
Comparison of Survival Curves

We spent the last class looking at some nonparametric ap-
proaches for estimating the survival function, Ŝ(t), over time
for a single sample of individuals.

Now we want to compare the survival estimates between two
groups.

Example: Time to remission of leukemia patients
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How can we form a basis for comparison?

At a specific point in time, we could see whether the confi-
dence intervals for the survival curves overlap.

However, the confidence intervals we have been calculating
are “pointwise”⇒ they correspond to a confidence inter-
val for Ŝ(t∗) at a single point in time, t∗.

In other words, we can’t say that the true survival function
S(t) is contained between the pointwise confidence intervals
with 95% probability.

(Aside: if you’re interested, the issue of confidence bands
for the estimated survival function are discussed in Section
4.4 of Klein and Moeschberger)
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Looking at whether the confidence intervals for Ŝ(t∗) overlap
between the 6MP and placebo groups would only focus on
comparing the two treatment groups at a single point in
time, t∗. We want an overall comparison.

Should we base our overall comparison of Ŝ(t) on:

• the furthest distance between the two curves?
• the median survival for each group?
• the average hazard? (for exponential distributions, this
would be like comparing the mean event times)

• adding up the difference between the two survival esti-
mates over time?

∑
j

[
Ŝ(tjA)− Ŝ(tjB)

]

• a weighted sum of differences, where the weights reflect
the number at risk at each time?

• a rank-based test? i.e., we could rank all of the event
times, and then see whether the sum of ranks for one
group was less than the other.
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Nonparametric comparisons of groups

All of these are pretty reasonable options, and we’ll see that
there have been several proposals for how to compare the
survival of two groups. For the moment, we are sticking to
nonparametric comparisons.

Why nonparametric?

• fairly robust
• efficient relative to parametric tests
• often simple and intuitive

Before continuing the description of the two-sample compar-
ison, I’m going to try to put this in a general framework to
give a perspective of where we’re heading in this class.
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General Framework for Survival Analysis

We observe (Xi, δi,Zi) for individual i, where

• Xi is a censored failure time random variable

• δi is the failure/censoring indicator

• Zi represents a set of covariates

Note that Zi might be a scalar (a single covariate, say treat-
ment or gender) or may be a (p × 1) vector (representing
several different covariates).

These covariates might be:

• continuous
• discrete
• time-varying (more later)

If Zi is a scalar and is binary, then we are comparing the
survival of two groups, like in the leukemia example.

More generally though, it is useful to build a model that
characterizes the relationship between survival and all of the
covariates of interest.
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We’ll proceed as follows:

• Two group comparisons
• Multigroup and stratified comparisons - stratified logrank
• Failure time regression models
– Cox proportional hazards model
– Accelerated failure time model
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Two sample tests

• Mantel-Haenszel logrank test
• Peto & Peto’s version of the logrank test
• Gehan’s Generalized Wilcoxon
• Peto & Peto’s and Prentice’s generalized Wilcoxon
• Tarone-Ware and Fleming-Harrington classes
• Cox’s F-test (non-parametric version)

References:

Hosmer & Lemeshow Section 2.4
Collett Section 2.5
Klein & Moeschberger Section 7.3
Kleinbaum Chapter 2
Lee Chapter 5
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Mantel-Haenszel Logrank test

The logrank test is the most well known and widely used.

It also has an intuitive appeal, building on standard meth-
ods for binary data. (Later we will see that it can also be
obtained as the score test from a partial likelihood from the
Cox Proportional Hazards model.)

First consider the following (2 × 2) table classifying those
with and without the event of interest in a two group setting:

Event
Group Yes No Total
0 d0 n0 − d0 n0
1 d1 n1 − d1 n1

Total d n − d n
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If the margins of this table are considered fixed, then d0
follows a ? distribution. Under
the null hypothesis of no association between the event and
group, it follows that

E(d0) =
n0d

n

V ar(d0) =
n0 n1 d(n − d)
n2(n − 1)

Therefore, under H0:

χ2MH =
[d0 − n0 d/n]

2

n0 n1 d(n−d)
n2(n−1)

∼ χ21

This is the Mantel-Haenszel statistic and is approximately
equivalent to the Pearson χ2 test for equality of the two
groups given by:

χ2p =
∑ (o − e)2

e

Note: recall that the Pearson χ2 test was derived for the
case where only the row margins were fixed, and thus the
variance above was replaced by:

V ar(d0) =
n0 n1 d(n − d)

n3
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Example: Toxicity in a clinical trial with two treatments

Toxicity
Group Yes No Total
0 8 42 50
1 2 48 50

Total 10 90 100

χ2p = 4.00 (p = 0.046)

χ2MH = 3.96 (p = 0.047)
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Now suppose we have K (2×2) tables, all independent, and
we want to test for a common group effect. The Cochran-
Mantel-Haenszel test for a common odds ratio not equal to
1 can be written as:

χ2CMH =
[∑K

j=1(d0j − n0j ∗ dj/nj)]2∑K
j=1 n1jn0jdj(nj − dj)/[n2j(nj − 1)]

where the subscript j refers to the j-th table:

Event
Group Yes No Total
0 d0j n0j − d0j n0j
1 d1j n1j − d1j n1j

Total dj nj − dj nj

This statistic is distributed approximately as χ21.
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How does this apply in survival analysis?

Suppose we observe

Group 1: (X11, δ11) . . . (X1n1, δ1n1)

Group 0: (X01, δ01) . . . (X0n0, δ0n0)

We could just count the numbers of failures: eg., d1 =∑K
j=1 δ1j

Example: Leukemia data, just counting up the number
of remissions in each treatment group.

Fail
Group Yes No Total
0 21 0 21
1 9 12 21

Total 30 12 42

χ2p = 16.8 (p = 0.001)
χ2MH = 16.4 (p = 0.001)

But, this doesn’t account for the time at risk.

Conceptually, we would like to compare the KM survival
curves. Let’s put the components side-by-side and compare.
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Cox & Oakes Table 1.1 Leukemia example

Ordered Group 0 Group 1
Death Times dj cj rj dj cj rj

1 2 0 21 0 0 21
2 2 0 19 0 0 21
3 1 0 17 0 0 21
4 2 0 16 0 0 21
5 2 0 14 0 0 21
6 0 0 12 3 1 21
7 0 0 12 1 0 17
8 4 0 12 0 0 16
9 0 0 8 0 1 16
10 0 0 8 1 1 15
11 2 0 8 0 1 13
12 2 0 6 0 0 12
13 0 0 4 1 0 12
15 1 0 4 0 0 11
16 0 0 3 1 0 11
17 1 0 3 0 1 10
19 0 0 2 0 1 9
20 0 0 2 0 1 8
22 1 0 2 1 0 7
23 1 0 1 1 0 6
25 0 0 0 0 1 5

Note that I wrote down the number at risk for Group 1 for times
1-5 even though there were no events or censorings at those times.
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Logrank Test: Formal Definition

The logrank test is obtained by constructing a (2 × 2) ta-
ble at each distinct death time, and comparing the death
rates between the two groups, conditional on the number at
risk in the groups. The tables are then combined using the
Cochran-Mantel-Haenszel test.

Note: The logrank is sometimes called the Cox-Mantel test.

Let t1, ..., tK represent the K ordered, distinct death times.
At the j-th death time, we have the following table:

Die/Fail
Group Yes No Total
0 d0j r0j − d0j r0j

1 d1j r1j − d1j r1j

Total dj rj − dj rj

where d0j and d1j are the number of deaths in group 0 and
1, respectively at the j-th death time, and r0j and r1j are
the number at risk at that time, in groups 0 and 1.
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The logrank test is:

χ2logrank =
[∑K

j=1(d0j − r0j ∗ dj/rj)]2
∑K
j=1

r1jr0jdj(rj−dj)
[r2j (rj−1)]

Assuming the tables are all independent, then this statistic
will have an approximate χ2 distribution with 1 df.

Based on the motivation for the logrank test,
which of the survival-related quantities are we
comparing at each time point?

• ∑K
j=1wj

[
Ŝ1(tj)− Ŝ2(tj)

]
?

• ∑K
j=1wj

[
λ̂1(tj)− λ̂2(tj)

]
?

• ∑K
j=1wj

[
Λ̂1(tj)− Λ̂2(tj)

]
?
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First several tables of leukemia data

CMH analysis of leukemia data

TABLE 1 OF TRTMT BY REMISS TABLE 3 OF TRTMT BY REMISS
CONTROLLING FOR FAILTIME=1 CONTROLLING FOR FAILTIME=3

TRTMT REMISS TRTMT REMISS

Frequency| Frequency|
Expected | 0| 1| Total Expected | 0| 1| Total
---------+--------+--------+ ---------+--------+--------+

0 | 19 | 2 | 21 0 | 16 | 1 | 17
| 20 | 1 | | 16.553 | 0.4474 |

---------+--------+--------+ ---------+--------+--------+
1 | 21 | 0 | 21 1 | 21 | 0 | 21

| 20 | 1 | | 20.447 | 0.5526 |
---------+--------+--------+ ---------+--------+--------+
Total 40 2 42 Total 37 1 38

TABLE 2 OF TRTMT BY REMISS TABLE 4 OF TRTMT BY REMISS
CONTROLLING FOR FAILTIME=2 CONTROLLING FOR FAILTIME=4

TRTMT REMISS TRTMT REMISS

Frequency| Frequency|
Expected | 0| 1| Total Expected | 0| 1| Total
---------+--------+--------+ ---------+--------+--------+

0 | 17 | 2 | 19 0 | 14 | 2 | 16
| 18.05 | 0.95 | | 15.135 | 0.8649 |

---------+--------+--------+ ---------+--------+--------+
1 | 21 | 0 | 21 1 | 21 | 0 | 21

| 19.95 | 1.05 | | 19.865 | 1.1351 |
---------+--------+--------+ ---------+--------+--------+
Total 38 2 40 Total 35 2 37
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CMH statistic = logrank statistic

SUMMARY STATISTICS FOR TRTMT BY REMISS
CONTROLLING FOR FAILTIME

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
-----------------------------------------------------------------

1 Nonzero Correlation 1 16.793 0.001
2 Row Mean Scores Differ 1 16.793 0.001
3 General Association 1 16.793 0.001 <===LOGRANK

TEST

Note: Although CMH works to get the correct logrank test,
it would require inputting the dj and rj at each time of death
for each treatment group. There’s an easier way to get the
test statistic, which I’ll show you shortly.
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Calculating logrank statistic by hand
Leukemia Example:

Ordered Group 0 Combined
Death Times d0j r0j dj rj ej oj − ej vj

1 2 21 2 42 1.00 1.00 0.488
2 2 19 2 40 0.95 1.05
3 1 17 1 38 0.45 0.55
4 2 16 2 37 0.86 1.14
5 2 14 2 35
6 0 12 3 33
7 0 12 1 29
8 4 12 4 28
10 0 8 1 23
11 2 8 2 21
12 2 6 2 18
13 0 4 1 16
15 1 4 1 15
16 0 3 1 14
17 1 3 1 13
22 1 2 2 9
23 1 1 2 7
Sum 10.251 6.257

oj = d0j

ej = djr0j/rj

vj = r1jr0jdj(rj − dj)/[r2j (rj − 1)]

χ2logrank =
(10.251)2

6.257
= 16.793
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Notes about logrank test:

• The logrank statistic depends on ranks of event times
only

• If there are no tied deaths, then the logrank has the form:
[∑K

j=1(d0j − r0j

rj
)]2

∑K
j=1 r1jr0j/r

2
j

• Numerator can be interpreted as ∑(o − e) where “o” is
the observed number of deaths in group 0, and “e” is
the expected number, given the risk set. The expected
number equals #deaths × proportion in group 0 at risk.

• The (o − e) terms in the numerator can be written as
r0jr1j
rj

(λ̂1j − λ̂0j)

• It does not matter which group you choose to sum over.

To see this, note that if we summed up (o-e) over the death
times for the 6MP group we would get -10.251, and the sum of
the variances is the same. So when we square the numerator,
the test statistic is the same.
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Analogous to the CMH test for a series of tables at different
levels of a confounder, the logrank test is most powerful when
“odds ratios” are constant over time intervals. That is, it is
most powerful for proportional hazards.

Checking the assumption of proportional hazards:

• check to see if the estimated survival curves cross - if
they do, then this is evidence that the hazards are not
proportional

• more formal test: any ideas?

What should be done if the hazards are not
proportional?

• If the difference between hazards has a consistent sign,
the logrank test usually does well.

• Other tests are available that are more powerful against
different alternatives.
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Getting the logrank statistic using Stata:

After declaring data as survival type data using
the “stset” command, issue the “sts test” com-
mand

. stset remiss status

data set name: leukem
id: -- (meaning each record a unique subject)

entry time: -- (meaning all entered at time 0)
exit time: remiss

failure/censor: status

. sts list, by(trt)

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

----------------------------------------------------------------------
trt=0

1 21 2 0 0.9048 0.0641 0.6700 0.9753
2 19 2 0 0.8095 0.0857 0.5689 0.9239
3 17 1 0 0.7619 0.0929 0.5194 0.8933
4 16 2 0 0.6667 0.1029 0.4254 0.8250

.

. (etc)

. sts test trt

Log-rank test for equality of survivor functions
------------------------------------------------

| Events
trt | observed expected
------+-------------------------
0 | 21 10.75
1 | 9 19.25
------+-------------------------
Total | 30 30.00

chi2(1) = 16.79
Pr>chi2 = 0.0000
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Getting the logrank statistic using SAS

• Still use PROC LIFETEST
• Add “STRATA” command, with treatment variable
• Gives the chi-square test (2-sided), but also gives you
the terms you need to calculate the 1-sided test; this is
useful if we want to know which of the two groups has
the higher estimated hazard over time.

• The STRATA command also gives the Gehan-Wilcoxon
test (which we will talk about next)

Title ’Cox and Oakes example’;
data leukemia;

input weeks remiss trtmt;
cards;

6 0 1
6 1 1
6 1 1
6 1 1 /* data for 6MP group */
7 1 1
9 0 1
etc
1 1 0
1 1 0 /* data for placebo group */
2 1 0
2 1 0
etc
;

proc lifetest data=leukemia;
time weeks*remiss(0);
strata trtmt;
title ’Logrank test for leukemia data’;

run;
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Output from leukemia example:

Logrank test for leukemia data

Summary of the Number of Censored and Uncensored Values

TRTMT Total Failed Censored %Censored

6-MP 21 9 12 57.1429
Control 21 21 0 0.0000

Total 42 30 12 28.5714

Testing Homogeneity of Survival Curves over Strata
Time Variable FAILTIME

Rank Statistics

TRTMT Log-Rank Wilcoxon

6-MP -10.251 -271.00
Control 10.251 271.00

Covariance Matrix for the Log-Rank Statistics

TRTMT 6-MP Control

6-MP 6.25696 -6.25696
Control -6.25696 6.25696

Test of Equality over Strata
Pr >

Test Chi-Square DF Chi-Square

Log-Rank 16.7929 1 0.0001 <== Here’s the one we want!!
Wilcoxon 13.4579 1 0.0002
-2Log(LR) 16.4852 1 0.0001
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Getting the logrank statistic using Splus:

Instead of the “surv.fit” command, use the
“surv.diff” command with a “group” (treatment)
variable.

Mantel-Haenszel logrank:

> logrank<-surv.diff(weeks,remiss,trtmt)
> logrank

N Observed Expected (O-E)ˆ2/E
0 21 21 10.75 9.775
1 21 9 19.25 5.458

Chisq= 16.8 on 1 degrees of freedom, p= 4.169e-05

24



Generalization of logrank test
=⇒ Linear rank tests

The logrank and other tests can be derived by assigning
scores to the ranks of the death times, and are members of
a general class of linear rank tests (for more detail, see
Lee, ch 5)

First, define

Λ̂(t) =
∑

j:tj<t

dj
rj

where dj and rj are the number of deaths and the number
at risk, respectively at the j-th ordered death time.

Then assign these scores (suggested by Peto and Peto):

Event Score
Death at tj wj = 1− Λ̂(tj)

Censoring at tj wj = −Λ̂(tj)

To calculate the logrank test, simply sum up the scores for
group 0.
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Example Group 0: 15, 18, 19, 19, 20

Group 1: 16+, 18+, 20+, 23, 24+

Calculation of logrank as a linear rank statistic
Ordered Data Group dj rj Λ̂(tj) score wj

15 0 1 10 0.100 0.900
16+ 1 0 9 0.100 -0.100
18 0 1 8 0.225 0.775
18+ 1 0 7 0.225 -0.225
19 0 2 6 0.558 0.442
20 0 1 4 0.808 0.192
20+ 1 0 3 0.808 -0.808
23 1 1 2 1.308 -0.308
24+ 1 0 1 1.308 -1.308

The logrank statistic S is sum of scores for group 0:

S = 0.900 + 0.775 + 0.442 + 0.442 + 0.192 = 2.75

The variance is:

V ar(S) =
n0n1

∑n
j=1w

2
j

n(n − 1)

In this case, V ar(S) = 1.210, so

Z =
2.75√
1.210

= 2.50 =⇒ χ2logrank = (2.50)
2 = 6.25
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Why is this form of the logrank equivalent?

The logrank statistic S is equivalent to ∑(o − e) over the
distinct death times, where “o” is the observed number of
deaths in group 0, and “e” is the expected number, given
the risk sets.

At deaths: weights are 1− Λ̂
At censorings: weights are −Λ̂
So we are summing up “1’s” for deaths (to get d0j), and sub-
tracting−Λ̂ at both deaths and censorings. This amounts to
subtracting dj/rj at each death or censoring time in group
0, at or after the j-th death. Since there are a total of r0j of
these, we get e = r0j ∗ dj/rj.

Why is it called the logrank test?

Since S(t) = exp(−Λ(t)), an alternative estimator of S(t)
is:

Ŝ(t) = exp(−Λ̂(t)) = exp(− ∑
j:tj<t

dj
rj
)

So, we can think of Λ̂(t) = − log(Ŝ(t)) as yielding the “log-
survival” scores used to calculate the statistic.
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Comparing the CMH-type Logrank and
“Linear Rank” logrank

A. CMH-type Logrank:

We motivated the logrank test through the CMH statistic
for testing Ho : OR = 1 over K tables, where K is the
number of distinct death times. This turned out to be what
we get when we use the logrank (default) option in Stata or
the “strata” statement in SAS.

B. Linear Rank logrank:

The linear rank version of the logrank test is based on adding
up “scores” for one of the two treatment groups. The par-
ticular scores that gave us the same logrank statistic were
based on the Nelson-Aalen estimator, i.e., Λ̂ = ∑

λ̂(tj). This
is what you get when you use the “test” statement in SAS.

Here are some comparisons, with a new example to show
when the two types of logrank statistics will be equal.
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First, let’s go back to our example from Chapter 5 of Lee:

Example Group 0: 15, 18, 19, 19, 20

Group 1: 16+, 18+, 20+, 23, 24+

A. The CMH-type logrank statistic:
(using the strata statement)

Rank Statistics

TRTMT Log-Rank Wilcoxon

Control 2.7500 18.000
Treated -2.7500 -18.000

Covariance Matrix for the Log-Rank Statistics

TRTMT Control Treated

Control 1.08750 -1.08750
Treated -1.08750 1.08750

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 6.9540 1 0.0084
Wilcoxon 5.5479 1 0.0185
-2Log(LR) 3.3444 1 0.0674

29

This is exactly the same chi-square test that you would get
if you calculated the numerator of the logrank as ∑(oj − ej)
and the variance as vj = r1jr0jdj(rj − dj)/[r2j (rj − 1)]

Ordered Group 0 Combined
Death Times d0j r0j dj rj ej oj − ej vj

15 1 5 1 10 0.50 0.50 0.2500
18 1 4 1 8 0.50 0.50 0.2500
19 2 3 2 6 1.00 1.00 0.4000
20 1 1 2 4 0.25 0.75 0.1870
23 0 0 1 2 0.00 0.00 0.0000
Sum 2.75 1.0875

χ2
logrank =

(2.75)2

1.0875
= 6.954
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B. The “linear rank” logrank statistic:
(using the test statement)

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

GROUP 2.7500 1.0897 6.3684 0.0116

Covariance Matrix for the LOG RANK Statistics

Variable TRTMT

TRTMT 1.18750

This is actually very close to what we would get if we use
the Nelson-Aalen based “scores”:

Calculation of logrank as a linear rank statistic
Ordered Data Group dj rj Λ̂(tj) score wj

15 0 1 10 0.100 0.900
16+ 1 0 9 0.100 -0.100
18 0 1 8 0.225 0.775
18+ 1 0 7 0.225 -0.225
19 0 2 6 0.558 0.442
20 0 1 4 0.808 0.192
20+ 1 0 3 0.808 -0.808
23 1 1 2 1.308 -0.308
24+ 1 1 1 1.308 -1.308

Sum(grp 0) 2.750
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Note that the numerator is the exact same number (2.75)
in both versions of the logrank test. The difference in the
denominator is due to the way that ties are handled.

CMH-type variance:

var =
∑ r1jr0jdj(rj − dj)

r2j (rj − 1)

=
∑ r1jr0j

rj(rj − 1)
dj(rj − dj)

rj

Linear rank type variance:

var =
n0n1

∑n
j=1w

2
j

n(n − 1)
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Now consider an example where there are no tied
death times

Example I Group 0: 15, 18, 19, 21, 22

Group 1: 16+, 17+, 20+, 23, 24+

A. The CMH-type logrank statistic:
(using the strata statement)

Rank Statistics

TRTMT Log-Rank Wilcoxon

Control 2.5952 15.000
Treated -2.5952 -15.000

Covariance Matrix for the Log-Rank Statistics

TRTMT Control Treated

Control 1.21712 -1.21712
Treated -1.21712 1.21712

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 5.5338 1 0.0187
Wilcoxon 4.3269 1 0.0375
-2Log(LR) 3.1202 1 0.0773
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B. The “linear rank” logrank statistic:
(using the test statement)

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

TRTMT 2.5952 1.1032 5.5338 0.0187

Covariance Matrix for the LOG RANK Statistics

Variable TRTMT

TRTMT 1.21712

Note that this time, the variances of the two logrank statis-
tics are exactly the same, equal to 1.217.

If there are no tied event times, then the
two versions of the test will yield identi-
cal results. The more ties we have, the
more it matters which version we use.
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Gehan’s Generalized Wilcoxon Test

First, let’s review the Wilcoxon test for uncensored data:

Denote observations from two samples by:

(X1, X2, . . . , Xn) and (Y1, Y2, . . . , Ym)

Order the combined sample and define:

Z(1) < Z(2) < · · · < Z(m+n)

Ri1 = rank of Xi

R1 =
m+n∑
i=1

Ri1

Reject H0 if R1 is too big or too small, according to

R1 − E(R1)√
V ar(R1)

∼ N(0, 1)

where

E(R1) =
m(m + n + 1)

2

V ar(R1) =
mn(m + n + 1)

12
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TheMann-Whitney form of the Wilcoxon is defined as:

U(Xi, Yj) = Uij =




+1 if Xi > Yj

0 if Xi = Yj

−1 if Xi < Yj

and
U =

n∑
i=1

m∑
j=1

Uij.

There is a simple correspondence between U and R1:

R1 = m(m + n + 1)/2 + U/2

so U = 2R1 − m(m + n + 1)

Therefore,

E(U) = 0

V ar(U) = mn(m + n + 1)/3
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Extending Wilcoxon to censored data

The Mann-Whitney form leads to a generalization for cen-
sored data. Define

U(Xi, Yj) = Uij =




+1 if xi > yj or x+i ≥ yj
0 if xi = yi or lower value censored

−1 if xi < yj or xi ≤ y+j

Then define
W =

n∑
i=1

m∑
j=1

Uij

Thus, there is a contribution to W for every comparison
where both observations are failures (except for ties), or
where a censored observation is greater than or equal to a
failure.

Looking at all possible pairs of individuals between the two
treatment groups makes this a nightmare to compute by
hand!

37

Gehan found an easier way to compute the above. First,
pool the sample of (n+m) observations into a single group,
then compare each individual with the remaining n+m−1:
For comparing the i-th individual with the j-th, define

Uij =




+1 if ti > tj or t+i ≥ tj
−1 if ti < tj or ti ≤ t+j
0 otherwise

Then
Ui =

m+n∑
j=1

Uij

Thus, for the i-th individual, Ui is the number of observa-
tions which are definitely less than ti minus the number of
observations that are definitely greater than ti. We assume
censorings occur after deaths, so that if ti = 18+ and tj = 18,
then we add 1 to Ui.

The Gehan statistic is defined as

U =
m+n∑
i=1

Ui 1{i in group 0}

= W

U has mean 0 and variance

var(U) =
mn

(m + n)(m + n − 1)
m+n∑
i=1

U 2
i
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Example from Lee:

Group 0: 15, 18, 19, 19, 20

Group 1: 16+, 18+, 20+, 23, 24+

Time Group Ui U 2
i

15 0 -9 81
16+ 1 1 1
18 0 -6 36
18+ 1 2 4
19 0 -2 4
19 0 -2 4
20 0 1 1
20+ 1 5 25
23 1 4 16
24+ 1 6 36
SUM -18 208

U = −18

V ar(U) =
(5)(5)(208)
(10)(9)

= 57.78

and χ2 = (−18)2/57.78 = 5.61
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SAS code:

data leedata;
infile ’lee.dat’;
input time cens group;

proc lifetest data=leedata;
time time*cens(0);
strata group;

run ;

SAS OUTPUT: Gehans Wilcoxon test

Rank Statistics

TRTMT Log-Rank Wilcoxon

Control 2.7500 18.000
Treated -2.7500 -18.000

Covariance Matrix for the Wilcoxon Statistics

TRTMT Control Treated

Control 58.4000 -58.4000
Treated -58.4000 58.4000

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 6.9540 1 0.0084
Wilcoxon 5.5479 1 0.0185 **this is Gehan’s test
-2Log(LR) 3.3444 1 0.0674
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Notes about SAS Wilcoxon Test:
SAS calculates the Wilcoxon as −U instead of U , probably
so that the sign of the test statistic is consistent with the
logrank.

SAS gets something slightly different for the variance, and
this does not seem to depend on whether there are ties.

For example, the hypothetical dataset on p.6 without ties
yields U = −15 and ∑

U 2
i = 182, so

V ar(U) =
(5)(5)(182)
(10)(9)

= 50.56 and χ2 =
(−15)2
50.56

= 4.45

while SAS gives the following:
Rank Statistics

TRTMT Log-Rank Wilcoxon

Control 2.5952 15.000
Treated -2.5952 -15.000

Covariance Matrix for the Wilcoxon Statistics

TRTMT Control Treated

Control 52.0000 -52.0000
Treated -52.0000 52.0000

Test of Equality over Strata
Pr >

Test Chi-Square DF Chi-Square

Log-Rank 5.5338 1 0.0187
Wilcoxon 4.3269 1 0.0375
-2Log(LR) 3.1202 1 0.0773
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Obtaining the Wilcoxon test using Stata

Use the sts test statement, with the appropriate option

sts test varlist [if exp] [in range]
[, [logrank|wilcoxon|cox] strata(varlist) detail

mat(matname1 matname2) notitle noshow ]

logrank, wilcoxon, and cox specify which test of equality is desired.
logrank is the default, and cox yields a likelihood ratio test
under a cox model.

Example: (leukemia data)

. stset remiss status

. sts test trt, wilcoxon

Wilcoxon (Breslow) test for equality of survivor functions
----------------------------------------------------------

| Events Sum of
trt | observed expected ranks
------+--------------------------------------
0 | 21 10.75 271
1 | 9 19.25 -271
------+--------------------------------------
Total | 30 30.00 0

chi2(1) = 13.46
Pr>chi2 = 0.0002
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Generalized Wilcoxon
(Peto & Peto, Prentice)

Assign the following scores:
For a death at t: Ŝ(t+) + Ŝ(t−)− 1
For a censoring at t: Ŝ(t+)− 1

The test statistic is ∑(scores) for group 0.

Time Group dj rj Ŝ(t+) score wj

15 0 1 10 0.900 0.900
16+ 1 0 9 0.900 -0.100
18 0 1 8 0.788 0.688
18+ 1 0 7 0.788 -0.212
19 0 2 6 0.525 0.313
20 0 1 4 0.394 -0.081
20+ 1 0 3 0.394 -0.606
23 1 1 2 0.197 -0.409
24+ 1 0 1 0.197 -0.803

∑
wj 1{j in group 0} = 0.900 + 0.688 + 2 ∗ (0.313) + (−0.081)

= 2.13

V ar(S) =
n0n1

∑n
j=1w

2
j

n(n − 1)
= 0.765

so Z = 2.13/0.765 = 2.433
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The Tarone-Ware class of tests:

This general class of tests is like the logrank test, but adds
weights wj. The logrank test, Wilcoxon test, and Peto-
Prentice Wilcoxon are included as special cases.

χ2tw =
[∑K

j=1wj(d1j − r1j ∗ dj/rj)]2

∑K
l=1

w2j r1jr0jdj(rj−dj)
r2j (rj−1)

Test Weight wj

Logrank wj = 1

Gehan’s Wilcoxon wj = rj

Peto/Prentice wj = nŜ(tj)

Fleming-Harrington wj = [Ŝ(tj)]α

Tarone-Ware wj =
√
rj

Note: these weights wj are not the same as the scores wj we’ve been
talking about earlier, and they apply to the CMH-type form of the
test statistic rather than ∑(scores) over a single treatment group.
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Which test should we used?

CMH-type or Linear Rank?
If there are not a high proportion of ties, then it doesn’t
really matter since:

• The two Wilcoxons are similar to each other
• The two logrank tests are similar to each other

Note: personally, I tend to use the CMH-type test, which you get with the strata

statement in SAS and the test statement in STATA.

Logrank or Wilcoxon?

• Both tests have the right Type I power for testing the
null hypothesis of equal survival, Ho : S1(t) = S2(t)

• The choice of which test may therefore depend on the
alternative hypothesis, which will drive the power of the
test.
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• The Wilcoxon is sensitive to early differences between
survival, while the logrank is sensitive to later ones. This
can be seen by the relative weights they assign to the test
statistic:

LOGRANK numerator =
∑
j
(oj − ej)

WILCOXON numerator =
∑
j
rj(oj − ej)

• The logrank is most powerful under the assumption of
proportional hazards, which implies an alternative in
terms of the survival functions of Ha : S1(t) = [S2(t)]α

• The Wilcoxon has high power when the failure times
are lognormally distributed, with equal variance in both
groups but a different mean. It will turn out that this is
the assumption of an accelerated failure time model.

• Both tests will lack power if the survival curves (or haz-
ards) “cross”. However, that does not necessarily make
them invalid!
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Comparison between TEST and STRATA in SAS
for 2 examples:

Data from Lee (n=10):

from STRATA:

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 6.9540 1 0.0084
Wilcoxon 5.5479 1 0.0185 **this is Gehan’s test
-2Log(LR) 3.3444 1 0.0674

from TEST:

Univariate Chi-Squares for the WILCOXON Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

GROUP 1.8975 0.7508 6.3882 0.0115

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

GROUP 2.7500 1.0897 6.3684 0.0116
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Previous example with leukemia data:

from STRATA:

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 16.7929 1 0.0001
Wilcoxon 13.4579 1 0.0002
-2Log(LR) 16.4852 1 0.0001

from TEST:

Univariate Chi-Squares for the WILCOXON Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

GROUP 6.6928 1.7874 14.0216 0.0002

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

GROUP 10.2505 2.5682 15.9305 0.0001
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P -sample and stratified logrank tests

We have been discussing two sample problems. In practice,
more complex settings often arise:

• There are more than two treatments or groups, and the
question of interest is whether the groups differ from each
other.

• We are interested in a comparison between two groups,
but we wish to adjust for another factor that may con-
found the analysis

• We want to adjust for lots of covariates.

We will first talk about comparing the survival distributions
between more than 2 groups, and then about adjusting for
other covariates.
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P -sample logrank

Suppose we observe data from P different groups, and the
data from group p (p = 1, ..., P ) are:

(Xp1, δp1) . . . (Xpnp, δpnp)

We now construct a (P × 2) table at each of the K distinct
death times, and compare the death rates between the P

groups, conditional on the number at risk.

Let t1, ....tK represent the K ordered, distinct death times.
At the j-th death time, we have the following table:

Die/Fail
Group Yes No Total
1 d1j r1l − d1j r1j

. . . .

P dPj rPj − dPj rPj

Total dj rj − dj rj

where dpj is the number of deaths in group p at the j-th
death time, and rpj is the number at risk at that time.

The tables are then combined using the CMH approach.
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If we were just focusing on this one table, then a χ2(P−1) test
statistic could be constructed through a comparison of “o”s
and “e”s, like before.

Example: Toxicity in a clinical trial with 3 treatments

TABLE OF GROUP BY TOXICITY

GROUP TOXICITY

Frequency|
Row Pct |no |yes | Total
---------+--------+--------+

1 | 42 | 8 | 50
| 84.00 | 16.00 |

---------+--------+--------+
2 | 48 | 2 | 50
| 96.00 | 4.00 |

---------+--------+--------+
3 | 38 | 12 | 50
| 76.00 | 24.00 |

---------+--------+--------+
Total 128 22 150

STATISTICS FOR TABLE OF GROUP BY TOXICITY

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 8.097 0.017
Likelihood Ratio Chi-Square 2 9.196 0.010
Mantel-Haenszel Chi-Square 1 1.270 0.260

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
----------------------------------------------------------

1 Nonzero Correlation 1 1.270 0.260
2 Row Mean Scores Differ 2 8.043 0.018
3 General Association 2 8.043 0.018
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Formal Calculations:

Let Oj = (d1j, ...d(P−1)j)T be a vector of the observed num-
ber of failures in groups 1 to (P − 1), respectively, at the
j-th death time. Given the risk sets r1j, ... rPj, and the fact
that there are dj deaths, then Oj has a distribution like a
multivariate version of the Hypergeometric. Oj has mean:

Ej = (
dj r1j
rj

, ... ,
dj r(P−1)j

rj
)T

and variance covariance matrix:

Vj =




v11j v12j ... v1(P−1)j
v22j ... v2(P−1)j

... ... ...

v(P−1)(P−1)j




where the 3-th diagonal element is:

v33j = r3j(rj − r3j)dj(rj − dj)/[r2j (rj − 1)]

and the 3m-th off-diagonal element is:

v3mj = r3jrmjdj(rj − dj)/[r2j (rj − 1)]
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The resulting χ2 test for a single (P × 1) table would have
(P-1) degrees and is constructed as follows:

(Oj − Ej)T V−1
j (Oj − Ej)

Generalizing to K tables

Analogous to what we did for the two sample logrank, we
replace theOj, Ej andVj with the sums over theK distinct
death times. That is, let O = ∑k

j=1Oj, E = ∑k
j=1Ej, and

V = ∑k
j=1Vj. Then, the test statistic is:

(O− E)T V−1 (O− E)
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Example:
Time taken to finish a test with 3 different noise distractions.
All tests were stopped after 12 minutes.

Noise Level
Group Group Group
1 2 3
9.0 10.0 12.0
9.5 12.0 12+

9.0 12+ 12+

8.5 11.0 12+

10.0 12.0 12+

10.5 10.5 12+
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Lets start the calculations ...

Observed data table

Ordered Group 1 Group 2 Group 3 Combined
Times d1j r1j d2j r2j d3j r3j dj rj

8.5 1 6 0 6 0 6
9.0 2 5 0 6 0 6
9.5 1 3 0 6 0 6
10.0 1 2 1 6 0 6
10.5 1 1 1 5 0 6
11.0 0 0 1 4 0 6
12.0 0 0 2 3 1 6

Expected table

Ordered Group 1 Group 2 Group 3 Combined
Times o1j e1j o2j e2j o3j e3j oj ej

8.5
9.0
9.5
10.0
10.5
11.0
12.0

Doing the P -sample test by hand is cumbersome ...

Luckily, most statistical packages will do it for you!
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P -sample logrank in Stata

.sts graph, by(group)

.sts test group, logrank

Log-rank test for equality of survivor functions
------------------------------------------------

| Events
group | observed expected
------+-------------------------
1 | 6 1.57
2 | 5 4.53
3 | 1 5.90
------+-------------------------
Total | 12 12.00

chi2(2) = 20.38
Pr>chi2 = 0.0000

. sts test group, wilcoxon

Wilcoxon (Breslow) test for equality of survivor functions
----------------------------------------------------------

| Events Sum of
group | observed expected ranks
------+--------------------------------------
1 | 6 1.57 68
2 | 5 4.53 -5
3 | 1 5.90 -63
------+--------------------------------------
Total | 12 12.00 0

chi2(2) = 18.33
Pr>chi2 = 0.0001
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SAS program for P -sample logrank

Title ’Testing with noise example’;
data noise;

input testtime finish group;
cards;

9 1 1
9.5 1 1
9.0 1 1
8.5 1 1
10 1 1
10.5 1 1
10.0 1 2
12 1 2
12 0 2
11 1 2
12 1 2
10.5 1 2
12 1 3
12 0 3
12 0 3
12 0 3
12 0 3
12 0 3
;

proc lifetest data=noise;
time testtime*finish(0);
strata group;

run;

57

Testing Homogeneity of Survival Curves over Strata

Time Variable TESTTIME

Rank Statistics

GROUP Log-Rank Wilcoxon

1 4.4261 68.000
2 0.4703 -5.000
3 -4.8964 -63.000

Covariance Matrix for the Log-Rank Statistics

GROUP 1 2 3

1 1.13644 -0.56191 -0.57454
2 -0.56191 2.52446 -1.96255
3 -0.57454 -1.96255 2.53709

Covariance Matrix for the Wilcoxon Statistics

GROUP 1 2 3

1 284.808 -141.495 -143.313
2 -141.495 466.502 -325.007
3 -143.313 -325.007 468.320

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 20.3844 2 0.0001
Wilcoxon 18.3265 2 0.0001
-2Log(LR) 5.5470 2 0.0624
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Note: do not use Test in SAS PROC LIFETEST if you
want a P -sample logrank. Test will interpret the group
variable as a measured covariate (i.e., either ordinal or con-
tinuous).

In other words, you will get a trend test with only 1 degree
of freedom, rather than a P-sample test with (p-1) df.

For example, here’s what we get if we use the TEST state-
ment on the noise example:

proc lifetest data=noise;
time testtime*finish(0);
test group;

run;

SAS OUTPUT:

Univariate Chi-Squares for the LOG RANK Test
Test Standard Pr >

Variable Statistic Deviation Chi-Square Chi-Square

GROUP 9.3224 2.2846 16.6503 0.0001

Covariance Matrix for the LOG RANK Statistics
Variable GROUP

GROUP 5.21957

Forward Stepwise Sequence of Chi-Squares for the LOG RANK Test
Pr > Chi-Square Pr >

Variable DF Chi-Square Chi-Square Increment Increment

GROUP 1 16.6503 0.0001 16.6503 0.0001
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The Stratified Logrank

Sometimes, even though we are interested in comparing two
groups (or maybe P ) groups, we know there are other factors
that also affect the outcome. It would be useful to adjust for
these other factors in some way.

Example: For the nursing home data, a logrank test com-
paring length of stay for those under and over 85 years of
age suggests a significant difference (p=0.03).

However, we know that gender has a strong association with
length of stay, and also age. Hence, it would be a good idea
to STRATIFY the analysis by gender when trying to assess
the age effect.

A stratified logrank allows one to compare groups, but
allows the shapes of the hazards of the different groups to
differ across strata. It makes the assumption that the group
1 vs group 2 hazard ratio is constant across strata.

In other words: λ1s(t)
λ2s(t)

= θ where θ is constant over the strata
(s = 1, ..., S).

This method of adjusting for other variables is not as flexible
as that based on a modelling approach.
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General setup for the stratified logrank:

Suppose we want to assess the association between survival
and a factor (call this X) that has two different levels. Sup-
pose however, that we want to stratify by a second factor,
that has S different levels.

First, divide the data into S separate groups. Within group
s (s = 1, ..., S), proceed as though you were constructing
the logrank to assess the association between survival and
the variable X . That is, let t1s, ..., tKss represent the Ks

ordered, distinct death times in the s-th group.

At the j-th death time in group s, we have the following
table:

Die/Fail
X Yes No Total
1 ds1j rs1j − ds1j rs1j

2 ds2j rs2j − ds2j rs2j
Total dsj rsj − dsj rsj
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Let Os be the sum of the “o”s obtained by applying the
logrank calculations in the usual way to the data from group
s. Similarly, let Es be the sum of the “e”s, and Vs be the
sum of the “v”s.

The stratified logrank is

Z =
∑S
s=1(Os − Es)√∑S

s=1(Vs)

62



Stratified logrank using Stata:

. use nurshome

. gen age1=0

. replace age1=1 if age>85

. sts test age1, strata(gender)

failure _d: cens
analysis time _t: los

Stratified log-rank test for equality of survivor functions
-----------------------------------------------------------

| Events
age1 | observed expected(*)
------+-------------------------
0 | 795 764.36
1 | 474 504.64
------+-------------------------
Total | 1269 1269.00

(*) sum over calculations within gender

chi2(1) = 3.22
Pr>chi2 = 0.0728

63

Stratified logrank using SAS:

data pop1;
set pop;
age1=0;
if age >85 then age1=1;

proc lifetest data=pop1 outsurv=survres;
time stay*censor(1);
test age1;
strata gender;

RESULTS (just the logrank part .... you can also do a stratified
Wilcoxon)

The LIFETEST Procedure

Rank Tests for the Association of LSTAY with Covariates
Pooled over Strata

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >
Variable Statistic Deviation Chi-Square Chi-Square

AGE1 29.1508 17.1941 2.8744 0.0900

Covariance Matrix for the LOG RANK Statistics

Variable AGE1

AGE1 295.636

Forward Stepwise Sequence of Chi-Squares for the LOG RANK Test

Pr > Chi-Square Pr >
Variable DF Chi-Square Chi-Square Increment Increment

AGE1 1 2.8744 0.0900 2.8744 0.0900
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