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The Scientific Registry of Transplant Recipients (SRTR) system has be-
come a rich resource for understanding the complex mechanisms of graft
failure after kidney transplant, a crucial step for allocating organs effectively
and implementing appropriate care. As transplant centers that treated patients
might strongly confound graft failures, Cox models stratified by centers can
eliminate their confounding effects. Also, since recipient age is a proven non-
modifiable risk factor, a common practice is to fit models separately by recip-
ient age groups. The moderate sample sizes, relative to the number of co-
variates, in some age groups may lead to biased maximum stratified partial
likelihood estimates and unreliable confidence intervals even when samples
still outnumber covariates. To draw reliable inference on a comprehensive
list of risk factors measured from both donors and recipients in SRTR, we
propose a de-biased lasso approach via quadratic programming for fitting
stratified Cox models. We establish asymptotic properties and verify via sim-
ulations that our method produces consistent estimates and confidence in-
tervals with nominal coverage probabilities. Accounting for nearly 100 con-
founders in SRTR, the de-biased method detects that the graft failure hazard
nonlinearly increases with donor’s age among all recipient age groups, and
that organs from older donors more adversely impact the younger recipients.
Our method also delineates the associations between graft failure and many
risk factors such as recipients’ primary diagnoses (e.g. polycystic disease,
glomerular disease, and diabetes) and donor-recipient mismatches for human
leukocyte antigen loci across recipient age groups. These results may inform
the refinement of donor-recipient matching criteria for stakeholders.

1. Introduction. For patients with end-stage renal disease, one of the most lethal and
prevalent diseases in the U.S. (Saran et al., 2020), successful renal transplantation is effec-
tive for improving quality of life and prolonging survival (Wolfe et al., 1999; Kostro et al.,
2016; Ju et al., 2019). The success of kidney transplantation hinges upon various factors
related to the quality of transplant operations, the quality of donated kidneys, and the phys-
ical conditions of recipients (Rodger, 2012; Legendre, Canaud and Martinez, 2014), and it
is crucial to evaluate and understand how these risk factors impact on renal graft failure in
order to increase the chance of success (Hamidi et al., 2016; Legendre, Canaud and Martinez,
2014). With the scarcity of organs and an increasing number of waitlisted candidates (Bas-
tani, 2015), the results can inform more efficient strategies for kidney allocation (Rao and
Ojo, 2009; Smith et al., 2012) as well as evidence-based post-transplant care (Baker et al.,
2017). Therefore, how to quantify the impacts of important factors associated with prognosis,
particularly renal graft failure, remains to be a central question in kidney transplantation. The
Scientific Registry of Transplant Recipients (SRTR) system, a federally funded organization
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that keeps records of transplant information from recipients and donors, has become a rich
resource for studying post-kidney transplantation prognosis (Dickinson et al., 2008).

Leveraging the SRTR data, one can develop a valid tool for characterizing the influences
of risk factors on graft failure, a key step towards post-transplant prognosis. Most previ-
ous studies, which focused only on a small number of factors, i.e. kidney diagnosis, recip-
ient age, recipient race, recipient gender, number of human leukocyte antigen (HLA) mis-
matches, donor age, donor race, donor gender, serum creatinine level and cold ischemia time
(Alexander, Bennett and Breen, 1994), might have pre-excluded other important factors and
not fully captured the complex mechanisms governing graft failure. The SRTR data contain
comprehensive information on recipients and donors, such as recipient primary insurance
and employment, procedure type, infection of multiple viruses, history of transplant, transfu-
sion and drug abuse, and pre-transplant comorbidities. The data provide a unique opportunity
for assessing the associations between graft failure and an extended list of variables simul-
taneously, which may reduce confounding (Wang, 2011). Specifically, since donor age is a
major criterion for donor-recipient matching (Kasiske and Snyder, 2002; Rao et al., 2009;
Veroux et al., 2012), the data enable us to examine its effect on graft failure by adjusting for
confounders, including pre-existing comorbidities.

There are several statistical challenges. On the one hand, as recipients received care in
various transplant centers, the center-specific effects may confound the covariate effects of
interest. This motivates us to consider Cox models stratified by transplant centers, a com-
monly used model in the relevant context without the need to explicitly model the potentially
time-varying center effects (He et al., 2021). On the other hand, recipient age is a strong
risk factor and there may exist complicated interactions between recipients’ age and other
characteristics (Keith et al., 2004). For ease of interpretation and by convention (Morales
et al., 2012; Faravardeh et al., 2013), we have opted to divide our analyzable patient pop-
ulation (the adult recipients with kidneys transplanted during 2000 and 2001) into [18,45],
(45,60] and 60+ years old groups (Table 1), and fit models separately for these three groups.
Allowing model parameters to be age group-specific, we have avoided parametrically mod-
eling the interactions between recipient age and the other risk factors. When the number of
covariates is relatively large (94 in our data) compared to, though still less than, the sample
size (for example, 1448 patients with 1013 events in the 60+ years old recipient group), the
conventional maximum stratified partial likelihood estimation (MSPLE) may yield untrust-
worthy point estimates, confidence intervals and hypothesis testing results, as illustrated in
our simulations.

For proper inferences, we consider an asymptotic framework with a diverging number
of covariates, wherein the number of covariates, though smaller than the sample size, can
increase with the sample size (He and Shao, 2000; Wang, 2011). Lasso provides a very pop-
ular tool for simultaneous variable selection and estimation with high-dimensional covari-
ates (Tibshirani, 1997). For unstratified Cox models, Huang et al. (2013) and Kong and Nan
(2014) presented the oracle inequalities for the lasso estimator. However, with penalization,
lasso estimates are biased towards zero (van de Geer et al., 2014), and they do not possess reg-
ular limiting distributions even under linear regression with a fixed number of covariates (Fu
and Knight, 2000). Conditional inference based on the selected model is invalid, either, due
to the failure to account for uncertainty in model selection. Hence, lasso cannot be directly
applied to draw statistical inference. There is literature on inference for unstratified Cox pro-
portional hazards models under the related asymptotic framework. For example, Fang, Ning
and Liu (2017) proposed decorrelated score tests for a low-dimensional component in the
regression parameters, and Kong et al. (2021), Yu, Bradic and Samworth (2021) and Xia,
Nan and Li (2022) proposed to correct asymptotic biases of the lasso estimator following the
framework of van de Geer et al. (2014), Zhang and Zhang (2014) and Javanmard and Monta-
nari (2014) that were originated from high-dimensional linear or generalized linear models.
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TABLE 1
Study population characteristics by recipient age group

Recipient age group [18,45] (45,60] 60+
Variable Mean (SD) / Count (%)
# Centers 84 (–) 107 (–) 43 (–)
# Patients 3388 (100%) 4359 (100%) 1448 (100%)
# Events 1588 (46.9%) 2334 (53.5%) 1013 (70.0%)
Recipient age 35.7 (7.0) 53.0 (4.2) 66.6 (4.3)
Donor age (years)

≤ 10 276 (8.1%) 223 (5.1%) 61 (4.2%)
(10,20] 580 (17.1%) 611 (14.0%) 137 (9.5%)
(20,30] 633 (18.7%) 683 (15.7%) 179 (12.4%)
(30,40] 505 (14.9%) 599 (13.7%) 174 (12.0%)
(40,50] 753 (22.2%) 947 (21.7%) 256 (17.7%)
(50,60] 498 (14.7%) 893 (20.5%) 318 (22.0%)
60+ 143 (4.2%) 403 (9.2%) 323 (22.3%)

Recipient gender
Male 1997 (58.9%) 2671 (61.3%) 913 (63.1%)
Female 1391 (41.1%) 1688 (38.7%) 535 (36.9%)

Donor gender
Male 2039 (60.2%) 2563 (58.8%) 803 (55.5%)
Female 1349 (39.8%) 1796 (41.2%) 645 (44.5%)

For Cox models, all of these methods, except Xia, Nan and Li (2022) which considered the
“large n, diverging p” scenario, assumed sparsity on the inverse information matrix. This
sparse matrix assumption, however, may not hold for models beyond linear regression, lead-
ing to insufficient bias correction and under-covered confidence intervals. Moreover, as these
methods were not designed for modeling stratified data, they are not directly applicable to the
analysis of the SRTR data. To our knowledge, the current literature lacks inferential methods
with theoretical rigor for stratified Cox models with a diverging number of covariates.

We propose a de-biased lasso approach for Cox models stratified by transplant centers,
which solves a series of quadratic programming problems to estimate the inverse information
matrix, and corrects the biases from the lasso estimator for valid statistical inference. Our
asymptotic results enable us to draw inference on any linear combinations of model param-
eters, including the low-dimensional targets in Fang, Ning and Liu (2017) and Kong et al.
(2021) as special cases and fundamentally deviating from the stepwise regression adopted by
Rao et al. (2009). When the number of covariates is relatively large compared to the sample
size, our approach yields less biased estimates and more properly covered confidence inter-
vals than MSPLE as well as the methods of Fang, Ning and Liu (2017); Kong et al. (2021);
Yu, Bradic and Samworth (2021) adapted to the stratified setting. Therefore, it is well-suited
for analyzing the SRTR data, especially among the oldest recipient group that has the smallest
sample size.

Applications of our method to the SRTR data have generated reliable estimation and in-
ference results for the effects of an expanded list of donor and recipient factors. We find that
receiving kidneys from older donors is associated with an increased hazard of graft failure
after adjusting for many confounding factors, and that the dependence on donors’ age is non-
linear. The results may inform more comprehensive assessments of post-transplant prognosis
and kidney allocation.

The article is organized as follows. We introduce the proposed de-biased lasso approach in
Section 2 and establish the asymptotic results in Section 3, which form the basis of inference
for the SRTR data. We conduct simulations in Section 4 and demonstrate that our method
outperforms MSPLE in bias correction and confidence interval coverage. In Section 5, we
analyze the SRTR data by using the proposed de-biased approach. Finally, we provide a few
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concluding remarks in Section 6, the detailed list of covariates considered in the analysis of
SRTR data in Appendix A, and regularity conditions in Appendix B. Technical details and
proofs are deferred to the Supplementary Material.

2. De-biased lasso for stratified Cox models via quadratic programming. We apply
stratified Cox models to evaluate the impacts of risk factors on post-transplant graft failure
using the SRTR data. For each recipient age group defined in the first row of Table 1, let
K be the total number of transplant centers, and nk be the number of recipients in the k-th
transplant center, k = 1, · · · ,K . With i indexing recipients within the k-th transplant center,
let Tki denote the graft failure free survival time, i.e. the time from transplantation to graft
failure or death, whichever comes first [a common endpoint in transplantation (Kasiske et al.,
2011)], Xki be a p-dimensional covariate vector, and Cki be the censoring time. We assume
random censoring, that is, Tki and Cki are independent given Xki. In the SRTR data, p= 94
and Xki includes risk factors from both donors and recipients, such as gender, ABO blood
type, history of diabetes and duration, angina/coronary artery disease, symptomatic periph-
eral vascular disease, drug treated systemic hypertension, drug treated COPD, and mismatch
for each HLA locus between donors and recipients; see a full list of covariates in Appendix
A. Let δki = 1(Tki ≤ Cki) be the event indicator and Yki = min(Tki,Cki) be the observed
time. With a center-specific baseline hazard function λ0k(t), a stratified Cox model for Tki
stipulates that its conditional hazard at t given Xki is

λki(t|Xki) = λ0k(t) exp{XT
kiβ

0},

where β0 = (β01 , . . . , β
0
p)T ∈ Rp is the vector of common regression coefficients across all

centers. It is reasonable to assume that the true regression coefficients β0 are the same across
strata (Kalbfleisch and Prentice, 2002), while the center effects, though not of primary interest
here, are accounted for via different baseline hazards λ0k(t)’s.

2.1. Estimation method. The MSPLE of β minimizes the following negative log strati-
fied partial likelihood function

(2.1) `(β) =− 1

N

K∑
k=1

nk∑
i=1

βTXki − log

 1

nk

nk∑
j=1

1(Ykj ≥ Yki) exp(βTXkj)


 δki,

where N =
∑K

k=1 nk. In SRTR, the number of risk factors, though smaller than the sample
size, is fairly large. In this case, our numerical examination shows that MSPLEs are biased
and their confidence intervals do not yield nominal coverage. We consider a de-biased ap-
proach that has been shown to yield valid inference in linear regression (van de Geer et al.,
2014; Zhang and Zhang, 2014; Javanmard and Montanari, 2014). Here we assume that p <N
but grows with N , which falls into the “large N , diverging p” framework. We extend the de-
biased lasso to accommodate stratified Cox models.

For a vector x= (x1, . . . , xp)
T ∈ Rp, define x⊗0 = 1, x⊗1 = x and x⊗2 = xxT . Let ˙̀(β)

and ῭(β) be the first and the second order derivatives of `(β) with respect to β, i.e.

˙̀(β) =− 1

N

K∑
k=1

nk∑
i=1

{
Xki −

µ̂1k(Yki;β)

µ̂0k(Yki;β)

}
δki,

῭(β) =
1

N

K∑
k=1

nk∑
i=1

{
µ̂2k(Yki;β)

µ̂0k(Yki;β)
−
[
µ̂1k(Yki;β)

µ̂0k(Yki;β)

]⊗2}
δki,
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where µ̂rk(t;β) = nk
−1∑nk

j=1 1(Ykj ≥ t)X⊗rkj exp{XT
kjβ}, r = 0,1,2. The lasso estimate,

β̂, minimizes the penalized negative log stratified partial likelihood,

(2.2) β̂ = arg minβ∈Rp{`(β) + λ‖β‖1},

where λ > 0 is a tuning parameter that encourages sparse solutions. Here, ‖x‖q =

(
∑p

j=1 |xj |q)1/q is the `q-norm for x ∈Rp, q ≥ 1.

As β̂ is typically biased, we can obtain the de-biased lasso estimator by a Taylor expansion
of ˙̀(β0) around β̂. To proceed, let M̂ be a p× p matrix and M̂j its jth row. Pre-multiplying
M̂j on both sides of the Taylor expansion and collecting terms, we have the following equality
for the jth component of β:

(2.3) β̂j − β0j +

Ij︷ ︸︸ ︷(
−M̂j

˙̀(β̂)
)

+

IIj︷ ︸︸ ︷(
−M̂j∆

)
+

IIIj︷ ︸︸ ︷(
M̂j

῭(β̂)− eTj
)(

β̂ − β0
)

=−M̂j
˙̀(β0),

where the remainder ∆ ∈ Rp in IIj can be shown asymptotically negligible given the con-
vergence rate of the lasso estimator β̂, and so is IIIj if M̂j

῭(β̂)− eTj converges to zero with
certain rate that will be discussed later in Section 3. Hence, the de-biased lasso estimator
corrects the bias of β̂j with a one-step update of

(2.4) b̂j = β̂j − Θ̂j
˙̀(β̂),

which replaces M̂j in (2.3) with the j-th row of Θ̂, an estimate of the inverse information
matrix Θβ0 , and −Θ̂j

˙̀(β̂) is the bias correction term to β̂j . Here, Θβ0 is the inverse of
the population version of Σ̂ given in the following (2.6); see the explicit definition of Θβ0

underneath (3.1). Denote by b̂ = (̂b1, . . . , b̂p)
T the vector of the de-biased lasso estimates,

and, for compactness, write (2.4) in a matrix form

(2.5) b̂= β̂ − Θ̂ ˙̀(β̂).

Unlike β̂, the de-biased estimator b̂ in (2.5) is no longer sparse. Motivated by Javanmard and
Montanari (2014) on high-dimensional inference in linear regression, we propose to obtain
Θ̂ by solving a series of quadratic programming problems. First, we compute

(2.6) Σ̂ =
1

N

K∑
k=1

nk∑
i=1

δki

[
Xki − η̂k(Yki; β̂)

]⊗2
,

where η̂k(t;β) = µ̂1k(t;β)/µ̂0k(t;β) is the vector of weighted average covariates. We use Σ̂,
in lieu of ῭(β̂), for ease of proving theoretical properties. Indeed, as shown in the Supple-
mentary Material, ‖Σ̂− ῭(β̂)‖∞

p→ 0 with a desirable rate under the conditions in Section 3.
Next, for each j = 1, . . . , p, we solve a quadratic programming problem

(2.7) min
m∈Rp

{
mT Σ̂m : ‖Σ̂m− ej‖∞ ≤ γ

}
,

where γ > 0 is a tuning parameter that is different from the lasso tuning parameter λ, ej is
a unit directional vector with only the jth element being one, and ‖ · ‖∞ is the matrix max
norm, i.e. ‖A‖∞ = maxi,j |Aij | for a real matrix A. Denote by m(j) the column vector of
solution to (2.7). We obtain a p× p matrix Θ̂ = (m(1), . . . ,m(p))T .

The constraint ‖Σ̂m − ej‖∞ ≤ γ in (2.7) controls deviations of the de-biased estimates
from the lasso estimates. In an extreme case of γ = 1, an admissible solution is m= 0, and
therefore there is no bias correction in the de-biased estimator; in another extreme case of
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FIG 1. The impact of choices of γ on the averages of biases, empirical coverage probabilities, model-based
and empirical standard errors, based on 100 simulations with K = 5 strata and nk = 200 in each stratum,
p= 100 covariates simulated from a multivariate normal distribution with mean zero and an AR(1) covariance
matrix (ρ = 0.5) and truncated at ±3. Survival times are simulated with a hazard λ0k exp{X

T
kiβ

0}, where
λ0k are constants generated from Uniform (0.1,0.5), and four nonzero coefficients in β0 take 1, 1, 0.3 and 0.3,
respectively. Censoring times are independently simulated from Uniform (1,30).

γ = 0, m(j) is the jth column of Σ̂−1. We implement (2.7) by using R solve.QP(), which
can be programmed in parallel for large p. We name the method de-biased lasso via quadratic
programming (hereafter, DBL-QP).

2.2. Tuning parameter selection. For the DBL-QP method, the lasso tuning parameter
λ can be selected via 5-fold cross-validation as in Simon et al. (2011). The selection of γ
is crucial as, for example, Figure 1 reveals that γ should be selected within a specific range
(shaded in figures) to achieve the most desirable bias correction and confidence interval cov-
erage probability. It also shows the large bias and poor coverage resulting from MSPLE. In-
appropriate tuning can yield even more biased estimates with poorer coverage than MSPLE.
Results of lasso and oracle estimates are also provided as references, where oracle estimates
are obtained from the reduced model that only contains truly nonzero coefficients.

Intuitively, γ should be chosen near zero, resulting in a de-biased estimator with esti-
mates of large coefficients close to oracle estimates. We do not recommend evaluating cross-
validation criteria by plugging in the de-biased estimates because of accumulative estimation
errors. We opt for a hard-thresholding approach that more effectively removes noise from the
de-biased estimates: we retain the de-biased lasso estimate for β0j only if the null hypothesis
β0j = 0 is rejected; otherwise, we set it to zero (shown in Algorithm 1). The set Â in Step 2.2
of Algorithm 1 is expected to estimate well the set of truly associated variables. Specifically,
we set Â to be the index set of variables whose Wald statistic

√
N |̂bj |/Θ̂1/2

jj > zα/(2p), where
zα/(2p) is the upper {α/(2p)}-th quantile of the standard normal distribution. The cutoff is
determined by Theorem 3.1 and Bonferroni correction for multiple testing. When implement-
ing cross-validation, we can either take stratum as the sampling unit and randomly split strata,
or randomly split observations within each stratum, to form training and testing subsets. We
find the former improves stability of tuning parameter selection when there are a number of
small-sized strata.
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Algorithm 1 Selection of the tuning parameter γ using cross-validation

Step 1 Pre-determine a grid of points for γ in [0,1], denoted as γ(g), g = 1, · · · ,G, and set each cvg = 0.
Step 2 Randomly assign the K strata into M folds, leaving one fold for testing and the others for training. Set
q = 1.
Step 2.1 While q ≤ M , use the qth training set to compute the de-biased lasso estimator with γ(g), g =

1, · · · ,G, denoted as b̂(gq), and define the active set Â(gq).

Step 2.2 Define the thresholded de-biased lasso estimator b̂(gq)thres = b̂(gq) · 1(j ∈ Â(gq)), i.e. setting compo-

nents of b̂(gq)outside the active set Â(gq) to 0.
Step 2.3 Compute the negative log partial likelihood on the qth testing set `(q)(̂b(gq)thres).

Step 2.4 Set cvg ← cvg +N(q)`(q)(̂b
(gq)
thres), for g = 1, · · · ,G, where N(q) is the total number of observa-

tions in the qth testing set.
Step 2.5 Set q← q+ 1 and go to Step 2.1.

Step 3 Let ĝ = argming cvg . The final output tuning parameter value is γ(ĝ).

3. Valid statistical inference based on the de-biased lasso estimator. This section
presents asymptotic results, which lay the groundwork for using the de-biased lasso estimator
described in Section 2 to infer on the risk factors of graft failure in the SRTR analysis. The
pertaining large sample framework posits that the number of strata K is fixed, the smallest
stratum size nmin = min1≤k≤K nk→∞, and nk/N → rk > 0 as nmin→∞, k = 1, · · · ,K .
This framework conforms to the real world setting of our concern, where the number of
transplant centers nationwide is finite, and the number of patients or transplant events in
each center increases over the years. We provide regularity conditions and their discussion in
Appendix B, and present all the proofs in the Supplementary Material.

Let µrk(t;β) = E[1(Yk1 ≥ t)X⊗rk1 exp{XT
k1β}] be the limit of µ̂rk(t;β), r = 0,1,2, k =

1, · · · ,K . Then the limit of the weighted covariate process for η̂k(t;β) = µ̂1k(t;β)/µ̂0k(t;β)
becomes ηk0(t;β) = µ1k(t;β)/µ0k(t;β). Let

Σβ0,k =E[{Xki − ηk0(Yki;β0)}⊗2δki]

be the information matrix for the k-th stratum, k = 1, · · · ,K . The overall information ma-
trix across all strata then becomes the weighted average of the stratum-specific information
matrices,

(3.1) Σβ0 =

K∑
k=1

rkΣβ0,k.

The inverse information matrix is Θβ0 = Σ−1β0 , which is to be approximated by Θ̂ obtained in
Section 2.1.

The following theorem establishes the asymptotic normality of any linear combination of
the estimated regression parameters, cT b̂ for some loading vector c ∈ Rp, obtained by the
proposed DBL-QP method. For an m × r matrix A = (aij), define the `1-induced matrix
norm ‖A‖1,1 = max1≤j≤r

∑m
i=1 |aij |. For two positive sequences {an} and {bn}, we write

an � bn if there exist two constants C and C ′ such that 0<C ≤ an/bn ≤C ′ <∞. Let s0 be
the number of nonzero elements of β0.

THEOREM 3.1. Assume that the tuning parameters λ and γ satisfy λ�
√

log(p)/nmin
and γ � ‖Θβ0‖1,1{max1≤k≤K |nk/N − rk|+ s0λ}, and that ‖Θβ0‖21,1{max1≤k≤K |nk/N −
rk| + s0λ}p

√
log(p)→ 0 as nmin →∞. Under Assumptions B.1–B.5 given in Appendix

B, for any c ∈ Rp such that ‖c‖2 = 1, ‖c‖1 ≤ a∗ with a∗ <∞ being an absolute positive
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constant, and {cTΘβ0c}−1 =O(1), we have
√
NcT (̂b− β0)
(cT Θ̂c)1/2

D→N (0,1).

Note that, instead of listing it as a regularity condition in Appendix B, we assume
{cTΘβ0c}−1 =O(1) in the above theorem because the vector c is also defined here. A sim-
ilar condition is assumed in van de Geer et al. (2014) [Theorem 3.3 (vi)] which is weaker
than uniformly bounding the maximum eigenvalue of Σβ0 . The hypothesis testing with
H0 : cTβ0 − a0 = 0 versus H1 : cTβ0 − a0 6= 0 for some constants c ∈ Rp and a0 entails
various applications. For example, by setting a0 = 0 and c to be a basis vector with only
one element being 1 and all the others 0, we can draw inference on any covariate in the
presence of all the other covariates. In particular, we will draw inference on the pairwise
differences in graft failure risk among donor age groups, e.g. between (10,20] and (20,30]
(the reference level) years old, and among patients with different primary kidney diagnoses
(diabetes is the reference level); see Section 5. Given an appropriately chosen c and with
T =
√
N(cT b̂− a0)/(cT Θ̂c)1/2, we construct a two-sided test function

φ(T ) =

{
1 if |T |> zα/2
0 if |T | ≤ zα/2

,

where zα/2 is the upper (α/2)-th quantile of the standard normal distribution. Corollary 3.2
provides the asymptotic type I error and power of the test φ(T ), and Corollary 3.3 formalizes
the construction of level α confidence intervals for cTβ0 which ensures the nominal coverage
probability asymptotically.

COROLLARY 3.2. Under the conditions specified in Theorem 3.1, P (φ(T ) = 1|H0)→ α
as nmin→∞. Moreover, under H1 : a0 − cTβ0 6= 0, P (φ(T ) = 1|H1)→ 1.

COROLLARY 3.3. Suppose that the conditions in Theorem 3.1 hold. Construct the
random confidence interval R(α) =

[
cT b̂− zα/2(cT Θ̂c/N)1/2, cT b̂+ zα/2(c

T Θ̂c/N)1/2
]
.

Then P (cTβ0 ∈R(α))→ 1−α as nmin→∞, where the probability is taken under the true
β0.

Our asymptotic results facilitate simultaneous inference on multiple contrasts in the
context of post-transplant renal graft failure. For example, an important question to ad-
dress is whether donor age is associated with graft failure. With categorized donor
age in our data analysis, simultaneous comparisons among the seven categories, e.g.
≤ 10, (10,20], (20,30], (30,40], (40,50], (50,60] and 60+, naturally form multiple null con-
trasts. These contrasts can be formulated by Jβ0, where J is an m× p matrix, and m rep-
resents the number of linear combinations or contrasts. The following theorem and corollary
summarize the results for inference on multiple contrasts, Jβ0. See an application of the
asymptotic results to the SRTR data with (m,p) = (6,94) in Section 5.

THEOREM 3.4. Suppose that J is an m× p matrix with rank(J) =m, ‖J‖∞,∞ =O(1)
and JΘβ0JT → F , where F is a nonrandom m×m positive definite matrix. Assume that the
tuning parameters λ and γ satisfy λ�

√
log(p)/nmin and γ � ‖Θβ0‖1,1{max1≤k≤K |nk/N−

rk|+s0λ}, and that ‖Θβ0‖21,1{max1≤k≤K |nk/N−rk|+s0λ}p
√

log(p)→ 0 as nmin→∞.
Under Assumptions B.1–B.3, B.5 and B.6 given in Appendix B, we have

√
NJ (̂b− β0) D→Nm(0, F ).
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Here, ‖A‖∞,∞ = max1≤i≤m
∑r

j=1 |aij | is the `∞-induced matrix norm for an m× r ma-
trix A = (aij). The theorem implies the following corollary, which constructs test statistics
and multi-dimensional confidence regions with proper asymptotic type I error rates and nom-
inal coverage probabilities.

COROLLARY 3.5. Suppose the conditions in Theorem 3.4 hold. For an m× p matrix J
as specified in Theorem 3.4, and under H0 : Jβ0 = a0 ∈Rm,

T ′ =N(Jb̂− a0)T F̂−1(Jb̂− a0) D→ χ2
m,

where F̂ = JΘ̂JT . Moreover, for an α ∈ (0,1), define the random set R′(α) = {a ∈ Rm :

N(Jb̂ − a)T F̂−1(Jb̂ − a) < χ2
m,α}, where χ2

m,α is the upper α-th quantile of χ2
m. Then

P (Jβ0 ∈R′(α))→ 1− α as nmin→∞, where the probability is taken under the true β0.

4. Simulation study. We conduct simulations to examine the finite sample performance
of the proposed DBL-QP approach in correcting estimation biases and maintaining nominal
coverage probabilities of confidence intervals. For comparisons, we also perform MSPLE,
the oracle estimation, and the three inference methods [“Nodewise” for Kong et al. (2021),
“CLIME” for Yu, Bradic and Samworth (2021), and “Decor” for Fang, Ning and Liu
(2017)] that are adapted to stratified Cox models. The following scenarios pertain to four
combinations of (K,nk, p), where K,nk and p are the number of strata, stratum-specific
sample size and the number of covariates, respectively. Specifically, Scenarios 1–3 refer
to (K,nk, p) = (10,100,10), (10,100,100), and (5,200,100), respectively. In Scenario 4,
K = 40, p = 100, nk’s are simulated from a Poisson distribution with mean 40 and then
fixed in all of the replications. This scenario mimics the situation of the recipient group aged
over 60, the smallest group in the SRTR data.

CovariatesXki are simulated fromNp(0,Σx) and truncated at±3, where Σx has an AR(1)
structure with the (i, j)-th entry being 0.5|i−j|. The true regression parameters β0 are sparse.
Its first element β01 varies from 0 to 2 by an increment of 0.2, four additional elements are
assigned values of 1, 1, 0.3 and 0.3 with their positions randomly generated and then fixed for
all of the simulations, and all other elements are zero. The underlying survival times Tki are
simulated from an exponential distribution with hazard λ(t|Xki) = λ0k exp{XT

kiβ
0}, where

λ0k are generated from Uniform(0.5,1) and then fixed throughout. As in Fang, Ning and Liu
(2017) and Fan and Li (2002), the censoring times Cki’s are simulated independently from an
exponential distribution with hazard λc(t|Xki) = 0.2λ0k exp{XT

kiβ
0}, resulting in an overall

censoring rate around 20%.
For the lasso estimator, we use 5-fold within-stratum cross-validation to select λ. In Sce-

narios 1–3 with small numbers of strata, each stratum serves as a cross-validation fold for the
selection of γ; in Scenario 4 with 40 strata, we perform 10-fold cross-validation as described
in Algorithm 1 and randomly assign 4 strata to each fold. For each parameter configuration,
we simulate 100 datasets, based on which we compare estimation biases of β01 , 95% con-
fidence interval coverage probabilities, model-based standard errors, and empirical standard
errors across the six methods.
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Figure 2 shows that, in Scenario 1 that features a small number of covariates (p = 10),
all six methods perform well and similarly; in Scenarios 2–4 with a relatively large number
of covariates (p = 100), which is close to the number of covariates in the real data we will
analyze, our proposed DBL-QP estimator well corrects the biases of the lasso estimates and
maintains good confidence interval coverage (excluding the practically impossible “Oracle”
estimator), but MSPLE, Nodewise, Decor and CLIME all present larger biases compared to
DBL-QP as β01 increases from 0 to 2. CLIME, Nodewise and MSPLE have worse confidence
interval coverage in general. As de-biased lasso methods, CLIME and Nodewise produce
much smaller model-based standard error estimates, which also contribute to their poor co-
varage probabilities. This is likely due to that both methods (CLIME and Nodewise) use pe-
nalized estimators for inverse information matrix estimation, and such penalization induces
biases towards zero.

To recapitulate, the proposed DBL-QP provides less biased estimates and better confi-
dence interval coverage than the conventional MSPLE and three other competitors (Node-
wise, Decor and CLIME adapted to the stratified setup) when the sample size is moderate
relative to the number of covariates, although all methods give almost identical results when
p is rather small. Hence, when p <N , our proposed DBL-QP approach is at least as good as
all the other methods, and should be recommended for use.

5. Analysis of the SRTR kidney transplant data. The SRTR data set features 94 co-
variates from both donors and recipients, and the number of covariates is seen as relatively
large for some recipient groups. With its reliable performance as demonstrated in simula-
tions, we apply our DBL-QP approach to analyze the SRTR data, while using MSPLE as a
benchmark. The outcome is graft failure free survival, the time from transplant to graft failure
or death, whichever comes first. Our primary goal is to investigate the joint associations of
these covariates with graft failure for three recipient groups defined in Table 1 separately. By
simultaneously considering all available donor and recipient covariates, we aim to account
for confounding and provide asymptotically valid inference for the covariate effects, which
differs from post hoc inference that only focuses on a smaller set of covariates selected by
stepwise selection. The effect of donor age, in the presence of other risk factors, is worth
investigating, as the debatable “one-size-fit-all” practice of donor-recipient age matching un-
fortunately is not suited for the benefit of transplantation (Keith et al., 2004; Veroux et al.,
2012; Dayoub et al., 2018).

5.1. Data details. Included in our analysis are 9,195 recipients who received kidney-
only transplants from deceased donors, had no prior solid organ transplants, and were at
least 18 years old at the time of transplantation during 2000 and 2001. We focus on those
with these same cohort years in order to eliminate the cohort effect. Moreover, this group of
patients had longer follow-up than those from the later cohort years. See Appendix A for a
full list of included variables in the analysis. In the three receipts’ age groups, respectively, the
sample sizes are 3388, 4359 and 1448, the censoring rates are 53.1%, 46.5% and 30.0%, the
median numbers of patients within each transplant center are 32, 31 and 27, and the restricted
mean survival times by 13 years are 9.1, 8.6 and 7.1 years. To select the tuning parameters,
we implement 5-fold cross-validation by randomly selecting one fifth of transplant centers
without replacement as testing data and the rest as training data.

5.2. Results. We begin with examining the overall effect of donors’ age on graft failure
and testing the null hypothesis that, within each recipient group and after adjusting for the
other risk factors, all the donor age groups, i.e.≤ 10, (10,20], (20,30], (30,40], (40,50], (50,60]
and 60+, have the same risk of graft failure. Based on Theorem 3.4 and Corollary 3.5,
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FIG 3. Estimated hazard ratios and the corresponding 95% confidence intervals of different donor age categories
with reference to the (20,30] donor age category, after adjusting for all other variables, in three recipient groups.

with (m,p) = (6,94), we perform tests for the null contrasts, and the obtained statistics
significantly reject the null hypotheses for all three recipient groups (within recipients aged
18-45: χ2 = 40.4, df=6, p-value=3.9 × 10−7; recipients aged 45-60: χ2 = 34.5, df=6, p-
value=5.3× 10−6; recipients aged over 60: χ2 = 14.2, df=6, p-value=2.8× 10−2). Indeed,
Figure 3, which depicts the risk-adjusted effect of donors’ age across the three recipient age
groups, shows a general trend of increasing hazards for those receiving kidneys from older
donors, likely due to renal aging. The estimates and confidence intervals obtained by our
proposed DBL-QP differ from those obtained by MSPLE, and the differences are the most
obvious in the 60+ year recipient group, which has the smallest sample size. As presented in
our simulations, MSPLE may produce biased estimates with improper confidence intervals,
especially when the sample size is relatively small.

On the other hand, the proposed DBL-QP method may shed new light into the aging ef-
fect, which seems to be non-linear with respect to donors’ age. First, using the results of
Theorem 3.1 and Corollary 3.3, our tests detect no significant differences in hazards be-
tween those receiving kidneys from donors aged under 10 or (10,20] and (20,30] (reference
level) years old, within all the three recipient age groups. Second, significantly increased
hazards are observed as early as when donors’ age reached 30-40, as compared to the ref-
erence level of (20,30], in the 18-45 years old recipient group, with an estimated hazard
ratio (HR) of 1.16 (95% CI: 1.01–1.34, p-value=4.1× 10−2). In contrast, there are no sig-
nificant differences between receiving organs from (30,40] years old donors and the refer-
ence level of (20,30], among the 45-60 years old recipients (HR= 0.96, 95% CI: 0.85–1.09,
p-value=5.1 × 10−1) and the 60+ years old recipients (HR=1.07, 95% CI: 0.88–1.30, p-
value=5.0 × 10−1). Third, kidneys from 60+ years old donors confer the highest hazards,
with the estimated risk-adjusted HRs (compared to the reference level (20,30]) being 1.83
(95% CI: 1.48–2.28, p-value=4.3 × 10−8), 1.40 (95% CI: 1.21–1.61, p-value=4.1 × 10−6)
and 1.37 (95% CI: 1.14–1.63, p-value=5.2 × 10−4) among the three recipient age groups
respectively. This means that, compared to the older recipients, recipients of 18-45 years old
tend to experience a greater hazard of graft failure when receiving kidneys from donors over
60 years old. Caution needs to be exercised when allocating kidneys from older donors to
young patients (Lim et al., 2010; Kaboré et al., 2017; Dayoub et al., 2018).

Our method also delineates the associations of clinical indicators with graft failure, pro-
vides more reliable inference, and compares the relative strengths across recipient age groups.
By naively applying lasso, 64, 44 and 27 covariates are selected with non-zero coefficients
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in the 18-45, 45-60, and 60+ years old recipient groups, respectively. In contrast, the pro-
posed DBL-QP identifies 22, 22 and 14 significant covariates in these three recipient groups,
respectively, from rigorous hypothesis tests with size 0.05 based on the asymptotic distribu-
tion. Figure 4 shows the estimated coefficients and their 95% confidence intervals for co-
variates that are significant at level 0.05 in at least one recipient group. We highlight several
noteworthy results.

First, recipients’ primary kidney diagnosis plays a critical role in kidney graft failure
(Wolfe, 1991). Compared to recipients with primary diagnosis of diabetes (the reference
level), those with polycystic kidneys (variable 2 in Figure 4) have a reduced risk of graft fail-
ure, with highly significant lower HRs of 0.54 (95% CI: 0.42–0.70, p-value=3.6×10−6), 0.65
(95% CI: 0.57–0.75, p-value=4.4×10−9) and 0.74 (95% CI: 0.60–0.92, p-value=5.3×10−3)
for the three age groups respectively. Compared to diabetes, primary diagnosis of glomeru-
lar disease (variable 26 in Figure 4) is significantly associated with a reduced risk of
graft failure only in the 60+ years old recipient group (HR=0.79, 95% CI: 0.66–0.96, p-
value=1.4 × 10−2), and primary diagnosis of hypertensive nephrosclerosis (variable 29 in
Figure 4) is significantly associated with a higher hazard of graft failure only in the 45-60
years old recipient group (HR=1.12, 95% CI: 1.01–1.23, p-value=2.5× 10−2).

Second, since diabetes is the most prevalent among end-stage renal patients (Kovesdy, Park
and Kalantar-Zadeh, 2010), we code recipients’ diabetic status at transplant as non-diabetic
(reference level), diabetic for 0-20 years (variable 13 in Figure 4), and 20+ years (variable 3
in Figure 4). Our stratified analysis reveals that diabetics is a stronger risk factor for young
recipients aged between 18 and 45 years old than for older recipients, regardless of duration
of diabetes.

Third, instead of using the total number of mismatches as done in the literature, we con-
sider the number of mismatches separately for each HLA locus for more precisely pinpointing
the effects of mismatching loci. Our results reveal that the HLA-DR mismatches (variable 9
in Figure 4) are more strongly associated with graft failure than the HLA-A (variable 18 in
Figure 4) and HLA-B mismatches (non-significant in any recipient group), which are consis-
tent with a meta-analysis based on 500,000 recipients (Shi et al., 2018).

Finally, to study the granular impact of recipient age on graft failure (Karim et al., 2014),
we treat recipient age (divided by 10) as a continuous variable (variable 4 in Figure 4) in the
model within each recipient age group. Interestingly, we find that increasing age is associated
with a higher hazard in the two older recipient groups (HR=1.31, 95% CI: 1.19–1.44, p-
value=1.3× 10−8, for recipients aged 45-60; HR=1.22, 95% CI: 1.07–1.40, p-value=3.6×
10−3, for recipients aged 60+), but with a lower hazard of graft failure in the 18-45 recipient
age group (HR=0.89, 95% CI: 0.83–0.95, p-value=5.2× 10−4). This is likely because that
younger patients generally had poorer adherence to treatment, resulting in higher risks of
graft loss (Kaboré et al., 2017). The results also reinforce the necessity of separating analyses
for different recipient age groups.

As a side note, we compare DBL-QP and MSPLE in the estimated coefficients and stan-
dard errors. Figure 5 shows that in the 45-60 age group with the largest number of subjects,
the point estimates obtained by the two methods almost coincide with each other, whereas
in the 60+ age group with the smallest sample size, MSPLE tends to have larger absolute
estimates than the de-biased lasso. Moreover, the standard errors estimated by MSPLE are
likely to be larger than those by our method across all the age groups. These observations
agree with the results of our simulations (Scenarios 2–4), which show that MSPLE yields
large biases in estimated coefficients and standard errors, especially when the sample size
is relatively small, whereas our proposed DBL-QP method draws more valid inferences by
maintaining proper type I errors and coverage probabilities.
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FIG 4. Estimated regression coefficients in the stratified Cox models using the proposed DBL-QP method, and the
corresponding 95% confidence intervals, presented by recipient age group. The covariates included are significant
at level 0.05 in at least one recipient group, after adjusting for all other covariates.

6. Concluding remarks. The work is motivated by an urgent call of better understand-
ing the complex mechanisms behind post-kidney transplant graft failure. Our modeling
framework is Cox models stratified by transplant centers, due to their strong confounding
effects on graft failure. To adjust for confounders to the extent possible, we have included
an extended list of 94 covariates from recipients and donors, which has not been done in
the literature. A particular scientific question to address is the debatable donor-recipient age
matching criterion in kidney transplantation. Fitting separate models by recipient age enables
direct assessments of the donor age effects in different recipient age groups, which differs
from using donor-recipient age difference as in Ferrari et al. (2011). Specifically, we have
followed a common practice of fitting separate models in age groups of 18-45, 45-60 and
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FIG 5. Comparison between the coefficient estimates (top) and the model-based standard errors (bottom) by the
de-biased lasso (DBL-QP) and the maximum stratified partial likelihood estimation (MSPLE) in three recipient
age groups. The solid and the dashed lines are 45-degree and zero-value reference lines, respectively; and the
dotted lines represent the fitted linear regression of the DBL-QP estimates on the MSPLE estimates.

60+ years. The commonly used MSPLE yielded biased estimates and unreliable inference
in some smaller age groups, though the samples outnumbered the covariates. In particular,
the 60+ years recipient group had only 1448 recipients in 43 different transplant centers,
and MSPLE yielded more dramatic estimates for those donor age effects of over 30 years old
(Figure 3). Our simulation results also confirmed such a problematic phenomenon. Therefore,
a statistical method that can guarantee reliable estimates and valid inference is much needed
for delineating the associations of interest with graft failure when the number of covariates is
relatively large in stratified Cox models.

Inspired by the de-biased lasso method for linear regression (Javanmard and Montanari,
2014), we have developed a de-biased lasso approach via quadratic programming for strat-
ified Cox models. Despite progress made in high-dimensional inference for Cox models,
virtually no work has considered stratified settings, theoretically or empirically. We have
shown that in the “large N , diverging p” scenario, our approach possesses desirable asymp-
totic properties and finite-sample performance, and is more suitable for the analysis of the
SRTR data than the competing methods illustrated in our simulation studies. Computation-
ally, based on a previous work on Cox models without stratification (Xia, Nan and Li, 2022),
for the estimation of Θβ0 , the computational speed using solve.QP in R was much faster
than that using the R packages clime or flare adopted by Yu, Bradic and Samworth
(2021).

Applications of our method to the SRTR data generated new biological findings. After
categorizing donors’ age and controlling for other risk factors listed in Appendix A, we find
that organs from older donors are associated with an increased hazard of graft failure and
that the dependence on donors’ age is non-linear: within the youngest recipient group (18-
45 years), significant differences from the reference donor age category (20-30 years) were
detected as early as when donors reached 30-40 years old, whereas significant differences
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were detected only when donors reached 50-60 or 60+ years within the two older recipient
groups, respectively; in other words, receiving kidneys from older or younger donors, such as
60+ versus 20-30 years, presented larger differences than in the other two recipient groups.
These results, which were not reported in the literature, may provide new empirical evidence
to aid stake-holders, such as patients, families, physicians and policy makers, in decisions on
donor-recipient age matching.

A few technical points are noteworthy. First, our work deals with the “large N , diverg-
ing p” scenario, as embedded in the motivating data, and approximates Θβ0 via quadratic
programming without positing any sparsity conditions on Θβ0 . This distinguishes from the
related literature (Fang, Ning and Liu, 2017; Yu, Bradic and Samworth, 2021; Kong et al.,
2021) in the “large p, small N” scenario that relies upon sparsity conditions on the num-
bers of non-zero elements in the rows of Θβ0 , which are hardly discussed in depth and may
not hold nor have explicit interpretations for Cox models. For example, when the rows of
Θβ0 are not sparse, our dimension requirement for p is less stringent than in Yu, Bradic and
Samworth (2021), by a factor of

√
log(Np). Moreover, when p > N , the several de-biased

methods aforementioned may not yield reliable inference results, as empirically Θβ0 cannot
be estimated well, and biases in the lasso estimator are often not sufficiently corrected for in
this scenario for Cox models. New approaches, such as sample-splitting approaches (Fei and
Li, 2021) that bypass the estimation of Θβ0 , can be consulted.

Second, tuning parameter selection is critical in high-dimensional inference. Our proposed
method deploys a single tuning parameter γ for de-biasing the estimates of all βj’s. This is
a computationally feasible and commonly adopted strategy, presenting a satisfactory perfor-
mance in our numerical studies, and can be extended to adapt to the variability of individual
coefficient estimation. For example, one may consider the following estimation procedure for
the jth row of Θ̂ along the line of adaptive CLIME (Cai, Liu and Zhou, 2016):

min
m
{mT Σ̂m : |(Σ̂m− ej)k| ≤ γjk, k = 1, . . . , p}.

Here, γjk’s are supposed to be adaptively estimated through a carefully designed procedure.
However, the design of such an appropriate procedure requires complicated theoretical anal-
ysis in Cox models, unstratified or stratified, to determine the desirable rates of γjk’s, among
other tasks. Given that such complexity is beyond the scope of this paper, we will not pursue
this route here in details but will leave it for future research.

Third, though primarily focusing on the associations between the risk factors and survival
(through Theorem 3.1), the proposed method can be used for patient risk scoring and condi-
tional survival probability estimation. For example, the de-biased estimates may be plugged
into the Breslow’s estimator (Kalbfleisch and Prentice, 2002) for stratum-specific baseline
hazards. The conditional survival probability estimation may not go beyond the time point τ
due to censoring.

Lastly, we use Cox models stratified by transplant centers to account for but avoid explic-
itly modeling the center effects. Alternatively, random effects models can be used for clus-
tered survival data analysis; for example, Vaida and Xu (2000) generalized the usual frailty
model to allow multivariate random effects. However, in a random effects model, the dis-
tribution of random effects needs to be specified, and the coefficients only have conditional
interpretations, given a cluster. We may pursue this elsewhere.

We have implemented the proposed DBL-QP method with cross-validation in R and Rcpp,
which is available both in the Supplementary Material and online at https://github.com/luxia-
bios/StratifiedCoxInference/ with simulated examples.

https://github.com/luxia-bios/StratifiedCoxInference/
https://github.com/luxia-bios/StratifiedCoxInference/
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APPENDIX A: SRTR DATA

The SRTR dataset analyzed in this article can be accessed by applying through the OPTN
website https://optn.transplant.hrsa.gov. The interpretation and reporting of the SRTR data
results are solely the responsibility of the authors and should not be viewed as official opin-
ions of the SRTR or the United States Government.

The 94 covariates, including dummy variables, are derived from the following factors.
Donor factors include: ABO blood type, age, cytomegalovirus antibody, hepatitis C virus an-
tibody, cause of death, cardiac arrest since event leading to declaration of death, serum creati-
nine, medication given to donor (DDAVP, dopamine and dobutamine), gender, height, history
of cancer, cigarette smoking, history of drug abuse, hypertension, diabetes, inotropic support,
inotropic agents at time of incision, non-heart beating donor, local or shared organ transplant,
race, and weight. Recipient factors include: ABO blood type, history of diabetes and dura-
tion, angina/coronary artery disease, symptomatic peripheral vascular disease, drug treated
systemic hypertension, drug treated COPD, gender (and previous pregnancies for females),
sensitization (whether peak and/or current panel-reactive antibodies exceed 20%), previous
malignancy, peptic ulcer disease, symptomatic cerebrovascular disease, race, total serum al-
bumin, age at transplant, number of HLA mismatches (A, B and DR), cytomegalovirus status,
total cold ischemic time, primary kidney diagnoses, pre-transplant dialysis and duration, the
Epstein–Barr virus serology status, employment status, hepatitis B virus status, hepatitis C
virus status, height, pre-implantation kidney biopsy, pre-transplant blood transfusions, trans-
plant procedure type, warm ischemic time and weight.

APPENDIX B: REGULARITY CONDITIONS

Assumptions B.1–B.5 below ensure that Theorem 3.1 hold.

ASSUMPTION B.1. Covariates are almost surely uniformly bounded, i.e. ‖Xki‖∞ ≤M
for some positive constant M <∞ for all k and i.

ASSUMPTION B.2. |XT
kiβ

0| ≤M1 uniformly for all k and i with some positive constant
M1 <∞ almost surely.

ASSUMPTION B.3. The follow-up time stops at a finite time point τ > 0, with probability
π0 = mink P (Yki ≥ τ)> 0.

ASSUMPTION B.4. For any t ∈ [0, τ ],

cTΘβ0

cTΘβ0c

[
K∑
k=1

rk

∫ t

0

{
µ2k(u;β0)− µ1k(u;β0)µ1k(u;β0)T

µ0k(u;β0)

}
λ0k(u)du

]
Θβ0c→ v(t; c)

as n→∞ for some function v(t; c)> 0 of t that also depends on the choice of c.

ASSUMPTION B.5. There exists a constant ε0 > 0 such that λmin(Σβ0) ≥ ε0, where
λmin(·) is the smallest eigenvalue of a matrix.

For inference on multiple linear combinations or contrasts as described in Theorem 3.4,
Assumption B.4 needs to be replaced with the following Assumption B.6, which is a multi-
variate version of Assumption B.4.

https://optn.transplant.hrsa.gov
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ASSUMPTION B.6. For any ω ∈Rm and any t ∈ [0, τ ],

ωTJΘβ0

ωTJΘβ0JTω

[
K∑
k=1

rk

∫ t

0

{
µ2k(u;β0)− µ1k(u;β0)µ1k(u;β0)T

µ0k(u;β0)

}
dΛ0k(u)

]
Θβ0JTω

converges to v′(t;ω,J) as n→∞, for some function v′(t;ω,J)> 0 of t, that also depends
on the choice of ω and J .

It is common in the literature of high-dimensional inference to assume bounded covariates
as in Assumption B.1. Fang, Ning and Liu (2017) and Kong et al. (2021) also posed Assump-
tion B.2 for Cox models, i.e. uniform boundedness on the multiplicative hazard. Under As-
sumption B.1, Assumption B.2 can be implied by the bounded overall signal strength ‖β0‖1.
Assumption B.3 is a common assumption in survival analysis (Andersen and Gill, 1982).
Assumption B.4 and its multivariate version, Assumption B.6, ensure the convergence of the
variation process, which is key in applying the martingale central limit theorem. They are
less stringent comparing to the boundedness assumption on ‖Θβ0Xki‖∞ that is equivalent
to the assumptions for statistical inference in van de Geer et al. (2014) on high-dimensional
generalized linear models and in Fang, Ning and Liu (2017) on high-dimensional Cox mod-
els. The boundedness of the smallest eigenvalue of Σβ0 in Assumption B.5 is common in
inference for high-dimensional models (van de Geer et al., 2014; Kong et al., 2021). Since
we focus on random designs, unlike Huang et al. (2013), Yu, Bradic and Samworth (2021)
and Fang, Ning and Liu (2017), we do not directly assume the compatibility condition on
῭(β0); instead, we impose Assumption B.5 on the population-level matrix Σβ0 , which leads
to the compatibility condition for a given data set with probability going to one.
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SUPPLEMENTARY MATERIAL

Supplement to “De-biased lasso for stratified Cox models with application to the na-
tional kidney transplant data”
The Supplementary Material includes technical lemmas and proofs of Theorems 3.1 and 3.4.

R code for “De-biased lasso for stratified Cox models with application to the national
kidney transplant data”
The R code document includes the implementation of the proposed de-biased lasso method
via quadratic programming with simulated examples, and introduction to the main functions.
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