0000961 n= 42

Call:
coxph(formula = Surv(t, f) ˜ x, data = leuk)

coef exp(coef) se(coef) z p
x -1.57 0.208 0.412 -3.81 0.00014

Likelihood ratio test=16.4 on 1 df, p=0.0000526 n= 42
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Compare this with the logrank test
from Proc Lifetest
(Using the “Test” statement)

The LIFETEST Procedure

Rank Tests for the Association of FAILTIME with Covariates
Pooled over Strata

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

TRTMT 10.2505 2.5682 15.9305 0.0001

Notes:

• The logrank test=score test from Proc phreg!
In general, the score test would be for all of the variables
in the model, but in this case, we have only “trtmt”.

• Stata does not provide a score test in its output from
the Cox model. However, the stcox command with
the breslow option for ties yields the same LR test as
the CMH-version logrank test from the sts test, cox
command.
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More Notes:

• The Cox Proportional hazards model has the advantage
over a simple logrank test of giving us an estimate of
the “risk ratio” (i.e., φ = λ1(t)/λ0(t)). This is more
informative than just a test statistic, and we can also
form confidence intervals for the risk ratio.

• In this case, φ̂ = 0.221, which can be interpreted to mean
that the hazard for relapse among patients treated with
6-MP is less than 25% of that for placebo patients.

• From the sts list command in Stata orProc lifetest
in SAS, we were able to get estimates of the entire sur-
vival distribution Ŝ(t) for each treatment group; we can’t
immediately get this from our Cox model without fur-
ther assumptions. Why not?
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Adjustments for ties

The proportional hazards model assumes a continuous haz-
ard – ties are not possible. There are four proposed modifi-
cations to the likelihood to adjust for ties.

(1) Cox’s (1972) modification: “discrete” method

(2) Peto-Breslow method

(3) Efron’s (1977) method

(4) Exact method (Kalbfleisch and Prentice)

(5) Exact marginal method (stata)

Some notation:

τ1, ....τK the K ordered, distinct death times

dj the number of failures at τj

Hj the “history” of the entire data set, up to the
j-th death or failure time, including the time
of the failure, but not the identities of the dj
who fail there.

ij1, ...ijdj the identities of the dj individuals who fail at τj
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(1) Cox’s (1972) modification: “discrete” method

Cox’s method assumes that if there are tied failure times,
they truly happened at the same time. It is based on a
discrete likelihood.

The partial likelihood is:

L(β) =
K∏
j=1

Pr(ij1, ...ijdj fail | dj fail at τj, from R)

=
K∏
j=1

Pr(ij1, ...ijdj fail | in R(τj))∑
"∈s(j,dj) Pr("1, ...."dj fail | in R(τj))

=
K∏
j=1

exp(βZij1) · · · exp(βZijdj
)

∑
"∈s(j,dj) exp(βZ"1) · · · exp(βZ"dj

)

=
K∏
j=1

exp(βSj)∑
"∈s(j,dj) exp(βSj")

where

• s(j, dj) is the set of all possible sets of dj individuals that
can possibly be drawn from the risk set at time τj

• Sj is the sum of the Z’s for all the dj individuals who
fail at τj

• Sj" is the sum of the Z’s for all the dj individuals in the
"-th set drawn out of s(j, dj)
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What does this all mean??!!

Let’s modify our previous simple example to include ties.

Simple Example (with ties)

Group 0: 4+, 6, 8+, 9, 10+ =⇒ Zi = 0
Group 1: 3, 5, 5+, 6, 8+ =⇒ Zi = 1

Ordered
failure Number at risk Likelihood Contribution

j time Xi Group 0 Group 1 eβSj/
∑

�∈s(j,dj) e
βSj�

1 3 5 5 eβ/[5 + 5eβ]

2 5 4 4 eβ/[4 + 4eβ]

3 6 4 2 eβ/[6 + 8eβ + e2β]

4 9 2 0 e0/2 = 1/2

The tie occurs at t = 6, whenR(τj) = {Z = 0 : (6, 8+, 9, 10+),
Z = 1 : (6, 8+)}. Of the (62

)
= 15 possible pairs of subjects

at risk at t=6, there are 6 pairs formed where both are from
group 0 (Sj = 0), 8 pairs formed with one in each group
(Sj = 1), and 1 pairs formed with both in group 1 (Sj = 2).

Problem: With large numbers of ties, the denominator can
have many many terms and be difficult to calculate.

31

(2) Breslow method: (default)

Breslow and Peto suggested replacing the term ∑
"∈s(j,dj) e

βSj�

in the denominator by the term
(∑

"∈R(τj) e
βZ�

)dj , so that the
following modified partial likelihood would be used:

L(β) =
K∏
j=1

eβSj∑
"∈s(j,dj) e

βSj�
≈ K∏

j=1

eβSj(∑
"∈R(τj) e

βZ�

)dj

Justification:

Suppose individuals 1 and 2 fail from {1, 2, 3, 4} at time τj.
Let φ(i) be the hazard ratio for individual i (compared to
baseline).

eβSj∑
�∈s(j,dj) e

βSj�
=

φ(1)
φ(1) + φ(2) + φ(3) + φ(4)

× φ(2)
φ(2) + φ(3) + φ(4)

+
φ(2)

φ(1) + φ(2) + φ(3) + φ(4)
× φ(1)
φ(1) + φ(3) + φ(4)

≈ 2φ(1)φ(2)
[φ(1) + φ(2) + φ(3) + φ(4)]2

The Peto (Breslow) approximation will break down when
the number of ties are large relative to the size of the risk
sets, and then tends to yield estimates of β which are biased
toward 0.
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(3) Efron’s (1977) method:

Efron suggested an even closer approximation to the discrete
likelihood:

L(β) =
K∏
j=1

eβSj(∑
"∈R(τj) e

βZ� + j−1
dj

∑
"∈D(τj) e

βZ�

)dj

Like the Breslow approximation, Efron’s method will yield
estimates of β which are biased toward 0 when there are
many ties.

However, Allison (1995) recommends the Efron approxima-
tion since it is much faster than the exact methods and tends
to yield much closer estimates than the default Breslow ap-
proach.
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(4) Exact method (Kalbfleisch and Prentice):

The “discrete” option that we discussed in (1) is an exact
method based on a discrete likelihood (assuming that tied
events truly ARE tied).

This second exact method is based on the continuous like-
lihood, under the assumption that if there are tied events,
that is due to the imprecise nature of our measurement, and
that there must be some true ordering.

All possible orderings of the tied events are calculated, and
the probabilities of each are summed.

Example with 2 tied events (1,2) from riskset (1,2,3,4):

eβSj∑
�∈s(j,dj) e

βSj�
=

eβS1

eβS1 + eβS2 + eβS3 + eβS4
× eβS2

eβS2 + eβS3 + eβS4

+
eβS2

eβS1 + eβS2 + eβS3 + eβS4
× eβS1

eβS1 + eβS3 + eβS4
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Bottom Line: Implications of Ties
(See Allison (1995), p.127-137)

(1)When there are no ties, all options give exactly the
same results.

(2)When there are only a few ties, it won’t make
much difference which method is used. However, since
the exact methods won’t take much extra computing
time, you might as well use one of them.

(3)When there are many ties (relative to the number
at risk), the Breslow option (default) performs poorly
(Farewell & Prentice, 1980; Hsieh, 1995). Both of the
approximate methods, Breslow and Efron, yield coeffi-
cients that are attenuated (biased toward 0).

(4) The choice of which exact method to use should
be based on substantive grounds - are the tied event
times truly tied? ...or are they the result of imprecise
measurement?

(5) Computing time of exact methods is much longer
than that of the approximate methods. However, in most
cases it will still be less than 30 seconds even for the exact
methods.

(6) Best approximate method - the Efron approxi-
mation nearly always works better than the Breslow
method, with no increase in computing time, so use this
option if exact methods are too computer-intensive.
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Example: The fecundability study
Women who had recently given birth (or had tried to get
pregnant for at least a year) were asked to recall how long
it took them to become pregnant, and whether or not they
smoked during that time. The outcome of interest is time to
pregnancy (measured in menstrual cycles).

data fecund;
input smoke cycle status count;
cards;

0 1 1 198
0 2 1 107
0 3 1 55
0 4 1 38
0 5 1 18
0 6 1 22
..........................................

1 10 1 1
1 11 1 1
1 12 1 3
1 12 0 7
;

proc phreg;
model cycle*status(0) = smoke /ties=breslow; /* default */
freq count;

proc phreg;
model cycle*status(0) = smoke /ties=discrete;
freq count;

proc phreg;
model cycle*status(0) = smoke /ties=exact;
freq count;

proc phreg;
model cycle*status(0) = smoke /ties=efron;
freq count;
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SAS Output for Fecundability study:
Accounting for Ties

***************************************************************************
Ties Handling: BRESLOW

Parameter Standard Wald Pr > Risk
Variable DF Estimate Error Chi-Square Chi-Square Ratio
SMOKE 1 -0.329054 0.11412 8.31390 0.0039 0.720

***************************************************************************
Ties Handling: DISCRETE

Parameter Standard Wald Pr > Risk
Variable DF Estimate Error Chi-Square Chi-Square Ratio
SMOKE 1 -0.461246 0.13248 12.12116 0.0005 0.630

***************************************************************************
Ties Handling: EXACT

Parameter Standard Wald Pr > Risk
Variable DF Estimate Error Chi-Square Chi-Square Ratio
SMOKE 1 -0.391548 0.11450 11.69359 0.0006 0.676

***************************************************************************
Ties Handling: EFRON

Parameter Standard Wald Pr > Risk
Variable DF Estimate Error Chi-Square Chi-Square Ratio
SMOKE 1 -0.387793 0.11402 11.56743 0.0007 0.679

***************************************************************************

For this particular dataset, does it seem like it
would be important to consider the effect of tied
failure times? Which method would be best?
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Stata Commands for PH Model with Ties:

Stata also offers four options for adjustments with tied data:

• breslow (default)

• efron

• exactp (same as the “discrete” option in SAS)

• exactm - an exact marginal likelihood calculation
(different than the “exact” option in SAS)

Fecundability Data Example:

. stcox smoker, efron nohr

failure _d: status
analysis time _t: cycle

Iteration 0: log likelihood = -3113.5313
Iteration 1: log likelihood = -3107.3102
Iteration 2: log likelihood = -3107.2464
Iteration 3: log likelihood = -3107.2464
Refining estimates:
Iteration 0: log likelihood = -3107.2464
Cox regression -- Efron method for ties

No. of subjects = 586 Number of obs = 586
No. of failures = 567
Time at risk = 1844

LR chi2(1) = 12.57
Log likelihood = -3107.2464 Prob > chi2 = 0.0004

------------------------------------------------------------------------------
_t |
_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
smoker | -.3877931 .1140202 -3.401 0.001 -.6112685 -.1643177

------------------------------------------------------------------------------
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A special case: the two-sample problem

Previously, we derived the logrank test from an intuitive per-
spective, assuming that we have (X01, δ01) . . . (X0n0, δ0n0) from
group 0 and (X11, δ11), . . . , (X1n1, δ1n1) from group 1.

Just as a χ2 test for binary data can be derived from a logistic
model, we will see here that the logrank test can be derived
as a special case of the Cox Proportional Hazards model.

First, let’s re-define our notation in terms of (Xi, δi, Zi):

(X01, δ01), . . . , (X0n0, δ0n0) =⇒ (X1, δ1, 0), . . . , (Xn0, δn0, 0)
(X11, δ11), . . . , (X1n1, δ1n1) =⇒ (Xn0+1, δn0+1, 1), . . . , (Xn0+n1, δn0+n1, 1)

In other words, we have n0 rows of data (Xi, δi, 0) for the
group 0 subjects, then n1 rows of data (Xi, δi, 1) for the
group 1 subjects.

Using the proportional hazards formulation, we have

λ(t;Z) = λ0(t) eβZ

Group 0 hazard: λ0(t)

Group 1 hazard: λ0(t) eβ

39

The log-partial likelihood is:

logL(β) = log

 K∏
j=1

eβZj∑
"∈R(τj) e

βZ�



=
K∑
j=1

βZj − log[
∑

"∈R(τj)
eβZ�]



Taking the derivative with respect to β, we get:

U(β) =
∂

∂β
"(β)

=
n∑
j=1

δj

Zj −
∑
"∈R(τj)Z"e

βZ�

∑
"∈R(τj) e

βZ�



=
n∑
j=1

δj(Zj − Z̄j)

where Z̄j =
∑
"∈R(τj)Z"e

βZ�

∑
"∈R(τj) e

βZ�

U(β) is called the “score”.
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As we discussed earlier in the class, one useful form of a
likelihood-based test is the score test. This is obtained by
using the score U(β) evaluated at Ho as a test statistic.

Let’s look more closely at the form of the score:

δjZj observed number of deaths in group 1 at τj

δjZ̄j expected number of deaths in group 1 at τj

Why? Under H0 : β = 0, Z̄j is simply the number of
individuals from group 1 in the risk set at time τj (call this
r1j), divided by the total number in the risk set at that time
(call this rj). Thus, Z̄j approximates the probability that
given there is a death at τj, it is from group 1.

Thus, the score statistic is of the form:
n∑
j=1
(Oj − Ej)

When there are ties, the likelihood has to be replaced by one
that allows for ties.

In SAS or Stata:
discrete/exactp → Mantel-Haenszel logrank test

breslow → linear rank version of the logrank test
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I already showed you the equivalence of the linear rank lo-
grank test and the Breslow (default) Cox PH model in SAS
(p.24-25)

Here is the output from SAS for the leukemia data using the
method=discrete option:

Logrank test with proc lifetest - strata statement

Test of Equality over Strata
Pr >

Test Chi-Square DF Chi-Square

Log-Rank 16.7929 1 0.0001
Wilcoxon 13.4579 1 0.0002
-2Log(LR) 16.4852 1 0.0001

The PHREG Procedure

Data Set: WORK.LEUKEM
Dependent Variable: FAILTIME Time to Relapse
Censoring Variable: FAIL
Censoring Value(s): 0
Ties Handling: DISCRETE

Testing Global Null Hypothesis: BETA=0

Without With
Criterion Covariates Covariates Model Chi-Square

-2 LOG L 165.339 149.086 16.252 with 1 DF (p=0.0001)
Score . . 16.793 with 1 DF (p=0.0001)
Wald . . 14.132 with 1 DF (p=0.0002)
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