A Computationally Efficient Approach
for Modeling Complex and Big Survival Data

Kevin He, Yanming Li, Qingyi Wei, and Yi Li

Abstract Modern data collection techniques have resulted in an increasing number
of big clustered time-to-event data sets, wherein patients are often observed from a
large number of healthcare providers. Semiparametric frailty models are a flexible
and powerful tool for modeling clustered time-to-event data. In this manuscript,
we first provide a computationally efficient approach based on a minimization—
maximization algorithm to fit semiparametric frailty models in large-scale settings.
We then extend the proposed method to incorporate complex data structures such
as time-varying effects, for which many existing methods fail because of lack of
computational power. The finite-sample properties and the utility of the proposed
method are examined through an extensive simulation study and an analysis of the
national kidney transplant data.

1 Introduction

In recent years, advancing technology has resulted in an increasing number of big
time-to-event data sets, wherein patients are often observed from multiple clusters
(e.g., healthcare providers). For multi-clusters analysis, fixed effects model with
clusters as fixed effects is attractive if the sample sizes across clusters are large.
However, as is often seen in multi-cluster studies, there are many clusters with
relatively few patients. An alternative to a fixed effects approach is the random
effects or frailty model, in which clusters-specific effects are treated as random
samples from a specific probability distribution.

A wide variety of random effects models have been studied in survival analysis.
Among them, the gamma frailty model [1-3] and the log-normal frailty model [4—6]
are the most extensively studied approaches for time-to-event data. One reason for
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the popularity of the gamma frailty model is that it has a closed form Laplace
transformation for the survival function. Although the log-normal frailty model has
no explicit evaluation of the Laplace transform, it allows more flexibility and has
been commonly used to fit clustered frailty models [6].

Despite their popularity, the computational complexity of random effects models
have limited their use in big data. First, the numerical calculations may have
tremendous costs when the dimensionality of predictors is large [7]. Second,
when the number of subjects grows, the difficulty of model construction may also
increases dramatically. For instance, big time-to-event data are usually complex,
e.g., associations between disease outcomes and risk factors may involve complex
functional forms such as time-varying effects [8]. In the context of survival analysis,
time-varying effects have been studied for application with relatively small sample
sizes [9-14]. To estimate such a model, the data set is typically expanded in a
repeated measurement format (counting process style), e.g., the time is divided
into small time intervals where one single event occurs in each time interval.
The covariate values and outcome in the interval for each subject still under
observation are stacked into a large data set. Even with a moderate sample size,
such an expansion leads to a extremely large data which will be often infeasible
to handle with existing computational capability. As an example, data set with
5000 event (assuming no ties) will lead to an expanded data set with records
more than 12 millions, which easily out-powers a computer with 8G memory. To
avoid the expansion of large-scale data, an alternative approach based on Kronecker
product was suggested by Perperoglou et al. [15], with a Newton’s method applied
by iteratively updating the gradients and Hessian matrices. However, in large-
scale survival analyses with massive sample size and large number of predictors,
it is computationally expensive to calculate and invert the Hessian matrix. The
commonly used Newton-type method may converge slowly or even fail. Finally,
numerical problems may arise with skewed covariates (e.g., binary variables with
extreme proportion). Extremely small at-risk sets in certain groups may lead to
unstable estimations.

To improve the computation efficiency and fill the gap in the existing literature,
we first develop an computationally efficient algorithm for estimating the Cox
proportional hazards model in the presence of a large number of covariates. The
proposed approach combines the strength of the quasi-Newton and minimization—
maximization (MM) algorithm. To address the correlation due to clustering, we
then extend the proposed algorithm to semiparametric frailty models. Finally, the
proposed algorithm is generalized to estimate time-varying effects in complex and
big survival data. The proposed method has a connection with coordinate descent
which is widely used in high-dimensional data analysis. It should be noted, however,
that our general aim is to estimate each predictor’s effect instead of variable
selection. This is different than a typical constrained optimization approach. In the
latter approach, the dimensionality of the data is often much larger than the sample
size and the estimated covariate effects are shrunken via penalization.
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2 MM Algorithms for Cox Proportional Hazards Model

2.1 The Model

Let D; denote the time to death and C; be the censoring time for patient i,
i = 1,...,n. The observation time is denoted as 7; = min{D;, C;}, and the
death indicator is given by §; = I(D; < ;). Let X; = (Xj1, ... ,X,-p)T be a p-
dimensional covariate vector for the ith patient. We assume that, conditional on X,
D; is independently censored by C;. To model the death hazard, consider

1
A,’(l|X,’) = dltil?O dtPr(t <D, <t+ d[|D,’ > 1, X,’),

which we model by A;(t|X;) = Ao(?) exp(X! B), where Ao(¢) is the baseline hazard
function and B = (B1,...,B,)" is a vector of parameters. The corresponding log-
partial likelihood is given by

I(B) = 5 | X[B—log{ > exp(X{B)¢ |- ¢))

i=1 LER;

where R; = {{ : T; > T;} is the at-risk set. Let VI(8) denote the first derivative of
the log-partial likelihood with respect to 8. We have

 _ Leer Xeexp(X(B)
" Y ier exp(X( B)
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Let V21(B) denote the second derivative of the log-partial likelihood with respect to
B. We have

®2

’

: ZZER,- XZ@Z exp(X[Tﬂ) _ { ZZER,- X exp(X[Tﬂ)

N OEDI]
" ; ek, exp(X B) > ier exp(X{ B)

where ® is the Kronecker product.

2.2 Proposed Method

The proposed method is based on MM algorithm. For some good review on MM
methods, the readers are referred to [16—19]. We first consider the Cox proportional
hazards model. In a minorization step, we minorize the log-partial likelihood by a
surrogate function, which is chosen to separate the parameters. We begin with the
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observation that the log-partial likelihood (1) is a concave function of 8. Given the

. 5 (m) L . . .
mth step estimate 8 " , an application of Jensen’s inequality leads to the following
minority surrogate function:

1(B) > ZZ% U — By + X7 g S exp ()O(ll.j(ﬂj_ﬂi;m))

j=1 i=1 J LER;

P
X8 = 2818 = Y a1, @

j=1

where g(8;] ﬂA(m)) is defined implicitly, all o; > 0, Zj aj = 1 and oj > 0 whenever
Xij # 0. A candidate for o; is

B v
! P: Zl 1|X1]|

As we will show in the next paragraph, the choice of «; is not crucial.
In the maximization step, we maximize (or monotonically increase) the surrogate
function to produce the next iteration estimators. For instance, given the mth

. . . -~ . . ~(m) .
iteration estimate 8", forj = 1, ..., p, consider g(B;|B " ) and update coordinate-
wise directions ; cyclically. Up to a constant, v > 0, such a procedure is equivalent
to the approach based on coordinate descent; e.g., forj = 1,...,p,

,B(m+l) ﬂ(m) Olj{Vzg(,BjIﬁ(m))}_lVg(ﬁjlﬁ(m))), 3)

where XTﬁ o is treated as an offset. The «; in (5) and (3) can be considered as part
of the step-size control. As long as the ascent property is achieved, the choice of «;
is not crucial.

2.3 Computational Issues

The proposed algorithm maximizes the original log-partial likelihood via the sur-
rogate functions. Simplicity is obtained by separating the variables of optimization
problem. That means, we replace the complicated objective functions with a sum
of simpler functions, g(8;|8 (’”)), each of which depends only on one component of
parameter space. The computational speed for optimizing the surrogate functions
is linear in p, which is much faster than O(p®) from inverting the original Hessian
matrix. Furthermore, following the argument in Chap. 12 of [18], the ascent property
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in the MM algorithm depends only on increasing the surrogate function, not
on maximizing it. Therefore, one-step Newton estimators (with step-size control)
provide sufficient and rapid updates at each MM step, which further improves the
computational efficiency.

To accelerate the convergence of the MM algorithm, we consider a strategy
proposed by [18]. Denote the corresponding MM estimation in the (m + 1)th

iteration as M (ﬁ (m)) and a composite function M(M(-)) by M o M(-). Define vector
v=MoM@B"™)—MB"™)
and
u=M@") B
Compute the accelerated MM updates as
Bt = M@B™) —vUTU - UY)UTB™ —M(B™)}

Iterate ﬁ until converge.

3 MM Algorithms for Penalized Partial Likelihood
Estimation of Semiparametric Frailty Model

3.1 The Model

One way to fit the log-normal frailty model is the penalized partial likelihood (PPL)
approach developed by McGilchrist and Aisbett [5]. For completeness of exposure,
we summarize the algorithm as follows. Let Tj; and Cj; represent the survival and
censoring times, respectively, for the ith patient in the Ath cluster. Observation times
are denoted by Xj,; = Tj; A C;. The observed death indicators are denoted by 6;; =
I(Ty; < Cp;). Let H be the number of clusters, and the total number of subjects be
n= Zh=1 ny, where ny, is the number of subjects in cluster 4.
We consider a hazard function

M (t1X:) = Ao(2) exp(X] B + wy),

where w = (wy,...,wy) is a vector of random effects with independent normal
distribution w, ~ N(0, 02) for h = 1,...,H. Considering the random effects as
another set of parameters, the logarithm of the penalized partial likelihood can be
written as the sum of the log-partial likelihood and the log of the density of the
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random effects
lopi (B, W.0) = 1(B. W) + lpen(W,0),

where

H m

1B W) =) 8 | XpB+wi—log? Y exp(X[B+w)r|. &

h=1 i=1 glERy,;

and
1 <L (w?
lpen(W,0) = — ; % 012’ + 10g(27mz)} ,

where Rj,; contains all patients still at risk at time 7T}, regardless the clusters.

The maximization of the penalized partial likelihood includes an inner and an
outer loop. The inner loop estimates 8 and w by a Newton’s procedure to maximize
[(B, w) based on a provisional value of o (best linear unbiased predictor—BLUP).
The outer loop fits the restricted maximum likelihood estimator (REML) for o
based on the BLUPs. Then the procedure is iterated until convergence. Specifically,

A(m+1 A(m
ﬂ( +1) _ ﬂ( ) _JZ alppl/aﬂ
wimtD wm alppl/f)w B=f™ wemim

911912:|
2 =
|:~921 27

where

is the inverse of the square (p 4+ H)-dimensional Hessian matrix A with A given by

A= All A12 _ azlppl/aﬂaﬂT azlppl/aﬂawT
A21 A22 azlppl/aﬂaWT azlppl/awawT

More details of this algorithm can be found in Duchateau and Janssen [20].

3.2 Proposed Method

When the number of clusters or the number of covariates is large, it may be
computationally expensive to evaluate or invert the square (p + H)-dimensional
Hessian matrix, prohibiting its application to big data settings. To address this issue,
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we extend the MM algorithm to the semiparametric frailty models. Specifically, for
a provisional value of o, we consider the following minority surrogate function:

Loyt (B, W) > ZZZ%&”[ " (g~ ) X7 4

j=1 h=1 i=1 &

Xyij A(m 5(m) A (m
“log] 3 exp( B + X5 4 >)
]

glERy;

H ~
OpOhi @ B Wi

h=1 i=1

u qu,h (Wh - "/I};,m)) T A(m A ()
— Zlog Z exp o +X B +wy,

h=1 qlERy;

1L (w?
) Z { 0121 + log(Znaz)}

h=1

14 H
A(m) . A(m) A(m)
=gB.wB W)= "gBIB A+ gwilB.A™),

j=1 h=1

where Z;, = 1if ¢ = h (i.e., the patient belongs to cluster 4) and Zy, = 0

otherwise. In the inner loop, we treat w; m)

estimate of B, cyclically: forj =1,...,p

as offsets and update coordinate-wise

A(m+1)

A(m) NOROBNT R A(m) | A(m) o (m
B =B —a |V B" 18 ) veB 1B ).

Similarly, we treat ﬁ(m) as offsets and update coordinate-wise estimate of wy,
cyclically: forh =1,...,H

A -1 A
W = — o (V10" )] TGI8 ).

Follows the approach based on [4], an approximated REML estimate for o is
given by

(m)
G2+ = Zh 1 O,
H-—r

where r = a Y1 V2g(W (m)Iﬂ(m), ") /(6%
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4 MM Algorithm for Semiparametric Frailty Model
with Time-Varying Effects

We now extend the MM algorithm to semiparametric frailty models with time-
varying effects. Let B(r) = (Bi(9),...,B,(t)) be a p-dimensional vector of
potentially time-varying effects. We consider a hazard function

An(1]X3) = Ao(1) exp(X] B (1) + wy).
The corresponding log-partial likelihood (4) described in Sect. 3 is replaced by

H ny,

1B W) = " 8 | XpB(Tw) +wi —log 3> " exp (XppB(Tu) +wa) ¢ |-

h=1 i=1 (ER;

To estimate 8, a commonly applied approximation is to span B(-) by a set of B-
splines on a fixed grid of knots, usually taken to be equally spaced to cover the range
of time or equal number of events within each interval. For instance, each B;(-) is an
expansion of the form

K
Bi(t) = OIB(t) =Y 0uBi(r). j=1.....p.

k=1

where K is the dimension of the basis functions, the B(t) = (Bi(?),...,Bk (1))
form a basis for a finite-dimensional space, and @; = (01, ..., 9ix) is a vector of
coefficients with 6 as the corresponding coefficient for the kth component of the
Jjth covariate. Consider parameter vector § = vech(@®), the vectorization of @ by
row, the log-partial likelihood function is

H ny
16, w) = Z Z(Shi X}.OB(T);) + wy — log Z exp (X7, OB(T)) +wi) ¢ |,
h=1 i=1 (eR;
We consider the following minority surrogate function:
np

V4 H
Xhij A (m) A (m) R
Lt (0.w) = > > by [ (8, 0;")B(T) + X[ .0 " B(Tyi) + i
J

j=1h=1i=1

Xy A (m) A (m) ~ (m
- log{ 3 exp( 0, 0" BT + X1,6"B(T,) + 3 >)H
qlERy; J
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H ny A (m)
Wp—W A (m) A
+ Z Zahghi |: h h + X;z@ " B(Th,') + W;lm)
h

«
=1i=1 k

- Zoea(wy — W) A (m)
— Z log Z exp| " L ng@ B(Ty) + ﬁ/flm)

o
h=1 glERp; h

H

1 wﬁ 5
) Z o2 + log(2mo”)

h=1

14 H
A (m A (i A (m
=0, w8 B = "g(0;107 B + D g6, ™).
j=1 h=1

The remaining algorithms are the same as those in Sect. 3.

5 Convergence Properties

The numerical convergence of the MM algorithm can be described by the following
proposition:

Proposition 1 Any sequence of iterates BV = M(B™) generated by the
iteration map M(B) of the MM algorithm possesses a limit, and that limit is the
optimal point.

Proof of Proposition 1 The inequalities
UB™Y) = g(B V1B = g(B™B™) = I(B™)

follow from the choice of ™+ and the minorization condition (5) described
in Sect.2.2. Given the fact that log-partial likelihood function is smooth, if the
parameter space is bounded, then all super-level sets {8 : I(8) > c}, for a constant
¢, are compact, and the maximum value of log-partial likelihood is attained (e.g.,
Weierstrass’s theorem). Note that such a bounded assumption is applicable in most
practical applications. Apply Proposition 12.4.4 of [18], then Proposition 1 follows.

6 Simulation Study

Finite-sample properties of the proposed method and their alternative were evalu-
ated under three models: Cox proportional hazards model, semiparametric frailty
models with time-independent effects or time-varying effects.
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6.1 Setting 1: Cox Proportional Hazards Model

Death times were generated from an exponential model, A(7|X;) = 0.5 exp(Xl.Tﬂ)
fori = 1,...,n. The sample size was n = 1000 and the number of covariates
was p = 100, generated from independent standard normal distributions. The first
five variables had coefficients 1,1, —1,—1, 1, while the rest had zero coefficients.
Censoring times were generated from uniform distributions, with the percentage
of censored subjects being approximately 20-30 %. Each data configuration was
replicated 100 times. We compared the proposed MM algorithm described in
Sect.2.1. (termed MM)), its accelerated modification described in Sect. 2.3 (termed
MM?2) and a “cocktail” algorithm proposed by Yang and Zou [21]. Specifically,

instead of iteratively update l” (ﬂ ) in formula (3) described in Sect.2.2, the
“cocktail” algorithm used an upper bound for the second derivative which is fixed
across iteration

n 2

8i
2 = Z A {maX(Xé;) mln(Xéz)

i=1

Table 1 reports average bias (average over p = 100 and 100 simulation replications),
average mean square error (MSE), empirical coverage probabilities (termed CP)
based on 100 bootstraps, median number of iterations until convergence (termed
Step), and average computation time (termed Time). Table 1 clearly indicates that
the proposed MM algorithms provide better estimation in terms of both convergence
speed and estimation accuracy. Moreover, the accelerated modification further
reduced the number of iterations.

6.2 Setting 2: Log-Normal Frailty Model

Death times were generated from the log-normal frailty model with constant
baseline hazards 0.5 and the random effects were generated from normal distribution
with mean 0 and standard deviation 0.4. We considered 100 clusters with sample
size within each cluster following a Poisson distribution with rate 50. The covariates
were generated from the same distribution as those in Setting 1. We compared the
proposed MM algorithm described in Sect. 3, its accelerated version (MM?2) and the
PPL based on the Newton’s procedure (R package coxme). Table 2 reports average

Tablel‘ Setting 1: Cox Method | Bias MSE CP Step Time (s)
proportional hazards model Coxtail | 0.0410 | 0.0034 |0.974 |244.43 | 38.04
MM | 0.0412 | 0.0028 |0.967 | 18.03 | 2.69
MM2 | 0.0413 | 0.0028 |0.967 | 9.01 & 2.07
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Table 2 Setting 2: log-normal frailty model

Method | Bias of 8 | MSE of 8 | CP of 8 | Biasof 6 |MSE of & |CPof 6 | Step | Time (s)
PPL 00142 |0.0003 |0.952 |0.0007 |0.0008 | 0.735 |NA | 49.04
MM 00142 |0.003 |0.952 0.0009 [0.0008 0.735 |39.38 |42.41
MM2 | 0.0142 |0.0003 |0.952 |0.0007 |0.0008 | 0.735 |21.94 39.89

bias, average mean square error (MSE) and empirical coverage probabilities (termed
CP) for ﬁ and &, median number of iterations until convergence (termed Step), and
the average computation time (termed Time).

Note that the asymptotic variance for the estimates of the regression param-
eters and random effects variance estimate in PPL approach were provided by
McGilchrist and Aisbett [5] and McGilchrist [4]. This issue, however, requires
further investigation in our settings as the proposed method is an iterative profile
likelihood-type of algorithm. A useful tool might be bootstrap. Specifically, the
empirical coverage probabilities studied in this subsection were based on a nonpara-
metric bootstrap algorithm proposed by Therneau and Grambsch [22]: (1) choose H
clusters by sampling with replacement from the H clusters in the study; (2) let the
bootstrap sample be the subjects from the selected clusters; and (3) fit the proposed
procedure to this bootstrap sample. This procedure was repeated 100 times. The
estimates ﬂ and 6* were stored for each bootstrap sample. The standard errors of
the estimators ﬂ and & were calculated based on the variability of ﬂ and 6*.

The proposed MM algorithm has comparable performances with the PPL in this
setting. For all methods studied, the CPs of B are closed to the nominal value,
0.95. However, the estimated standard error of the random effects variance estimate
underestimates the standard error, and the corresponding CPs are substantially
lower than the nominal value of 0.95. This corresponds to the conclusion drawn
by Morris [23] for linear mixed models, e.g., the variances of the BLUPs are
biased downwards. Due to this bias, bootstrapping BLUP’s results in underestimated
variation in the data. Further investigation of the properties will be necessary.

6.3 Setting 3: Log-Normal Frailty Model with Time-Varying
Effects

The number of clusters and the covariate distribution were the same as those in
setting 2. We let B be a time-varying effect such that 8;(#) = 3 sin(37¢/4). Other
covariate effects were the same as previous settings. Ten basis functions were used
for implementing B-spline based methods. Each data configuration was replicated
100 times. The average bias of & is 0.002 and the median number of iterations
until convergence is 33.9. Figure 1 depicts that the proposed MM estimators are
sufficiently accurate.
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Fig. 1 Estimated coefficients in simulations. (a) Time-varying effect. (b) Time-independent effect

7 Analysis

The motivating data were obtained from the Organ Procurement and Transplantation
Network (OPTN). The United Network for Organ Sharing (UNOS) administers
the OPTN under contract with the US Department of Health and Human Services
(HHS). The complete data set can be requested from the Organ Procurement
and Transplantation Network (https://optn.transplant.hrsa.gov/). Included in the
analysis were adult patients (> 18 years of age at transplant) who underwent
deceased-donor kidney transplantation between January 1990 and December 2008.
Adjustment covariates in this study included age, race, gender, donation after
cardiac death (DCD), expanded criteria donor (ECD), BMI, dialysis time, indicator
of previous kidney transplant, cold ischemic time, and comorbidity conditions (e.g.,
glomerulonephritis, polycystic kidney disease, diabetes, hypertension). Graft failure
was considered to occur when the transplanted kidney ceased to function. Failure
time (recorded in years) was defined as the time from transplantation to graft failure
or death, whichever occurred first. The final sample size was n = 146, 248 from
282 transplant centers.

The proposed MM algorithm described in Sect. 4 was employed to investigate the
potential time-varying effects. Figure 2 shows a fitted subset of the potential time-
varying coefficients with the approximate 95 % point-wise confidence intervals.
These results suggested that the effect of diabetes and black race varies over time,
resulting in a strengthening of associations with death over time. However, the
results for glomerulonephritis, polycystic kidney disease, and hypertension should
be interpreted with caution. As shown in Fig. 2, their effects were minimal in the
early stage of the follow-up period, but were amplified in the late stage. This may
be due to the small at-risk sets at the late stage, resulting in very wide confidence
intervals.
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Fig. 2 Real data application: the data were obtained from the Organ Procurement and Transplan-
tation Network (OPTN). (a) Glomerulonephritis. (b) Polycystic kidney disease (¢) Diabetes (d)
Hypertension (e) Race: Black (f) Race: Hispanic

8 Discussion

Statistical analysis of big clustered time-to-event data presents daunting statistical
challenges as well as exciting opportunities. The computation and inversion of the
Hessian matrix of the log-partial likelihood is very expensive and may exceed
computation memory. To handle problems with large numbers of parameters,
we propose a novel algorithm, which combines the strength of quasi-Newton,
MM algorithm, and coordinate descent. The proposed algorithm improves upon
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the traditional semiparametric frailty models in several aspects. For instance, the
proposed algorithms avoid calculation of high-dimensional second derivatives of the
log-partial likelihood, and hence, are competitive in term of computation speed and
memory usage. Simplicity is obtained by separating the variables of the optimization
problem. The proposed methods also provide a useful tool for modeling complex
data structures such as time-varying effects.

The overall C index [24] has been routinely used in the medical literature as
a natural extension of the ROC curve to survival analysis. A key component in
the assessment of model performance is its ability to distinguish subjects who
will develop an event from those who will not. In large-scale multi-cluster time-
to-event data, a within cluster strategy (e.g., only subjects within each cluster
are compared) can greatly reduce the number of calculations. This advantage is
especially important for large-scale data exemplified in our study. Risk prediction
in time-varying effects model, however, is challenging as it is more complex than
evaluating the performance of Cox proportional hazard models.

As suggested by the reviewer, the penalized partial likelihood (PPL) approach is
closely connected with the hierarchical likelihood (H-likelihood) method [25, 26].
By treating the frailties as parameters, these approaches avoid integration of unob-
served frailties over the frailty distribution. Instead, frailties are jointly estimated
with other parameters of interest. This property is particularly appealing when the
frailty distribution is not a conjugate prior. However, when the censoring rate is high,
parameter estimates may be biased and further bias correction can be helpful [26].
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