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Background Virtually few accurate and robust prediction models of lower-grade gliomas (LGG) survival exist that
may aid physicians in making clinical decisions. We aimed to develop a prognostic prediction model of LGG by
incorporating demographic, clinical and transcriptional biomarkers with either main effects or gene-gene
interactions.

Methods Based on gene expression profiles of 1,420 LGG patients from six independent cohorts comprising both
European and Asian populations, we proposed a 3-D analysis strategy to develop and validate an Accurate Prediction
mOdel of Lower-grade gLiomas Overall survival (APOLLO). We further conducted decision curve analysis to assess
the net benefit (NB) of identifying true positives and the net reduction (NR) of unnecessary interventions. Finally,
we compared the performance of APOLLO and the existing prediction models by the first systematic review.

Findings APOLLO possessed an excellent discriminative ability to identify patients at high mortality risk. Compared
to those with less than the 20th percentile of APOLLO risk score, patients with more than the 90th percentile of
APOLLO risk score had significantly worse overall survival (HR=54¢18, 95% CI: 34¢73-84¢52, P=2¢66 £ 10�69).
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Further, APOLLO can accurately predict both 36- and 60-month survival in six independent cohorts with a pooled
AUC36-month=0¢901 (95% CI: 0¢879-0¢923), AUC60-month=0¢843 (95% CI: 0¢815-0¢871) and C-index=0¢818 (95% CI:
0¢800-0¢835). Moreover, APOLLO offered an effective screening strategy for detecting LGG patients susceptible to
death (NB36-month=0¢166, NR36-month=40¢1% and NB60-month=0¢258, NR60-month=19¢2%). The systematic compari-
sons revealed APOLLO outperformed the existing models in accuracy and robustness.

Interpretation APOLLO has the demonstrated feasibility and utility of predicting LGG survival (http://bigdata.
njmu.edu.cn/APOLLO).
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tion of Jiangsu Province (BK20191354); National Natural Science Foundation of China (81973142 and 82103946);
China Postdoctoral Science Foundation (2020M681671); National Institutes of Health (CA209414, CA249096,
CA092824 and ES000002).

Copyright � 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Lower-grade gliomas; Survival; Prognostic prediction; Nomogram; Online tool; Systematic review
Research in Context

Evidence before this study

We searched PubMed, Embase, MEDLINE, Web of Sci-
ence, and Cochrane Library for articles about prognostic
prediction models of LGG published before Aug 30,
2021, using search term “((lower-grade glioma) OR
(lgg)) AND ((progn*) OR (survival)) AND ((predict*) OR
(auc) OR (area under the curve) OR (receiver operator
characteristic curve) OR (c-index) OR (c statistic) OR (roc)
OR (calibration))”. We found the existing models under-
went limited prediction accuracy and model validation,
as most of them either solely relied on training popula-
tions or retrained models in testing populations to
assess the model performance, which might be overes-
timated due to overfitting. Additionally, most of these
existing models have limited model robustness and
transportability to accommodate independent popula-
tion, impeding their wide applications.

Added value of this study

In this study, we collected 1,420 LGG patients from six
European and Asian populations and proposed an
effective modeling strategy to develop and validate an
Accurate Prediction mOdel of Lower-grade gLiomas
Overall survival (APOLLO), which has the demonstrated
feasibility and utility in distinguishing LGG patients at
high risk of mortality and predicting their survival. Our
systematic review revealed that APOLLO outperformed
the existing models in accuracy and robustness.

Implications of all the available evidence

APOLLO has clinical benefits at identifying LGG patients
at high mortality risk and presents a higher net benefit
of identifying true positives and net reduction of unnec-
essary interventions. A convenient online tool to
implement APOLLO was developed at http://bigdata.
njmu.edu.cn/APOLLO.
Introduction
Gliomas, the most common malignant cancer in the
brain and central nervous system, account for over 80%
of malignant brain tumors.1 Lower-grade gliomas
(LGG), consisting of diffuse low- and intermediate-
grade gliomas, are graded II and III by World Health
Organization (WHO).2 Compared to those diagnosed as
glioblastoma (GBM) with a WHO grade IV, LGG
patients tend to have more favorable prognosis; how-
ever, 70% of them will progress to GBM within ten
years.3 Thus, delaying tumor progression for LGG
patients is critical. What is often overlooked is wide het-
erogeneity of LGG prognosis that is ubiquitous for those
even with similar clinical features, indicating possible
molecular underpinnings of the disease progression
process.4 As a crucial milestone, the WHO Classifica-
tion of Tumors of the Central Nervous System synthe-
sized molecular and histological information to
reclassify gliomas, by using well recognized molecular
biomarkers.2 Recent evidence has emerged that gene
expressions may pose inducible and reversible effects
on LGG prognosis via several channels, including
immunity,5,6 stemness,7 and autophagy.8,9

The prognostic prediction utilizing biomarkers can aid
physicians in making clinical decisions or guiding adjuvant
therapy.10 Recently, much effort has been shifting to the
LGG prognostic prediction.11-13 However, existing predic-
tion models have various technical bottlenecks, impeding
their wide applications. Specifically, these models
www.thelancet.com Vol 79 Month May, 2022

http://bigdata.njmu.edu.cn/APOLLO
http://bigdata.njmu.edu.cn/APOLLO
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://bigdata.njmu.edu.cn/APOLLO
http://bigdata.njmu.edu.cn/APOLLO


Articles
underwent limited model validation, as most of them
either solely relied on training populations or retrained
models in testing populations to assess the model perfor-
mance, which might be overestimated due to
overfitting.9,14 Therefore, most of these existing models
have limited model robustness and transportability to
accommodate independent populations.6,15,16

Furthermore, almost all of the studies merely
focused on predictors with main effects, but neglected
predictors exhibiting gene-gene (G£G) interactions,
which may provide pivotal clues regarding the biologic
mechanisms of complex diseases17 and enhance predic-
tion accuracy,18,19 as evidenced by our own study of
lung cancer.20

To address challenges in LGG survival prediction, we
developed an Accurate and independently validated Pre-
diction mOdel of Lower-grade gLiomas Overall survival
(APOLLO) which identifies and includes biomarkers
with significant main effects or G£G interactions,
based on six cohorts with both European and Asian pop-
ulations. Additionally, we have developed a free online
tool implementing APOLLO to facilitate prediction of
LGG survival.
Materials and Methods

Data collection and study population
We curated the clinical and gene expression data of
LGG patients from six glioma cohorts, namely, the Can-
cer Genome Atlas (TCGA),21 the Chinese Glioma
Genome Atlas (CGGA1),22 CGGA2,23 Rembrandt
(GSE108476),24 Weller (GSE61374)25 and Gravendeel
(GSE16011) cohorts.26 Only newly diagnosed LGG
patients with complete overall survival time and tran-
scriptomics data were retained. With the focus on bio-
logical functions and clinical utility, we considered a
total of 723 pan-cancer driving genes defined by COS-
MIC;27 among them, included in our study were 680
genes shared by all six cohorts. All gene expression lev-
els were log2-transformed and standardized before
being passed into association analyses; see the Supple-
mentary Methods for the details of sample quality con-
trol. Included in our subsequent analyses were a total of
1,420 LGG patients with 680 genes, whose demo-
graphic and clinical characteristics were summarized in
Supplementary Table S1.
APOLLO construction and validation
Figure 1, depicting the study design and workflow, fea-
tures a 3-D strategy (Double Types of Effects, Double
Steps of Screening, and Double Steps of Modeling) for
the development and validation of the APOLLO model.

(i) Double Types of Effects. For selection of important
main effects and G£G interactions, we considered
www.thelancet.com Vol 79 Month May, 2022
Cox Models 1 and 2, respectively:

Model1 : hðtÞ ¼ h0ðtÞ exp a� geneþP
bi � covariateið Þ;

Model2 : hðtÞ ¼ h0ðtÞ expða1 � gene1 þ a2 � gene2 þ a3

� gene1 � gene2 þ
P

bi

� covariateiÞ
which adjusted for covariates, including age, WHO

grade, IDH mutation and 1p/19q status (Supple-
mentary Table S2).
(ii) Double Steps of Screening. We scanned the pan-
cancer related genes to select candidate genes and
interactions, and then validated them with an inde-
pendent validation dataset. Specifically, on the
TCGA cohort, we fitted Models 1 and 2 on each
gene and interaction, respectively, and selected
important genes and interactions by controlling
the false positive rate at a 5% level (q-FDR�5%).
On the CGGA1 cohort, we validated these selected
genes or interactions; only those with P�0.05 and
with same effect directions as in the discovery step
would be selected as candidate biomarkers to be
passed onto the next modeling stage.

(iii) Double Steps of Modeling. On the TCGA cohort and
with the candidate genes and interactions identified
from the previous screening stage, we used Cox mod-
els (adjusted for demographic and clinical predictors)
to conduct forward stepwise regression, that is, using
the likelihood ratio test with Pentry�0.05 and Pre-
moval>0.05, to identify a final multivariable Cox model
and construct APOLLO. As validation, we assessed the
discriminative performance of the obtained APOLLO
via area under the receiver operating characteristic
curves (AUC) or concordance index (C-index) on one
internal cohort (CGGA1) and four external cohorts,
namely, CGGA2, Rembrandt, Weller and Gravendeel.
Bioinformatics analysis for transcriptional predictors
To understand the potential gene functions of the iden-
tified transcriptional predictors, we conducted a gene
enrichment pathway analysis based on Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) database by using R package clusterProfiler. Esti-
mation of Stromal and Immune Cells in Malignant
Tumor Tissues Using Expression Data (ESTIMATE)28

was used to predict the presence of stromal and
immune cells in tumor tissue, and CIBERSORT was
performed to determine the proportions of 22 immune
cells from bulk tumors based on gene expression.29

Finally, the gene network analysis of screened genes
and immune checkpoint genes was performed using
GeneMANIA,30 a plugin of the Cytoscape application.
A systematic review of LGG survival prediction models
Following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) (Supplementary
3
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Figure 1. Flowchart of development and validation of APOLLO and a systematic assessment.
The APOLLO model was developed by using a 3-D analysis strategy, encompassing Double Types of Effects, Double Steps of

Screening, and Double Steps of Modeling. For biomarker screening for double types of effects, we tested both main effects and
G£G interactions, followed by double steps of screening (biomarkers were first identified using the TCGA cohort and then validated
in the CGGA1 cohort); the double steps of modeling meant that the model was first trained in the TCGA cohort and then tested in
the CGGA1, CGGA2, Rembrandt, Weller and Gravendeel cohorts, respectively.
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Table S3), we conducted a systematic literature search
on prognostic prediction models of LGG using five
major databases, namely, PubMed, Embase, MEDLINE,
Web of Science, and Cochrane Library. The literature
search and data extraction were done independently by
two researchers (S.X. and J.X.), and the discrepancies
were arbitrated by a third researcher (J.C.). Details of
search strings, exclusion criteria and data extraction pro-
cess were provided in Supplementary Methods. We
totally retrieved 3,035 articles. After removing dupli-
cates, 1,444 articles were included for further screening.
Among them, 126 articles that met the criteria on title
www.thelancet.com Vol 79 Month May, 2022



Articles
or abstract, were eligible for a full-text review. Finally, 54
articles fully meeting our selection criteria were retained
and used for data extraction.
APOLLO visualization and online software
We generated a nomogram for visualizing APOLLO
by using R package rms, which can be accessed at
http://bigdata.njmu.edu.cn/APOLLO. With input val-
ues of predictors for a LGG patient, the online calcu-
lator immediately returns predicted survival rates
and 95% confidence intervals (CIs) at any time point
between 0 and 120 months, based on an interactive
web-based Kaplan-Meier survival curve.
Statistical analysis
Continuous variables were summarized as mean §
standard deviation, and categorized variables were
described by frequency (n) and proportion (%). Associa-
tions between characteristics and overall survival were
evaluated by Cox models using R package survival. Study
centers were adjusted for when analyzing the combined
samples. Kaplan-Meier survival curves illustrated the
survival differences across different risk groups. The
prediction accuracy was presented by using a time-
dependent receiver operating characteristic (ROC)
curve31 and was assessed by the time-dependent AUC,
which can be obtained from R package timeROC. We
used calibration plots to evaluate the consistency
between nomogram-predicted and observed risks, and
conducted decision curve analysis (with details given in
Supplementary Methods) to gauge the net benefit (NB)
of identifying true high risk patients that ought to have
intervention and the net reduction (NR) of unnecessary
interventions, due to the use of APOLLO as a screening
tool.32,33 Since these transcriptional predictors were vali-
dated by trans-ethnic populations, we assumed
APOLLO had uniform and homogenous performance
APOLLO_Score ¼ 0:0312� ageþ 0:5276� grade� 0:5510� IDH � 0:5163� 1p=19q
þ0:7528� Transcriptional_Score

Transcriptional_Score ¼ 0:2976� CHIC2þ 0:3500� IGF2BP2
þ0:2387� ITGAV þ 0:5532�MSN þ 0:4034� PLCG1
þ0:2361� BCORL1� 0:1082� PRF1� 0:2498� BCORL1� PRF1
�0:1674� HMGA1� 0:1058� TFGþ 0:1930� HMGA1� TFG
�0:1922� CTNND2� 0:1814� GOLGA5� 0:2340� CTNND2� GOLGA5
�0:0888� FAS� 0:2073� SMAD4� 0:1724� FAS� SMAD4
across cohorts. Thus, we performed meta-analysis to
pool prediction accuracy of APOLLO from six cohorts
using the fixed-effect model, implemented by the R
package meta. Stratified analyses were displayed by for-
est plots using the R package forestplot.
www.thelancet.com Vol 79 Month May, 2022
Statistical analyses were performed using R (version
3¢6¢3). A two-sided P value less than or equal to 0.05
was considered statistically significant unless otherwise
specified. The source code and data were deposited at
https://github.com/JiajinChen/APOLLO.
Ethics
The study was performed in accordance with Good Clin-
ical Practice guidelines and the World Medical Associa-
tion Declaration of Helsinki. All patients provided
informed consents. All data used in this study were de-
identified and no protected health data was needed.
Role of the funding source
The sponsors had no role in the study design, data col-
lection, data analyses, interpretation, or writing of the
study.
Results

Development and construction of APOLLO
First, 42 genes with main effects and 307 pairs of genes
with G£G interactions were identified (q-FDR�0.05) to
be possibly associated with overall survival in TCGA
cohort. Of them, 28 genes with main effects and 27
pairs of genes with G£G interactions were validated in
CGGA1 cohort to be candidate transcriptional predictors
(Supplementary Tables S4-S5). Then, out of these candi-
date transcriptional predictors and on the TCGA train-
ing cohort, we used forward stepwise regression
strategy to construct a final Cox model, which included
5 genes with main effects and 4 pairs of genes with
G£G interactions (Supplementary Table S6). Using the
coefficient estimates from this final Cox model,
APOLLO, which integrated demographic, clinical and
transcriptional predictors, was defined as:
Transcriptional predictors of APOLLO and their
immune relevance
KEGG enrichment analysis categorized gene probes
into 30 pathways, including the glioma pathway, and
GO annotation identified 279 biological process
5
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pathways, 24 molecular function pathways and 20 cellular
component pathways, suggesting potential biological func-
tions (Supplementary Table S7). We compared the propor-
tions of 22 types of immune cells between high- and low-
risk groups defined by the median transcriptional score
(-0¢2689), and found that they were significantly different
between the two groups (Supplementary Figure S1a). Fur-
ther, the transcriptional score was correlated with the stro-
mal, immune and ESTIMATE scores (Supplementary
Figure S1b). Additionally, we observed high connectivity
and large correlations between transcriptional predictors
and immune checkpoint genes (Supplementary Figure S1c
and Supplementary Figure S2), indicating that the tran-
scriptional predictors may play a role in immune
responses. Numerous immunity-related drugs targeting
these transcriptional predictors have been documented in
the DrugBank database (Supplementary Table S8), and,
thereby, APOLLO may have potential roles in guiding
immunotherapy.
Discriminative ability of APOLLO
Patients in each of the six cohorts were categorized into
low- and high-risk groups using the median APOLLO
score (0¢6945) obtained from the TCGA training set. The
APOLLO score had an adequate discriminative ability in
both training and testing sets. Compared to the low-risk
group in the corresponding cohort, the high-risk group
was associated with worse survival in the TCGA cohort
(the training set) and CGGA1 (the internal testing cohort),
exhibiting a large hazard ratio (HR) (HRTCGA=8¢51, 95%
CI: 5¢10-14¢18, P=2¢14 £ 10�16; HRCGGA1=4¢86, 95% CI:
3¢24-7¢28, P=1¢75£ 10�14) (Figure 2a-b), and in the 4 exter-
nal testing sets (HRCGGA2=6¢26, 95% CI: 2¢86-13¢68,
P=4¢41 £ 10�6; HRRembrandt=3¢49, 95% CI: 2¢06-5¢91,
P=3¢32 £ 10�6; HRWeller=3¢41, 95% CI: 1¢73-6¢72,
P=3¢99 £ 10�4; HRGravendeel=2¢19, 95% CI: 1¢31-3¢68,
P=2¢88£ 10�3) (Figure 2c-f). We further illustrated the dis-
criminative ability of the APOLLO score by classifying
patients into 6 groups defined by the quintiles and the 90
percentile of the score in the combined cohort. The median
survival months dramatically dropped from 192¢6 in the 1st

group (less than the 20th percentile) to 15¢7 in the 6th group
(above the 90th percentile). There appeared to exist a dose-
response association: higher-percentile groups were associ-
ated with shorter survival and higher mortality risk (HR6 vs

1=54¢18, 95% CI: 34¢73-84¢52, P=2¢66 £ 10�69; HR5 vs

1=16¢28, 95% CI: 10¢57-25¢07, P=1¢07 £ 10�36; HR4 vs

1=7¢05, 95% CI: 4¢66-10¢69, P=3¢03 £ 10�20; HR3 vs

1=3¢88, 95% CI: 2¢51-6¢00, P=9¢78£ 10�10;HR2 vs 1=2¢63,
95% CI: 1¢69-4¢10, P=1¢83£ 10�5); see Figure 2g-h.
Predictive performance of APOLLO
APOLLO predicted the 36- and 60-month survival rates
quite accurately in the TCGA training set and CGGA1
internal testing set (AUC36-month=0¢933 and 0¢888;
AUC60-month=0¢854 and 0¢851) (Figure 3a-b) and exhib-
ited an excellent predictive ability in the CGGA2, Rem-
brandt, Weller and Gravendeel external testing sets
(AUC36-month=0¢898, 0¢893, 0¢844 and 0¢861, AUC60-

month=0¢896, 0¢817, 0¢806 and 0¢790) (Figure 3c-f). In
the meta-analysis, APOLLO presented an excellent accu-
racy in both training sets (AUC36-month=0¢913, AUC60-

month=0¢852) and testing sets (AUC36-month=0¢879,
AUC60-month=0¢831), and combined data (AUC36-

month=0¢901, AUC60-month=0¢843). The calibration
curve suggested a good accordance (Supplementary
Figure S3). APOLLO significantly outperformed a basic
model with the four covariates aforementioned (Supple-
mentary Figure S4), improving AUC by 5¢4% (P <

2 £ 10�16) and 5¢8% (P < 2 £ 10�16) for the 36- and 60-
month survival prediction, respectively (Supplementary
Figures S5-S6). Additionally, APOLLO presented an excel-
lent C-index in the TCGA training cohort (0¢874) and
CGGA1 (0¢804) internal testing cohort and four external
testing cohorts: CGGA2 (0¢807), Rembrandt (0¢772),
Weller (0¢787) and Gravendeel (0¢759); and a pooled C-
index of 0¢818 (95% CI: 0¢800-0¢835) (Figure 3i).
Clinical net benefits with APOLLO
With 36-month survival as the endpoint, DCA showed
that APOLLO presented more clinical net benefits than
several competing intervention strategies, namely, inter-
vention for all, intervention for none, and intervention
based on a basic model with only clinical and demo-
graphic indicators. Specifically, compared with the strat-
egy of intervention for none and with a reasonable
threshold probability (e.g., Pt=0¢4), APOLLO presented
a higher net benefit (NB) than the basic model
(NBAPOLLO=0¢130 vs NBBasic=0¢111). In other words,
APOLLO identified 13¢0 true positive patients per 100
patients that ought to have intervention, whereas only
11¢1 for the basic model (Figure 4a). On the other hand,
compared to the strategy of intervention for all,
APOLLO presented a higher net reduction (NR) than
the basic model (NRAPOLLO=55¢4% vs NRBasic=52¢5%).
This means APOLLO can reduce the number of unnec-
essary clinical interventions by 55¢4%, without missing
interventions for any patients truly at high mortality
risk; by comparison, only 52¢5% for basic model
(Figure 4b). As a sensitivity analysis and by varying the
threshold probability from 0 to 0¢5, the APOLLO deci-
sion curves were higher than those of the other strate-
gies over a spectrum of threshold probability and
APOLLO had the best average NB and NR in for 36- and
60-month survival (NB36-month=0¢166, NR36-

month=40¢1% and NB60-month=0¢258, NR60-

month=19¢2%), indicating its uniform utility and suitabil-
ity for clinical implementation (Figure 4a-d).34 For indi-
vidualized prognostic prediction and screening of high-
risk patients, a nomogram of APOLLO is presented in
Figure 4e.
www.thelancet.com Vol 79 Month May, 2022
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Figure 2. Kaplan-Meier survival curves of LGG patients stratified by APOLLO score.
Survival differences between high- and low-risk patients in (A) TCGA, (B) CGGA1, (C) CGGA2, (D) Rembrandt, (E) Weller and (F) Gravendeel cohorts. Patients in all six cohorts were catego-

rized into two groups based on the same cutoff point: the median of APOLLO score defined in TCGA training set. (G) Discriminative ability of the APOLLO score by illustrating the 36- and
60-month survival rate, median survival month for six groups, defined by quantiles at 20%, 40%, 60%, 80% and 90% of APOLLO score as the cutoffs. (H) The hazard ratios (HRs) and P values
for patients at different levels of APOLLO score (level 1 as reference), which were derived from a Cox proportional hazards model.
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Figure 3. Time-dependent receiver operating characteristic curves of APLLO for 36- and 60-month overall survival
prediction.

The time-dependent ROC and AUC of APOLLO in (A) TCGA, (B) CGGA1, (C) CGGA2, (D) Rembrandt, (E) Weller and (F) Gravendeel
cohorts, respectively. The pooled accuracy for (G) AUC36-month, (H) AUC60-month and (I) C-index of APOLLO across six independent
cohorts.
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Sensitivity analysis of APOLLO prediction
To assess the robustness of APOLLO, we performed a
series of subgroup analyses with subgroups defined by
age, gender, WHO grade, IDH mutation, 1p/19q status,
MGMT promoter, radiotherapy and chemotherapy. In
all the subpopulations examined, APOLLO presented
good discriminative ability; the HRs that compare high-
and low-risk groups within the subpopulations ranged
from 3¢33 (95% CI: 2¢45-4¢52, P=1¢59 £ 10�14) to 8¢77
(95% CI: 5¢65-13¢63, P=4¢54 £ 10�22) (Supplementary
Figure S7a). Moreover, APOLLO had reasonable AUCs
in all of these subpopulations, ranging from 0¢829
(95% CI: 0¢784-0¢873) to 0¢907 (95% CI: 0¢875-0¢940)
for 36-month survival and 0¢757 (95% CI: 0¢705-0¢810)
to 0¢921 (95% CI: 0¢881-0¢961) for 60-month survival
(Supplementary Figure S7b-c).
www.thelancet.com Vol 79 Month May, 2022



Figure 4. Decision curve analysis and nomogram for clinical application of APOLLO.
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In real-world applications, missingness may happen,
in which case we recommend to use the mean imputa-
tion to fill the missing values of genes before applying
APPOLO. Our simulations verified the feasibility of
mean imputation (Supplementary Table S9).
Comparison of APOLLO with existing models by a
systematic review
Among the 54 screened articles (Figure 5), the prognostic
models have various types of predictors: 31 (57¢4%) models
were developed based on gene expressions, 8 (14¢8%) on
lncRNA and 6 (11¢1%) on radiomic features (Supplemen-
tary Table S10). A total of 30 (55¢6%) models were con-
structed by integrating multi-level biomarkers, and 19
(35¢2%) studies considered molecular mutations. Except
for 4 models that were only applicable to LGG subgroups
(2 for IDH-wild type LGG, 1 for Grade II LGG and 1 for
LGG with epilepsy), all of the models were suitable for all
LGG patients. While differing in biomarker selection
methods, 52 (96¢3%) models were derived using Cox mod-
els. Of the 35 models using clinical variables, age was the
most common predictor (n=34), followed by grade (n=27),
IDH mutation (n=17), gender (n=8) and 1p/19q status
(n=7) (Supplementary Table S10).

The prediction accuracy of these published LGG
prognostic models was extracted from the original paper
and was summarized in Table 1 and Supplementary
Table S11. While 8 studies had sample size>1,000, the
rest only has small to modest sample sizes, which may
not guarantee the reliability of the prediction model.
The 24 (44¢4%) models without any self-reported exter-
nal validation should be used with caution; though the
other 30 (55¢6%) models were externally validated, 7 of
which were not completely externally validated, as they
used the validation sets to screen the predictors. Fur-
ther, only 4 models had multiple validations (Supple-
mentary Table S11). In general, among 22 models that
were validated by completely external testing sets, their
prediction accuracy varies (C-index=0¢753, Range:
0¢620-0¢830; AUC3-year=0¢789, Range: 0¢635-0¢836 and
AUC5-year=0¢720, Range: 0¢594-0¢807) and was in gen-
eral smaller than that of APOLLO derived from four
external testing sets (C-index=0¢780, Range: 0¢759-
0¢807; AUC3-year=0¢877, Range: 0¢844-0¢898 and
AUC5-year=0¢812, Range: 0¢790-0¢896).
Discussion
Wide variation exists in LGG survival, ranging from 1 to
over 10 years,1,21 and patients at high risk of mortality
The decision curve analysis for net benefit (NB) and net reductio
month (A-B) and 60-month (C-D) survival, respectively for APOLLO
and clinical predictors. (E) The nomogram for APOLLO. The value of
according to the axis in the top of nomogram. The sum of points f
bottom of the nomogram and further used to estimate the patient’s
may warrant close imaging monitoring and radical post-
operative adjuvant therapy.5 Hence, there is an urgent
need to develop accurate and robust prognostic predic-
tion models for data-aided clinical decisions.35 Leverag-
ing available public LGG transcriptome data from six
independent cohorts, we adopted a 3-D analysis strategy
to screen biomarkers and developed APOLLO. Derived
from a large LGG cohort (TCGA) and validated in 5
trans-ethnicity cohorts with European and Asian popu-
lations, APOLLO exhibited an excellent prediction accu-
racy in the training and testing sets. Further, it offered
good clinical net benefits for screening patients with
high risk of mortality. Our systematic review also con-
firmed that APOLLO outperformed existing prediction
models.

As the utility and transportability of prediction mod-
els can be affected by gaps between the training popula-
tion and the target population that the model is applied
to,36 we addressed this by proposing a 3-D analysis strat-
egy, including Double types of effects, Double steps of
screening and Double steps of modeling. The first one
ensured the accuracy of the APOLLO by recognizing
that G£G interactions which provided valuable insight
into biological mechanisms of complex diseases.18,20

The latter two guaranteed the robustness of APOLLO.
For example, our screening procedure identified bio-
markers using a European population (TCGA) and vali-
dated those biomarkers using an Asian population
(CGGA1). This trans-ethnic validation revealed robust-
ness of the transcriptional predictors. In the ensuing
modeling procedures, APOLLO was trained using a
TCGA cohort and was later applied to one internal and
4 external cohorts (CGGA1, CGGA2, Rembrandt,
Weller and Gravendeel), and retained excellent predic-
tion accuracy regardless of stratification by age, gender,
WHO grade, IDH mutation, 1p/19q status, MGMT pro-
moter methylation level, and history of radiotherapy or
chemotherapy.

According to Global Burden of Disease, there are
over 1¢71 million brain & nervous system cancer patients
worldwide,1 and 427¢5 thousand (25%) are LGG.
Assuming that LGG patients with probability of mortal-
ity � 0¢4 should be clinically intervened (Figure 5b and
5d), APOLLO yielded NR36-month=55¢4% and NR60-

month=32¢4%, meaning that, compared to the most
extreme strategy of offering interventions on every LGG
patient, our model could help reduce 236¢8 thousand
(427¢5 £ 55¢4%) and 138¢5 thousand (427¢5 £ 32¢4%)
unnecessary interventions for short- and long-term sur-
vival outcome, respectively. In the future, APOLLO
may, through customized biochips, offer maximized
n (NR) of patients avoided unnecessary interventions at both 36-
and the basic model composed of four common demographic
each predictor can be converted into the corresponding points
or each predictor can correspond to the total points axis at the
36- and 60-month survival rate.

www.thelancet.com Vol 79 Month May, 2022



Figure 5. Flowchart of the systematic review of literature search and selection using five databases.
A total of relevant 3,035 records were obtained in PubMed, Embase, MEDLINE, Web of Science and Cochrane Library as of Aug

30, 2021. With the removal of duplicate records and irrelevant or ineligible records (based on title/abstract/text), retained were 54
records that met the criteria.
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benefits to patients and provide cost-effective precision
medicine. As such, our manuscript may present a proof
of concept.

We found that APOLLO outperformed 54 models we
reviewed in prediction accuracy and robustness. Fur-
ther, we briefly summarized the biological functions of
these transcriptional biomarkers in APOLLO. For the
genes with significant main effects, the genetic variants
of CHIC2 are found in brain tumor tissues,37 and
ITGAV38 is a prognostic factor of gliomas; PLCG1 and
IGF2BP2 are related to SUMOylation and m6A methyl-
ation, and involved in the immune responses, occur-
rence and development of gliomas;39-41 MSN is an
active biomarker for glioma immune regulation and a
drug target.42 For the pairs of genes with significant
interactions, PRF1 is strongly associated with anti-
CTLA-4 or anti-PD-L1 immunotherapy, and is related to
immune cell activities and survival of gliomas.43

BCORL1 is a transcriptional corepressor that can fuse
with ELF4, and repress the activation of PRF1.44

HMGA1 and TFG are regulated by NRF1, and can affect
the prognosis of gliomas.45-47 FAS48 and SMAD449 are
important members of the TNF-receptor superfamily
and TGF-b signaling pathway, respectively, play a major
role in tumor microenvironment and have antagonistic
www.thelancet.com Vol 79 Month May, 2022
interactions.50 Though the biological function of the
interaction between CTNND2 and GOLGA5 remains
unclear, overexpressed CTNND2 is likely to increase
tumor invasion of gliomas.51

PRF1, HMGA1, BCORL1, FAS, and MSN are the top
5 transcriptional biomarkers that are the most correlated
with immune checkpoint genes. Specifically, PRF1 is
viewed to be critically important for the immune cyto-
lytic activity (CYT), reflecting the immune response of
tumor cells, and is a well-established marker for cancer
survival,52 including gliomas.53 HMGA1 contributes to
the immunosuppressive microenvironment in tumors
and the silencing of HMGA1, and can boost checkpoint
blockade immunotherapy.54 BCORL1 is involved in the
immune response pathway, impacting the response to
immunochemotherapy.55 FAS receptor signaling plays
many important roles in the immune system, evidenced
by that the tumoral FAS expression may predict the sur-
vival of CAR-T-treated patients.56 MSN, a known target
for cancer immunotherapy, regulates the migration of
effector T cells.57 Finally, genes included in APOLLO
were transcriptional predictors with immune relevance,
which can be immunotherapeutic targets.

Our study has several strengths. First, we performed,
to our knowledge, the first systematic review of
11



No PMID Year Method ValidationType Data source Sample size Performance in training set Performance in testing set

Training Testing Training Testing Total AUC3-year AUC5-year C-index AUC3-year AUC5-year C-index

- APOLLO - Cox External TCGA

CGGA1

CGGA2

Rembrandt

GSE61374

GSE16011

505

408

143

121

137

106

1420 0.933

0.888

0.854

0.851

0.874

0.804

0.898

0.893

0.844

0.861

0.896

0.817

0.806

0.790

0.807

0.772

0.787

0.759

1 33665000 2021 Cox External TCGA CGGA a 522 623 1145 0.766 0.763 - 0.744 0.764 -

2 34123829 2021 Cox External TCGA CGGA a

GSE16011 a +

Rembrandt a

476 407

231

1114 - - 0.878 - - 0.734

0.748

3 33951297 2021 Cox External TCGA CGGA 506 592 1098 0.710 0.601 - 0.655 0.655 -

4 33400376 2021 Cox External TCGA CGGA 506 592 1098 0.782 - - 0.734 - -

5 33594759 2021 Cox External TCGA CGGA 495 590 1085 0.875 0.816 - 0.756 0.728 -

6 34395274 2021 Cox External TCGA CGGA1

CGGA2

474 407

168

1049 0.872 0.815 - 0.635

0.775

0.594

0.807

-

7 33381460 2020 Cox External TCGA CGGA 525 420 945 - 0.633 - - 0.671 -

8 34015817 2021 NN External TCGA CGGA 493 408 901 0.925 0.871 - 0.795 0.767 -

9 33363544 2020 Cox External TCGA CGGA 459 362 821 - - 0.878 - - 0.68

10 32519365 2021 Cox External TCGA CGGA1

CGGA2

477 199

139

815 0.848 0.750 - 0.802

0.828

0.674

0.755

-

11 31824866 2019 Cox External TCGA CGGA a 511 172 683 0.89 0.78 0.839 0.811

12 31803233 2019 Cox External TCGA CGGA a 511 172 683 0.831 0.711 - 0.909 0.892 -

13 34408772 2021 Cox External TCGA CGGA 495 172 667 0.84 0.74 - 0.74 0.71 -

14 32793593 2020 Cox External TCGA CGGA a 476 170 646 0.860 0.806 0.817 0.783 0.759 0.642

15 31533943 2019 Cox External CGGA TCGA 172 451 623 0.890 0.912 - 0.782 0.696 -

16 31921517 2020 Cox External TCGA CGGA 456 159 615 0.878 0.827 - 0.806 0.807 -

17 24049111 2013 Cox External EORTC RTOG+NCCTG 338 235 573 - - 0.67 - - 0.62

Table 1 (Continued)
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No PMID Year Method ValidationType Data source Sample size Performance in training set Performance in testing set

Training Testing Training Testing Total AUC3-year AUC5-year C-index AUC3-year AUC5-year C-index

18 29204839 2018 Cox External TCGA CGGA 420 100 520 - - 0.83 - - 0.68

19 32162004 2020 RSF External Local TCIA 205 91 296 - - - - 0.709iAUC

20 30362964 2018 Cox External TCIA CGGA 85 148 233 - - 0.92 - - 0.7

21 33409797 2021 Cox External Local Local 149 66 215 - - 0.821 - - 0.763

22 32060714 2020 Cox External Local TCIA 112 46 158 - - 0.773iAUC - - 0.830iAUC

23 32740813 2020 Cox External Local TCIA 117 33 150 - - 0.770iAUC - - 0.787iAUC

24 32229719 2020 Cox Internal

External

TCGA CGGA1 a

CGGA2

GSE16011

GSE61374

329

140

405

118

88

136

1216 - - 0.873

0.881

- - 0.781

0.765

0.721

0.753

25 31853837 2020 Cox Internal

External

TCGA CGGA a 329

140

405 874 - - 0.877

0.878

- - 0.812

26 32351547 2020 Cox Internal

External

TCGA CGGA 304

128

353 785 0.882

0.836

0.884

0.761

0.864

0.831

0.836 0.798 0.756

27 32431729 2020 Cox Internal

External

TCGA CGGA 297

124

353 774 0.905

0.915

0.837

0.828

0.870

0.847

0.798 0.740 0.753

28 33591634 2021 Cox Internal

External

TCGA CGGA 352

152

224 728 0.930

0.816

0.876

0.857

- 0.835 0.711 -

Table 1: Comparison of prediction accuracy between APOLLO and 28 models of LGG with self-reported external validation.
Abbreviations: NN: neural network; RSF: random survival forest; iAUC: integrated area under the time-dependent ROC curve; Internal: a model was cross validated by randomly splitting the original data. External: a model was

externally validated by an independent external population. The performance for each model was extracted from the original paper.
a Datasets were used for biomarker screening, which were not completely external validation.
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prognostic prediction models for LGG and confirmed
the good performance of APOLLO. Second, this is per-
haps the largest molecular prognostic prediction study
for LGG, and APOLLO was strongly overall, as well as
trans-ethnically validated by several large LGG cohorts.
Our extensive subgroup analysis suggested the robust-
ness and transportability of APOLLO to different popu-
lations. Third, we proposed an effective 3-D strategy for
biomarker screening and model construction, by focus-
ing on biomarkers with important main effects or G£G
interactions. The strategy struck a reasonable balance
among statistical properties (false positive control vs sta-
tistical power gaining), model interpretations (main
effects vs G£G interactions), and computational com-
plexity (fast variable screening vs consistent model selec-
tion). Finally, we provided a web-based tool to facilitate
the application of APOLLO.

We also acknowledge some limitations. First, hetero-
geneity existed across these cohorts with various
sequencing or microarray platforms. To address this,
we harmonized the data by performing standard normal
transformation, which work to some degree. Second,
some well recognized prognostic factors (e.g., tumor
size and extent of surgical resection) were missing in
several cohorts. We envision that there is much room
for improvement with more available and complete clin-
ical factors. Third, applications of APOLLO to the other
ethnicity populations should be cautious, as APOLLO
was trained and validated among the Asian and Euro-
pean populations. Forth, the improvement of accuracy
was not uniform in all external validation datasets, pos-
sibly due to the population heterogeneity or the limited
sample size in a single dataset. Finally, more biological
experiments are needed to confirm gene functions of
these transcriptional predictors used in APOLLO.

To conclude, we presented an Accurate and indepen-
dently validated Prediction mOdel of Lower-grade gLio-
mas Overall survival (APOLLO), which was
demonstrated, by a systematic review, with the best pre-
diction accuracy and robustness, and was a cost-effective
strategy for screening LGG patients at high risk of mor-
tality. A free and user-friendly online tool was developed
at http://bigdata.njmu.edu.cn/APOLLO.
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