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A. Outcome Definition 

Our primary outcome was in-hospital survival, defined as the time from index COVID-19 hospitalization 
until death, which could be censored by discharge or the end of the study window. Discharge was 
regarded as a censoring event, apart from discharge to hospice, which functioned as a precursor to death. 
As shown in Figure S1, median survival for patients discharged to hospice, whether at home or in a medical 
facility, was less than 30 days post-discharge. Thus, our outcome was defined as time to death or discharge 
to hospice, whichever came first. This composite endpoint could then be censored by discharge of any 
other type or administrative censoring on March 31, 2021.  

 

 
 

Fig. S1: Kaplan-Meier curves for patients discharged alive, stratified by discharge type.



B. Demographic and Clinical Predictors 

Neighborhood Socioeconomic Status 

We defined four composite measures of neighborhood socioeconomic status at the US census tract-level 
based on patient residences (Clarke and Melendez, Ann Arbor, MI; Gu et al, 2020; Salerno et al, 2021b). 
These composites, derived from the National Neighborhood Data Archive, measured a neighborhood’s (1) 
affluence, (2) disadvantage, (3) ethnic immigrant concentration, and (4) education, and were defined in 
the average proportion of adults within a census tract fall meeting each respective measure’s criteria. 
Each measure was aggregated and was further categorized by quartiles (Table S1). 

- Affluence: the proportion of households with income greater than $75K, proportion of the 
population aged 16+ employed in professional or managerial occupations, and proportion of 
adults with bachelor’s degrees or higher. 

- Disadvantage: the proportion of non-Hispanic Black, proportion of female-headed families with 
children, proportion of households with public assistance income or food stamps, proportion of 
families with income below the federal poverty level, and proportion of the population aged 16+ 
unemployed. 

- Ethnic Immigrant Concentration: the proportion of Hispanic and proportion of foreign born. 
- Education: the proportion of adults with less than a high school diploma. 

Elixhauser Comorbidity Conditions 

Table S1 lists the comorbidity conditions considered as risk factors in this analysis and the corresponding 
ICD-10 codes used to define them. Each comorbidity was coded as a binary indicator, flagging whether a 
patient carried any ICD-10 code associated with the condition at baseline. 



Table S1: Elixhauser comorbidity conditions and associated ICD-10 codes. 

Comorbidity Condition ICD-10 Codes 
Congestive Heart Failure I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5-I42.9, I43.x, I50.x, P29.0 
Cardiac Arrhythmias I44.1-I44.3, I45.6, I45.9, I47.x-I49.x, R00.0, R00.1, R00.8, T82.1, Z45.0, Z95.0 
Valvular Disease A52.0, I05.x-I08.x, I09.1, I09.8, I34.x-I39.x, Q23.0- Q23.3, Z95.2-Z95.4 
Pulmonary Circulation Disorders I26.x, I27.x, I28.0, I28.8, I28.9 
Peripheral Vascular Disorders I70.x, I71.x, I73.1, I73.8, I73.9, I77.1, I79.0, I79.2, K55.1, K55.8, K55.9, Z95.8, 

Z95.9 
Hypertension, Uncomplicated I10.x 
Hypertension, Complicated I11.x-I13.x, I15.x 
Paralysis G04.1, G11.4, G80.1, G80.2, G81.x, G82.x, G83.0- G83.4, G83.9 
Other Neurological Disorders G10.x-G13.x, G20.x-G22.x, G25.4, G25.5, G31.2, G31.8, G31.9, G32.x, G35.x-

G37.x, G40.x, G41.x, G93.1, G93.4, R47.0, R56.x 
Chronic Pulmonary Disease I27.8, I27.9, J40.x-J47.x, J60.x-J67.x, J68.4, J70.1, J70.3 
Diabetes, Uncomplicated E10.0, E10.1, E10.9, E11.0, E11.1, E11.9, E12.0, E12.1, E12.9, E13.0, E13.1, 

E13.9, E14.0, E14.1, E14.9 
Diabetes, Complicated E10.2-E10.8, E11.2-E11.8, E12.2-E12.8, E13.2- E13.8, E14.2-E14.8 
Hypothyroidism E00.x-E03.x, E89.0 
Renal Failure I12.0, I13.1, N18.x, N19.x, N25.0, Z49.0-Z49.2, Z94.0, Z99.2 
Liver Disease B18.x, I85.x, I86.4, I98.2, K70.x, K71.1, K71.3K71.5, K71.7, K72.x-K74.x, K76.0, 

K76.2-K76.9, Z94.4  
Peptic Ulcer Disease, Excluding Bleeding K25.7, K25.9, K26.7, K26.9, K27.7, K27.9, K28.7, K28.9 
Lymphoma C81.x-C85.x, C88.x, C96.x, C90.0, C90.2 
Metastatic Cancer C77.x-C80.x 
Solid Tumor without Metastasis C00.x-C26.x, C30.x-C34.x, C37.x-C41.x, C43.x, C45.x-C58.x, C60.x-C76.x, C97.x 
Rheumatoid Arthritis/Collagen Vascular Diseases L94.0, L94.1, L94.3, M05.x, M06.x, M08.x, M12.0, M12.3, M30.x, M31.0-

M31.3, M32.xM35.x, M45.x, M46.1, M46.8, M46.9 
Coagulopathy D65-D68.x, D69.1, D69.3-D69.6 
Obesity E66.x 
Weight Loss E40.x-E46.x, R63.4, R64 
Fluid and Electrolyte Disorders E22.2, E86.x, E87.x 
Blood Loss Anemia D50.0 
Deficiency Anemia D50.8, D50.9, D51.x-D53.x 
Alcohol Abuse F10, E52, G62.1, I42.6, K29.2, K70.0, K70.3, K70.9, T51.x, Z50.2, Z71.4, Z72.1 
Drug Abuse F11.x-F16.x, F18.x, F19.x, Z71.5, Z72.2 
Psychoses F20.x, F22.x-F25.x, F28.x, F29.x, F30.2, F31.2, F31.5 
Depression F20.4, F31.3-F31.5, F32.x, F33.x, F34.1, F41.2, F43.2 



C. Chest X-Ray Images 

Image Pre-Processing 

To extract important radiomics features from the raw X-ray images, we followed the workflow as outlined 
in Figure 2 in the main text. According to the anatomical coordinate system, images can be taken along 
the anterior-posterior, inferior-superior, and left-right axes. We selected only those images taken from 
the anterior-posterior or posterior-anterior position, as they were the most common. We then normalized 
the pixel intensities of each image to a standard range of 0 (black) to 255 (white) units. This is done so 
that the pixel intensities for all images used are on similar scales, facilitating comparability. The range of 
0 to 255 is chosen for computational reasons, so that each pixel intensity can be stored with less memory 
as an unsigned integer. Then, histogram equalization was used to enhance the contrast of the images 
(Jain, 1989). 

We extracted seven classes of features from each image: first order, shape, gray level co-occurrence 
matrix, gray level size zone matrix, gray level run length matrix, neighboring gray tone difference matrix, 
and gray level dependence matrix features (Haralick et al, 1973; Galloway, 1975; Chu et al, 1990; Thibault 
et al, 2013; van Griethuysen et al, 2017). For example, patients with higher gray level run emphasis, higher 
large dependence high gray level emphasis, and higher median pixel intensity have a greater 
concentrations of high gray level values in their images. For those with higher zone entropy and gray level 
variance, there is more heterogeneity in the texture patterns. In addition, we applied six different filters 
to the original images to derive different image types: wavelet, Laplacian of Gaussian, square, square root, 
logarithm, and exponential filters (van Griethuysen et al, 2017). Different filters apply different 
transformations to the image pixel density, which modify or enhance certain image properties and provide 
additional information (e.g., at edges or boundaries in the image). For example, the square filter takes the 
square of the pixel intensities and then transforms them back to the original range. The logarithm filter 
takes the logarithm of the absolute intensity plus one and then scales then back to original range. Negative 
original values are made negative again after application of filter (van Griethuysen et al, 2017). Similar to 
the original images, we extracted seven classes of features from each of the transformed image types, 
resulting in 1,311 candidate features. 

We then conduct feature selection to reduce the feature dimension. For those features with correlations 
higher than 0.75, we retained the features with the highest concordance (C) index from the univariate Cox 
proportional hazards models. We then conducted forward selection on the remaining features according 
to their prediction power, selecting those with the highest C-Index values (Uno et al, 2011). 

Example Patient Image Features 

We exemplify the image features extracted in two patients sampled from the study population. As shown, 
the example censored patient had a longer observed survival time, by smaller values for large dependence 
high gray level emphasis and median pixel intensity, meaning that this patient had lower than average 
proportion of larger size zones with higher gray-level values. Further, there was less than average 
heterogeneity in the texture patterns, given by the lower values for dependence non-uniformity and zone 
entropy. In contrast, the patient that was observed to die had a shorter observed time at risk, but larger 
than average values for the exemplified texture features. 

 



Table S2: Important texture features for two example patients. 

Measure (a) Censored (b) Death Observed 
Observed Survival Time (days) 567 104 
Dependence Non-Uniformity -0.74 -0.61 
Large Area High Gray Level Emphasis -0.70 -0.43 
Median -0.61 2.84 
Zone Entropy -1.06 1.11 

 

(a) Censored                                                                          (b) Death Observed 

 

 Fig. S2: Chest X-ray images for two example patients: (a) censored, and (b) death observed.



D. Statistical Methods and Models 

Cox Proportional Hazards Regression 

Cox proportional hazards models stipulate that the conditional hazard of in-hospital mortality given the 
predictors, 𝑿𝑿, is 

𝜆𝜆(𝑡𝑡|𝑿𝑿) = 𝜆𝜆0(𝑡𝑡) exp(𝑿𝑿𝑇𝑇𝛽𝛽), 

where the baseline hazard, 𝜆𝜆0(𝑡𝑡), is unspecified, and 𝛽𝛽 = �𝛽𝛽1, . . . ,𝛽𝛽𝑝𝑝�
𝑇𝑇

 is the coefficient vector of 𝑿𝑿 to be 
estimated. The coefficients represent the change in the log hazard ratio relative to a one-unit change in 
the predictor, holding all other predictors fixed (Cox, 1972). 

Support Vector Machines 

In our setting, the survival support vector machine is formulated based on the rank concordance between 
the predicted risk and the observed survival time among comparable individuals, which is equivalent to 
minimizing Harrell’s C-index (Van Belle et al, 2007; Harrell et al, 1982). Let (𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖) be the observed survival 
time and censoring indicator and let 𝑋𝑋𝑖𝑖  be the predictors for individual 𝑖𝑖 = 1, . . . ,𝑛𝑛. The predicted risk 
score, ⟨𝜓𝜓,𝑋𝑋𝑖𝑖⟩, is obtained by solving 

min
𝜓𝜓,𝜉𝜉

1
2
‖𝜓𝜓‖2 + 𝛾𝛾 � 𝑣𝑣𝑖𝑖𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖

(𝑖𝑖,𝑖𝑖) ∶ 𝑌𝑌𝑖𝑖<𝑌𝑌𝑗𝑗

 

subject to �𝜓𝜓,𝑋𝑋𝑖𝑖� − ⟨𝜓𝜓,𝑋𝑋𝑖𝑖⟩ ≥ − 𝜉𝜉𝑖𝑖𝑖𝑖 and 𝜉𝜉𝑖𝑖𝑖𝑖 ≥ 0, 𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑛𝑛, 

where 𝜓𝜓 ∈ ℝ𝑝𝑝, ⟨·,·⟩ denotes the inner product, 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝐼𝐼�𝑌𝑌𝑖𝑖 < 𝑌𝑌𝑖𝑖� is a comparability indicator for 
individuals 𝑖𝑖 and 𝑗𝑗, 𝜉𝜉𝑖𝑖𝑖𝑖  are pair-specific slack variables, and 𝛾𝛾 > 0 is a regularization parameter. 

Random Survival Forests 

Random survival forests aggregate predictions from individual trees generated over bootstrap resampled 
datasets trained on random subsets of the predictors (Ishwaran et al, 2011). First, we obtain ‘B’ bootstrap-
resampled datasets with n observations (sampled with replacement) and randomly select p′ < p predictors 
for each tree to be trained on. Individual survival trees are then grown, and the B trees are combined by 
averaging over the survival predictions for each tree. 

Gradient Boosting 

Gradient boosting creates an ensemble from a series of individual survival trees (Hothorn et al, 2006). At 
each step, 𝑚𝑚 = 1, . . . ,𝑀𝑀, the gradient boosting algorithm makes a new prediction based on the previous 
prediction, 𝐹𝐹𝑚𝑚 − 1(𝑿𝑿), and a new prediction from a single tree, 𝑓𝑓𝑚𝑚(𝑿𝑿), such that 

𝐹𝐹𝑚𝑚(𝑿𝑿) =  𝐹𝐹𝑚𝑚 − 1(𝑿𝑿) + 𝑤𝑤𝑚𝑚𝑓𝑓𝑚𝑚(𝑿𝑿), 

where 0 < 𝑤𝑤𝑚𝑚 ≤  1 is the step size and the number of steps, 𝑀𝑀, can be tuned. 



Ensemble Averaging 

Suppose there are 𝑇𝑇 base learners {𝜙𝜙1,𝜙𝜙2, . . . ,𝜙𝜙𝑇𝑇} (e.g., the aforementioned four prediction models) with 
corresponding predictions, ϕt(X), based on predictors of X. Ensemble averaging combines these 
predictions by averaging their values, i.e., 

1
𝑇𝑇
�𝜙𝜙𝑡𝑡(𝑿𝑿)
𝑇𝑇

𝑡𝑡=1

. 

Feature Importance 

Feature importance measures the absolute decrease in C-index after we permute or “shuffle” the values 
of the concerned feature in the dataset, which effectively amounts to removal of the feature from the 
dataset while retaining the data structure (Breiman, 2001; Fisher et al, 2019). A feature is viewed as more 
important if the C-index decreases more after permutation, whereas it is considered unimportant if the 
C-index remains unchanged after permutation. An algorithm (Molnar, 2020) for computing the feature 
importance is given as follows. 

Algorithm 1 The permutation feature importance algorithm 

Input: Based on an established model 𝑓𝑓 (e.g., a model constructed from the training data) and with 
features 𝑿𝑿 ∈ ℝ𝑛𝑛×𝑝𝑝 and outcome 𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛 from the testing data, compute C-index 𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑐𝑐�𝑦𝑦, 𝑓𝑓(𝑿𝑿)�  

for 𝑗𝑗 = 1, 2, . . . ,𝑝𝑝 do 

Permute values of feature 𝑗𝑗 only in the original feature matrix 𝑿𝑿 to generate a permuted feature 

matrix 𝑿𝑿�𝑖𝑖 , and calculate C-index 𝑐𝑐𝑖𝑖 = 𝑐𝑐 �𝑦𝑦,𝑓𝑓�𝑿𝑿�𝑖𝑖�� 

Calculate feature importance for feature 𝑗𝑗 as 𝐹𝐹𝐼𝐼𝑖𝑖 = max�0, 𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑖𝑖�  

end for 



E. Additional Descriptive Results 

Table S3. Descriptive statistics for candidate predictors, overall, and stratified by age and median number of comorbidity conditions. 

Predictors Overall,  
N = 3,3101 

Stratified by Age  Stratified by 
Comorbidities  

≤ 65,  
N = 1,9761  

> 65,  
N = 1,3341 

≤ 7,  
N = 1,6791 

> 7,  
N = 1,6311 

Demographic Characteristics      
Age (years)   61 (46, 73)   50 (34, 58)   75 (70, 82)   55 (38, 68)   66 (54, 76)   
Sex                  
     Female   1,461 (44%)   855 (43)   606 (45%)   737 (44%)   724 (44%)   
     Male   1,849 (56%)   1,121 (57%)   728 (55%)   942 (56%)   907 (56%)   
Race                  
     African American   692 (21%)   475 (24%)   217 (17%)   327 (20%)   365 (23%)   
     American Indian or Alaska Native   20 (0.6%)   11 (0.6%)   9 (0.7%)   7 (0.4%)   13 (0.8%)   
     Asian   88 (2.7%)   51 (2.6%)   37 (2.8%)   55 (3.3%)   33 (2.0%)   
     Caucasian   2,230 (68%)   1,269 (65%)   961 (73%)   1,140 (69%)   1,090 (67%)   
     Native Hawaiian/Other Pacific Islander   5 (0.2%)   3 (0.2%)   2 (0.2%)   2 (0.1%)   3 (0.2%)   
     Other   179 (5.5%)   111 (5.7%)   68 (5.2%)   92 (5.6%)   87 (5.4%)   
     Patient Refused   10 (0.3%)   6 (0.3%)   4 (0.3%)   7 (0.4%)   3 (0.2%)   
     Unknown   49 (1.5%)   32 (1.6%)   17 (1.3%)   25 (1.5%)   24 (1.5%)   
Ethnicity                  
     Hispanic or Latino   150 (4.6%)   113 (5.8%)   37 (2.8%)   82 (5.0%)   68 (4.2%)   
     Non-Hispanic or Latino   3,045 (93%)   1,803 (92%)   1,242 (95%)   1,527 (93%)   1,518 (94%)   
     Patient Refused   10 (0.3%)   4 (0.2%)   6 (0.5%)   6 (0.4%)   4 (0.2%)   
     Unknown   55 (1.7%)   31 (1.6%)   24 (1.8%)   30 (1.8%)   25 (1.5%)   
Body Mass Index (kg/m2)   29 (25, 35)   30 (25, 36)   28 (25, 33)   29 (24, 35)   29 (25, 35)   
Comorbidity Conditions      
Alcohol Abuse   382 (12%)   264 (13%)   118 (8.8%)   80 (4.8%)   302 (19%)   
Blood Loss Anemia   607 (18%)   364 (18%)   243 (18%)   105 (6.3%)   502 (31%)   
Cardiac Arrhythmias   2,305 (70%)   1,292 (65%)   1,013 (76%)   835 (50%)   1,470 (90%)   
Chronic Pulmonary Disease   1,491 (45%)   859 (43%)   632 (47%)   473 (28%)   1,018 (62%)  
Coagulopathy   1,137 (34%)   676 (34%)   461 (35%)   280 (17%)   857 (53%)   
Congestive Heart Failure   1,140 (34%)   538 (27%)   602 (45%)   162 (9.6%)   978 (60%)   
Deficiency Anemia   953 (29%)   534 (27%)   419 (31%)   149 (8.9%)   804 (49%)   
Depression   1,457 (44%)   890 (45%)   567 (43%)   442 (26%)   1,015 (62%)   
Diabetes, Complicated   1,201 (36%)   594 (30%)   607 (46%)   248 (15%)   953 (58%)   
Diabetes, Uncomplicated   1,336 (40%)   673 (34%)   663 (50%)   332 (20%)   1,004 (62%)   
Drug Abuse   553 (17%)   405 (20%)   148 (11%)   134 (8.0%)   419 (26%)   
Fluid and Electrolyte Disorders   2,312 (70%)   1,317 (67%)   995 (75%)   829 (49%)   1,483 (91%)   
Hypertension, Complicated   1,427 (43%)   648 (33%)   779 (58%)   216 (13%)   1,211 (74%)   



Hypertension, Uncomplicated   2,320 (70%)   1,169 (59%)   1,151 (86%)   836 (50%)   1,484 (91%)   
Hypothyroidism   771 (23%)   378 (19%)   393 (29%)   206 (12%)   565 (35%)   
Liver Disease   918 (28%)   563 (28%)   355 (27%)   196 (12%)   722 (44%)   
Lymphoma   299 (9.0%)   171 (8.7%)   128 (9.6%)   55 (3.3%)   244 (15%)   
Metastatic Cancer   749 (23%)   337 (17%)   412 (31%)   173 (10%)   576 (35%)   
Obesity   1,669 (50%)   1,058 (54%)   611 (46%)   672 (40%)   997 (61%)   
Other Neurological Disorders   997 (30%)   529 (27%)   468 (35%)   255 (15%)   742 (45%)   
Paralysis   393 (12%)   260 (13%)   133 (10.0%)   72 (4.3%)   321 (20%)   
Peptic Ulcer Disease, Excluding Bleeding   370 (11%)   211 (11%)   159 (12%)   41 (2.4%)   329 (20%)   
Peripheral Vascular Disorders   1,075 (32%)   532 (27%)   543 (41%)   179 (11%)   896 (55%)   
Psychoses   411 (12%)   218 (11%)   193 (14%)   54 (3.2%)   357 (22%)   
Pulmonary Circulation Disorders   886 (27%)   514 (26%)   372 (28%)   164 (9.8%)   722 (44%)   
Renal Failure   1,319 (40%)   625 (32%)   694 (52%)   208 (12%)   1,111 (68%)   
Rheumatoid Arthritis, Collagen Vascular Diseases   546 (16%)   328 (17%)   218 (16%)   105 (6.3%)   441 (27%)   
Solid Tumor Without Metastasis   749 (23%)   344 (17%)   405 (30%)   192 (11%)   557 (34%)   
Valvular Disease   758 (23%)   379 (19%)   379 (28%)   118 (7.0%)   640 (39%)   
Weight Loss   1,031 (31%)   571 (29%)   460 (34%)   278 (17%)   753 (46%) 
Physiologic Measurements      
Oxygen Saturation   95.47 (93.97, 97.00)   95.75 (94.07, 97.38)   95.17 (93.70, 96.50)   95.32 (93.76, 97.00)   95.54 (94.11, 97.00)   
Temperature (F)   98.32 (98.00, 98.80)   98.37 (98.05, 98.88)   98.25 (97.94, 98.71)   98.40 (98.07, 98.90)   98.25 (97.97, 98.68)   
Respiratory Rate   18.8 (17.5, 21.5)   19.0 (17.5, 22.0)   18.6 (17.5, 21.0)   19.0 (17.6, 22.0)   18.5 (17.4, 21.1)   
Diastolic Blood Pressure   68 (62, 74)   68 (62, 75)   67 (62, 73)   68 (63, 74)   67 (62, 74)  
Systolic Blood Pressure   125 (113, 137)   121 (110, 133)   130 (118, 143)   122 (112, 134)   127 (115, 141)   
Heart Rate   82 (73, 93)   85 (76, 96)   78 (70, 88)   83 (74, 93)   82 (73, 92)   
Smoking Status                  
     Current   203 (7.1%)   156 (9.2%)   47 (4.1%)   110 (7.5%)   93 (6.6%)   
     Former   963 (34%)   428 (25%)   535 (46%)   376 (26%)   587 (42%)   
     Never   1,473 (51%)   973 (57%)   500 (43%)   822 (56%)   651 (46%)   
     Unknown   223 (7.8%)   146 (8.6%)   77 (6.6%)   152 (10%)   71 (5.1%)   
Alcohol Use                  
     Yes   872 (30%)   544 (32%)   328 (28%)   493 (34%)   379 (27%)   
     No   930 (32%)   508 (30%)   422 (36%)   314 (22%)   616 (44%)   
     Not Asked   33 (1.2%)   24 (1.4%)   9 (0.8%)   21 (1.4%)   12 (0.9%)   
     Unknown   1,027 (36%)   627 (37%)   400 (35%)   632 (43%)   395 (28%)   
Drug Use                  
     Yes   178 (6.2%)   149 (8.7%)   29 (2.5%)   91 (6.2%)   87 (6.2%)   
     No   1,422 (50%)   757 (44%)   665 (57%)   537 (37%)   885 (63%)   
     Not Asked   47 (1.6%)   37 (2.2%)   10 (0.9%)   29 (2.0%)   18 (1.3%)   
     Unknown   1,215 (42%)   760 (45%)   455 (39%)   803 (55%)   412 (29%)   
Sexual Activity                  
     Yes   671 (23%)   511 (30%)   160 (14%)   341 (23%)   330 (24%)   
     Not Currently   546 (19%)   240 (14%)   306 (26%)   174 (12%)   372 (27%)   



     Not Asked   186 (6.5%)   112 (6.6%)   74 (6.4%)   101 (6.9%)   85 (6.1%)   
     Unknown   1,459 (51%)   840 (49%)   619 (53%)   844 (58%)   615 (44%)   
Neighborhood Socioeconomic Status      
Affluence Quartile                  
     1   786 (25%)   511 (27%)   275 (22%)   425 (24%)   361 (26%)   
     2   662 (21%)   409 (22%)   253 (20%)   366 (21%)   296 (22%)   
     3   736 (24%)   442 (24%)   294 (23%)   433 (25%)   303 (22%)   
     4   939 (30%)   507 (27%)   432 (34%)   530 (30%)   409 (30%)   
Disadvantage Quartile                  
     1   948 (30%)   534 (29%)   414 (33%)   559 (32%)   389 (28%)   
     2   742 (24%)   416 (22%)   326 (26%)   432 (25%)   310 (23%)   
     3   652 (21%)   417 (22%)   235 (19%)   341 (19%)   311 (23%)   
     4   781 (25%)   502 (27%)   279 (22%)   422 (24%)   359 (26%)   
Ethnic Immigrant Quartile                  
     1   1,341 (43%)   812 (43%)   529 (42%)   786 (45%)   555 (41%)   
     2   1,180 (38%)   701 (38%)   479 (38%)   637 (36%)   543 (40%)   
     3   522 (17%)   310 (17%)   212 (17%)   290 (17%)   232 (17%)   
     4   80 (2.6%)   46 (2.5%)   34 (2.7%)   41 (2.3%)   39 (2.8%)   
Education Quartile                  
     1   1,100 (35%)   625 (33%)   475 (38%)   632 (36%)   468 (34%)   
     2   972 (31%)   578 (31%)   394 (31%)   540 (31%)   432 (32%)   
     3   766 (25%)   482 (26%)   284 (23%)   426 (24%)   340 (25%)   
     4   285 (9.1%)   184 (9.8%)   101 (8.1%)   156 (8.9%)   129 (9.4%) 
Radiomic Features      
Dependence Non-Uniformity   -0.12 (-0.61, 0.49)   -0.17 (-0.66, 0.44)   -0.04 (-0.52, 0.55)   -0.17 (-0.66, 0.43)   -0.08 (-0.56, 0.58)   
Large Area High Gray Level Emphasis   -0.36 (-0.56, -0.07)   -0.36 (-0.60, -0.08)   -0.34 (-0.50, -0.05)   -0.36 (-0.60, -0.10)   -0.36 (-0.52, -0.03)   
Median   -0.61 (-0.61, 0.35)   -0.61 (-0.61, 0.20)   -0.61 (-0.61, 0.57)   -0.61 (-0.61, 0.09)   -0.58 (-0.61, 0.61)  
Maximal Correlation Coefficient   0.05 (-0.41, 0.59)   0.05 (-0.44, 0.58)   0.06 (-0.39, 0.60)   0.02 (-0.45, 0.55)   0.09 (-0.36, 0.63)   
Robust Mean Absolute Deviation   -0.35 (-0.42, -0.07)   -0.34 (-0.42, -0.04)   -0.36 (-0.42, -0.11)   -0.31 (-0.41, -0.03)   -0.38 (-0.43, -0.11)  
Zone Entropy   -0.34 (-0.62, 0.17)   -0.37 (-0.67, 0.11)   -0.29 (-0.56, 0.23)   -0.37 (-0.65, 0.06)   -0.30 (-0.60, 0.40)   
Kurtosis   -0.47 (-0.58, 0.21)   -0.48 (-0.59, 0.24)   -0.45 (-0.58, 0.19)   -0.50 (-0.59, 0.10)   -0.43 (-0.58, 0.32) 

1Median (IQR); n (%)  
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