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Summary: Analyzing the national transplant database, which contains about 300,000 kidney

transplant patients treated in over 290 transplant centers, may guide the disease management, and

inform the policy of kidney transplantation. Cox models stratified by centers provide a convenient

means to account for the clustered data structure, while studying more than 160 predictors with

effects that may vary over time. As fitting a time-varying effect model with such a large sample size

may defy any existing software, we propose a block-wise steepest ascent procedure by leveraging the

block structure of parameters inherent from the basis expansions for each coefficient function. The

algorithm iteratively updates the optimal block-wise search direction, along which the increment of

the partial likelihood is maximized. The proposed method can be interpreted from the perspective

of the Minorization-Maximization algorithm and increases the partial likelihood until convergence.

We further propose a Wald statistic to test whether the effects are indeed time varying. We evaluate

the utility of the proposed method via simulations. Finally, we apply the method to analyze the

national kidney transplant data and detect the time-varying nature of the effects of various risk

factors.

Key words: Kidney transplant; Steepest ascent; Stratified model; Survival analysis; Time-varying

effects.
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1. Introduction

End-stage renal disease (ESRD) is one of the most deadly and costly diseases in the United

States (Saran et al., 2018), and kidney transplantation is the most preferred treatment (Wolfe

et al., 1999). Despite much effort to improve survival, the mortality of kidney transplant

recipients is still thrice higher than that of the general population. Identifying risk factors

associated with post-transplant mortality is pivotal in prolonging the survival of transplant

patients and optimizing organ allocations (Snyder et al., 2016). The widely used proportional

hazards model (Cox, 1972) assumes that the effects of covariates are constant over time,

which is often violated. For example, contrary to the common belief that obesity is a risk

factor for mortality, Kalantar (2005) and Dekker et al. (2008) showed obesity has a short-term

protective effect, but is a risk factor in the long run. Models that feature time-varying effects

provide valuable clinical information. The national kidney transplant data, obtained from

the U.S. Organ Procurement and Transplantation Network (OPTN), contains more than 160

predictors for over 300,000 patients who underwent transplantation between 1988 and 2012.

Analyzing this dataset may guide the disease management and inform the transplantation

policy. Existing statistical methods (Hastie and Tibshirani, 1993) that perform well for

moderate sample sizes and small-dimensional data do not scale to this data because of the

large size of the involved at-risk sets (He et al., 2017a). Of special interest is how time-varying

effect models can be extended to accommodate large-scale time-to-event data.

Another important aspect of our motivating example is that patients came from multiple

transplant centers. In the absence of adjustment for center effects, the estimation of covariate

effects may be biased due to uncontrolled confounding by centers (Pan, 2002; Kalbfleisch and

Wolfe, 2013; He and Schaubel, 2015). One could estimate the center effects through frailty

models (He et al., 2017b). However, the commonly frailty approach assumes that the center

effects are constant over time, which is often violated (He and Schaubel, 2014, 2015) and
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much work is needed to implement time-varying frailty models that can be applicable to the

national kidney transplant database. We propose to adopt a stratified model with stratum-

specific baseline hazards, which avoids modeling the center effects explicitly and simplifies

the computation of the partial likelihood by downsizing the at-risk sets.

Methods have been proposed for relative risk models with time-varying effects: Zucker and

Karr (1990) conducted a nonparametric estimation of the time-varying effects; a specialized

algorithm for this problem was provided by Hastie and Tibshirani (1993); Gray (1992, 1994)

proposed using fixed knots spline functions. He et al. (2017a) implemented a quasi-Newton

algorithm; He et al. (2017b) further considered a frailty model with time-varying effects.

Kernel-based partial likelihood approaches have also been developed (Tian et al., 2005).

Some recent studies (Honda and Härdle, 2014; Yan and Huang, 2012) have proposed variable

selection of time-varying effects using penalized methods such as adaptive lasso (Zou, 2006;

Zhang and Lu, 2006). Xiao et al. (2016) combined the ideas of local polynomial smoothing

and group non-negative garrote to achieve these goals. Alternatively, Hofner et al. (2013)

proposed a component-wise likelihood boosting algorithm for survival data that permits the

inclusion of both parametric and nonparametric time-varying effects.

These methods may not be applicable to studies with large sample sizes or many covariates.

When implementing them, datasets are usually expanded in a repeated measurement format,

where the time is divided into small intervals which contain a distinctive event. The covariate

values and outcomes for all at-risk subjects at each interval are stacked to form a working

dataset, which becomes infeasible for a large sample size. As a remedy, a routine based on

the Kronecker product has been suggested (Perperoglou et al., 2006). Even with this tool, for

large-scale kidney transplant data, existing methods easily overwhelm powerful computers.

Moreover, time-varying effects are often represented by basis expansions using B-splines.

The parameter vector, consisting of coefficients of the bases, possesses a block structure,
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of which the dimension increases quickly as the number of predictors grows. This leads to

unstable estimates for the commonly used Newton (Perperoglou et al., 2006) and quasi-

Newton (He et al., 2017a) methods. To see this, we conducted a simulation (Setting B of

Section 4) to assess the biases of the Newton approach, gradient ascent, and stochastic

gradient ascent implemented by adaptive moment estimation (ADAM) (Diederik et al.,

2015); see Figure 1. Alternative stochastic gradient approaches such as Annealing (Robbins

and Monro, 1951), Momentum (Qian, 1999), Adagrad (Duchi et al., 2011) and Adadelta

(Zeiler, 2012) were also conducted; their performances were worse than ADAM and not

shown. The Newton approach introduces large biases, and Gradient-based methods are

less efficient by overlooking Hessian matrices. The issue becomes more exacerbated for the

analysis of the kidney transplant database, wherein many comorbidities have rare frequencies.

We propose a block-wise steepest ascent (BSA) procedure for stratified time-varying effect

models, which makes the following contributions. First, BSA iteratively updates the opti-

mal block-wise search direction, avoids complicated computation of inverting the observed

information matrix and, hence, is computationally efficient for large-scale problems. Second,

BSA converts a high-dimensional optimization problem into a sequence of low-dimensional

ones. Simplicity is achieved by substituting a surrogate function that is separable for dif-

ferent blocks of parameters. Third, BSA can be interpreted from the perspective of the

Minorization-Maximization (MM) algorithm (Lange, 2012). The updated estimates ensure

the increment of likelihood. Fourth, unlike the classical gradient-based procedures, which

typically rely on a first order approximation and a large number of iterations, the proposed

BSA utilizes a block-wise second order approximation and achieves faster convergence; see

Figure 1. Finally, choosing a proper learning rate for classical gradient-based methods can be

cumbersome, whereas BSA is less sensitive to the choice of learning rates and our numerical

properties help clarify the required learning rates and their roles in various methods.
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The remainder of this article is organized as follows. We describe the proposed BSA proce-

dure and testing algorithm for time-varying effects in Section 2. Convergence properties are

considered in Section 3. Numerical properties are examined in Section 4 through simulations.

We apply BSA to analyze the national kidney transplant data in Section 5. The article

concludes with a discussion in Section 6.

2. Method

2.1 Stratified Time-Varying Effect Model

Let Dij denote the time lag from transplantation to death and Cij be the censoring time

for patient i in center j, i = 1, . . . , nj, and j = 1, . . . , J . Here nj is the sample size in

center j, and J is the number of centers. The total number of patients is N =
∑J

j=1 nj, the

observed time is Tij = min{Dij, Cij}, and the death indicator is given by δij = I(Dij 6 Cij).

Let Xij = (Xij1, . . . , XijP )T be a P -dimensional covariate vector. We assume that Dij is

independent from Cij given Xij. Consider a stratum-specific hazard function

λ(t|Xij) = λ0j(t) exp{XT
ijβ(t)},

where λ0j(t) is the baseline hazard for stratum j. To estimate the time-varying coefficients

β(t) = {β1(t), . . . , βP (t)}, we span β(·) by a set of cubic B-splines defined on a given number

of knots:

βp(t) = θT
p B(t) =

K∑
k=1

θpkBk(t), p = 1, . . . , P,

where B(t) = {B1(t), . . . , BK(t)}T forms a basis, K is the number of basis functions, and

θp = (θp1, . . . , θpK)T is a vector of coefficients with θpk being the coefficient for the k-th basis

of the p-th covariate. With a length-PK parameter vector θ = vec(Θ), the vectorization of

the coefficient matrix Θ = (θ1, . . . ,θP )T by row, the log-partial likelihood function is

`(θ) =
J∑

j=1

nj∑
i=1

δij

XT
ijΘB(Tij)− log

∑
i′∈Rij

exp{XT
i′jΘB(Tij)}


 , (1)
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where Rij = {i′ : 1 6 i′ 6 nj, Ti′j > Tij} is the at-risk set for stratum j. That θ has P

“blocks” of subvectors, i.e. θp, p = 1, . . . , P, each corresponding to a covariate, will inform

the development of our proposed block-wise steepest ascent algorithm.

2.2 Review of Newton Approach

When both N and P are moderate, maximization of (1) can be achieved by a Newton

approach, which requires computation of the gradient and Hessian matrix, given by O`(θ) =∑
j

∑
i Ψij(θ) and

O2`(θ) = −
J∑

j=1

nj∑
i=1

δijVij(Θ, Tij)⊗
{
B(Tij)B

T (Tij)
}
, (2)

respectively. Here ⊗ is the Kronecker product, and

Ψij(θ) = δij

{
Xij −

S
(1)
ij (Θ, Tij)

S
(0)
ij (Θ, Tij)

}
⊗B(Tij), (3)

where

Vij(Θ, Tij) =
S
(2)
ij (Θ, Tij)S

(0)
ij (Θ, Tij)− {S(1)

ij (Θ, Tij)}⊗2

{S(0)
ij (Θ, Tij)}2

,

S
(r)
ij (Θ, Tij) =

∑
i′∈Rij

exp{XT
i′jΘB(Tij)}X⊗ri′j ,

for r = 0, 1, 2. For a column vector v, v⊗0 = 1, v⊗1 = v and v⊗2 = vvT .

Computational burden mainly comes from two sources. First, summations across all the

risk sets are cumbersome, especially when N is large. Second, with a large P , inversions

of Hessian matrices are costly. In summary, the computation complexities of the Newton

method for the un-stratified time-varying effect model and the stratified time-varying effect

model are at the order of O(N2P 2K2 + P 3K3) and O(N2P 2K2/J + P 3K3), respectively.

Though stratified models reduce the first term by a factor of J , the Newton approach is still

numerically challenging or even impractical for large sample and high-dimensional problems.

This motivates us to propose a feasible approach that reduces the computation complexity

to an order of O(N2PK2/J + PK3); see the next section.
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2.3 Proposed Block-Wise Steepest Ascent

Given a current estimate θ̂, we consider a first-order Taylor’s expansion:

`(θ̂ + αµ) = `(θ̂) + αO`(θ̂)Tµ +
1

2
α2µTO2`(θ̂ + wµ)µ,

where µ is the update direction of θ, α is a small positive value, w ∈ [0, α], and the term

O`(θ̂)Tµ is the directional derivative along µ. If O`(θ̂)Tµ > 0, the direction µ is an ascent

direction of θ to increase `(θ). We identify an update direction (with a unit norm), along

which `(θ) ascends most rapidly. This motivates us to find a steepest ascent direction,

µ? = argmax
µ
{O`(θ̂)Tµ

∣∣ ||µ||† = 1}, (4)

where || · ||† is a vector norm on RPK . As the choice of norm ||µ||† plays a crucial role in

computational efficiency and numerical stability, we propose to use a block-quadratic norm

by leveraging the block structure of the parameter vector θ,

||µ||† =
P∑

p=1

∣∣∣∣µp

∣∣∣∣
Hp(θ̂)

, (5)

where ||µp||Hp(θ̂)
is a quadratic norm, defined as ||µp||A =

(
µT

p Aµp

)1/2
for a positive semi-

definite matrix A. Here µp is a K-dimensional vector corresponding to the p-th block of µ,

and Hp(θ̂) is a K ×K-dimensional matrix.

A simple choice is to set Hp(θ̂) as an identity matrix, leading to a block-wise gradient

ascent method with low computation cost at each iteration; however, its convergence can be

slow, especially when the condition numbers of the observed information matrix are large;

see Section 3. To address this problem, for p = 1, . . . , P , we choose

Hp(θ̂) = −
[
O`(θ̂)Tp {−O2`(θ̂)p}−1O`(θ̂)p

]
O2`(θ̂)p, (6)

where O`(θ̂)p is the p-th block of the gradient vector and O2`(θ̂)p is the block diagonal

of the Hessian matrix defined in (2), corresponding to the p-th variable. Here the scalar

O`(θ̂)Tp {−O2`(θ̂)p}−1O`(θ̂)p is a normalization factor.
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With the Cauchy-Schwarz inequality,

O`(θ̂)Tµ 6
P∑

p=1

∣∣∣∣O`(θ̂)p
∣∣∣∣

H−1
p (θ̂)

∣∣∣∣µp

∣∣∣∣
Hp(θ̂)

6

{
max

p

(∣∣∣∣O`(θ̂)p
∣∣∣∣
H−1

p (θ̂)

)} P∑
p=1

∣∣∣∣µp

∣∣∣∣
Hp(θ̂)

.

With µ satisfying
∑

p

∣∣∣∣µp

∣∣∣∣
Hp(θ̂)

= 1, we have

O`(θ̂)Tµ 6 max
p

(∣∣∣∣O`(θ̂)p
∣∣∣∣
H−1

p (θ̂)

)
.

The resulting block-wise steepest ascent direction

µ? = argmax
µ
{O`(θ̂)Tµ

∣∣ ||µ||† = 1} = (0, . . . , 0, µ̃T
p? , 0, . . . , 0)T , (7)

maximizes the directional derivative, i.e.

O`(θ̂)Tµ? = max
p

(∣∣∣∣O`(θ̂)p
∣∣∣∣
H−1

p (θ̂)

)
,

and let

p? = argmax
p

(∣∣∣∣O`(θ̂)p
∣∣∣∣
H−1

p (θ̂)

)
, (8)

with µ̃p? given by

µ̃p? =
{

Hp?(θ̂)
}−1

O`(θ̂)p? . (9)

We summarize the proposed algorithm as follows:

BSA Algorithm

(a) Initialize θ̂
(0)

= 0. For m = 1, 2, 3, . . ., identify p? as in (8).

(b) Update the estimate by θ̂
(m)

p? = θ̂
(m−1)
p? + ν µ̃p? .

(c) The iteration continues until the directional derivative O`(θ̂
(m)

)Tµ? or the relative change

in the log-partial likelihood is less than a convergence threshold (e.g. 10−6).

We comment that the block-wise algorithm ranks the importance of each predictor and

measures how fast the log-partial likelihood would increase by including each predictor;

the proposed algorithm converts a difficult optimization problem into a simpler surrogate

function that is separable across blocks of the parameter vector and avoids iterative inversions
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of high dimensional Hessian matrices; the learning rate, ν, can be chosen to be a small positive

value, e.g. 0.05. Further clarification for the choice of ν is provided in Section 3.

2.4 Minorization-Maximization-Based Interpretation

The proposed method can be interpreted from the perspective of the MM algorithm, which

reaffirms the ascent property and helps clarify the numerical advantage of the proposed

procedure. To see this, we note the block-quadratic norm considered in (5) leads to a minority

surrogate function

g(θ|θ̂) = `(θ̂) + O`(θ̂)T (θ − θ̂)− 1

2ν
(θ − θ̂)TH(θ̂)(θ − θ̂),

where ν is a small positive value to be specified and H(θ̂) = diag{H1(θ̂),H2(θ̂), · · · ,HP (θ̂)}

is a block-diagonal matrix, and Hp(θ̂) is defined in (6). Here, the blocks correspond to the

basis expansions for each variable. With g(θ̂|θ̂) = `(θ̂), Proposition 1 in Section 3 shows

that, given a suitable ν, g(θ|θ̂) 6 `(θ) for all θ. Thus, g(θ|θ̂) serves as a minority surrogate

function of `(θ). Leveraging the block-diagonal structure of H(θ̂), the minority surrogate

function g(θ|θ̂) is separable across the blocks of parameters. Therefore, this “minorization”

step reduces a high-dimensional optimization problem to simpler ones.

The block-wise update [as in (8) and (9)] maximizes g(θ|θ̂) subject to the constraint

that only one variable is updated at each iteration. This “Maximization” step, coupled with

the previous “minorization” step, is essentially a Minorization-Maximization-based steepest

ascent procedure, which iteratively pursues the optimal block-wise update direction.

2.5 Connection with Existing Optimization Approaches

It is instructive to assess several commonly used norms for (4) and tie them to the existing

steepest ascent approaches. For example, an `2 norm corresponds to the gradient ascent

method:

µ? = argmax
µ
{O`(θ̂)Tµ

∣∣ ||µ||2 = 1} = O`(θ̂)
/
||O`(θ̂)||2.
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As illustrated in Figure 1 and Web Figures S1 and S2 in the Supplementary Material, the con-

vergence of gradient-based methods is slow, especially when the observed information matrix

is ill-conditioned (i.e. near singular). One may consider a quadratic norm ||µ||A =
(
µTAµ

)1/2
with A = −O2`(θ̂), with the update direction coinciding with the Newton update, which

becomes numerically unstable or even impractical for large-scale data. Also, an `1 norm leads

to the coordinate-wise gradient boosting procedure (Bühlmann and Yu, 2003, 2006; He et

al., 2016). However, this procedure does not take into account the group structure and will

lead to sparse basis presentations, and is not suitable for estimating time-varying effects.

2.6 Testing for Time-Varying Effects

To test whether the effects are time-varying, we use the constant property of B-splines, that

is, if θp1 = · · · = θpK , the corresponding covariate effect is time-independent. Specify a matrix

Cp such that Cpθ = 0 corresponds to the contrast that θp1 = · · · = θpK . Following He et al.

(2017a), a Wald statistic can be constructed by

(Cpθ̂)T
[
Cp{−O2`(θ̂)}−1CT

p

]−1
(Cpθ̂),

where θ̂ is obtained through the proposed BSA.

In the kidney transplant database with large N and P , computation of the observed

information matrix is infeasible as discussed in Section 2.2, though gradients are easier to

compute. We consider a modified statistic

Sp = (Cpθ̂)T{CpV
−1(θ̂)CT

p }−1(Cpθ̂), (10)

where V(θ̂) =
∑J

j=1

∑nj

i=1 Ψij(θ̂)Ψij(θ̂)T is an approximation of the empirical information

matrix (McLachlan and Krishnan, 2007), with Ψij defined in (3). Under the null hypothesis

that the effect is time-independent, Sp is asymptotically chi-square distributed with K − 1

degrees of freedom. To incorporate potential correlations among patients within strata, a

robust inference procedure (Lin and Wei, 1989; Schaubel and Cai, 2005) can be adopted.
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2.7 Variable Selection with High-Dimensional Covariates

Our proposed BSA algorithm can also be extended to accommodate a large P small N

problem. Specifically, BSA is a group-wise procedure. With only one variable updated at

each iteration, variable selection can be achieved if the procedure is set to stop at a finite

number of steps. Effectively, the step number is a tuning parameter and can be determined

by cross-validation. Compared with the penalized methods, BSA is flexible and easily im-

plemented without the need to apply constrained optimizations, and the parallel computing

algorithms can be integrated with separable minority surrogate functions. Further discussion

and empirical results are provided in the Web Supplementary Material.

3. Convergence Properties

We impose the following conditions: (A) For any initial value θ(0), the matrices, Hp(θ),

p = 1, . . . , P , are positive definite in the super-level set {θ : `(θ) > `(θ(0))}; (B) The

negative log-partial likelihood function satisfies lim||θ||2→∞−`(θ) =∞.

Condition (A) guarantees the existence of the BSA update; Condition (B) ensures that the

super-level set is compact and the maximum value of `(θ) is attained, and a cluster point of

BSA exists. We show that there exists a learning rate ν such that the proposed algorithm

satisfies the ascent property.

Proposition 1 (Ascent Property)

Suppose Conditions (A) and (B) hold. For ν > 0 satisfying

sup
{θ:`(θ)>`(θ(0))}

(
λmax

[
{H(θ̂

(m−1)
)}−1/2{−O2`(θ)}{H(θ̂

(m−1)
)}−1/2

])
< 1/ν, (11)

then g(θ|θ̂
(m−1)

) 6 `(θ) for all θ, where λmax(·) represent the largest eigenvalues.

Proposition 1 shows that g(θ|θ̂
(m−1)

) serves as a minority surrogate function of `(θ). Thus,

the resulting estimates θ̂
(m)

from the BSA ensure the ascent property,

`(θ̂
(m)

) > g(θ̂
(m)
|θ̂

(m−1)
) > g(θ̂

(m−1)
|θ̂

(m−1)
) = `(θ̂

(m−1)
).
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Proposition 1 also informs the choice of the learning rate ν and gives an upper bound

of ν (which is small) to ensure the ascent property. For example, in classical gradient-

based procedures, H(θ̂
(m−1)

) equals an identity matrix and the updates at each iteration are

computed based on gradient information only. When the conditional number of the observed

information matrix is large, a sufficiently small learning rate is needed in Proposition 1

to ensure that the estimates in each iteration of the gradient-based procedure serve as

refinements of the previous step, which requires a large number of iterations and more

computation time. Thus, empirically we find that the performance of gradient-based methods

is more sensitive to the choice of the learning rate. In contrast, the proposed BSA is based on

the block diagonal of the observed information matrix, which is an improved approximation

compared to the identity matrix used in the gradient methods. Thus, a learning rate of 0.05

typically ensures the inequality in Proposition 1. Our numerical experience also indicates

that BSA is less sensitive to the choice of the learning rate.

Proposition 2 (Numerical Convergence)

Suppose Conditions (A) and (B) hold. Then every cluster point of the iterates θ̂
(m)

=

M(θ̂
(m−1)

) generated by the iteration map M(θ) of the BSA algorithm is a stationary point

of `(θ). Furthermore, the set of stationary points F is closed, and the limit of the distance

function is zero:

lim
m→∞

inf
θ∈F
||θ̂

(m)
− θ||2 = 0.

Moreover, if the observed information matrix −O2`(θ) is positive definite in the super-level

set defined in Condition (A), any sequence of θ̂
(m)

possesses a limit, θ̂, and this limit is a

stationary point and hence maximizes the log-partial likelihood in (1).

The convergence mode involved in this proposition is with respect to a sequence of real

vectors, and not embedded in a probability space. All technical proofs have been deferred to

the Web Supplementary Material.
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4. Simulations

We compare the computational speed and parameter estimation of the proposed BSA with

various methods, and then assess the performance of the proposed testing procedure for

time-varying effects. Ten knots are used in all settings in Sections 4.1 and 4.3. In section

4.2, we vary the numbers of knots to assess its influence on the performance. Following the

suggestion by Gray (1992), the locations of knots in further analyses are chosen to include

an equal number of events within each time interval.

4.1 Evaluation of Computational Speed

We first consider the following simulation setting (termed Setting A). Death times are gen-

erated from an exponential model with a baseline hazard 0.5. Censoring times are generated

from the Uniform distribution over (0,3), with a censoring proportion of approximately

20−30%. Continuous predictors are generated from a multivariate normal distribution, with

mean zero and an AR1 covariance matrix with an auto-correlation parameter of 0.6. We vary

the sample size between N = 10, 000 (from 10 center) and N = 351, 719 (from 290 centers).

The number of covariates varies from P = 10 to P = 164. We choose β2(t) = sin{3(πt/4)}

and β4(t) = −(t/3)2 exp(t/2) to represent time-varying effects. The remaining covariate

coefficients are set to be 1. For each data configuration, 100 data are generated.

With N = 10, 000 and P = 10, the computation time for the Newton method (implemented

by R Survival package), the quasi-Newton method (implemented in Rcpp through R package

RcppArmadillo in combination with the R function optim), the likelihood-based boosting

(implemented by R package COXflexBoost) and the proposed BSA is 0.17 minutes, 15.43

minutes, 10.36 hours and 0.12 minutes, respectively. The original quasi-Newton work of He

et al. (2017a) was implemented in R, but we re-implement it in Rcpp for improved speed.

With N = 351, 719 and P = 164 as in the motivating example, all of the aforementioned

competing methods fail due to their intensive computation, and the proposed method takes



Fitting Stratified Cox Models with Time-Varying Effects via Block-Wise Steepest Ascent 13

11.64 hours. The experiments are conducted on a HP workstation with 4-core 3.50-GHz Intel

Core E5-1620v3 processor and 32GB RAM.

4.2 Estimation of Time-Varying Effects

To mimic the motivating real data, we consider a simulation setting (termed Setting B)

and generate binary covariates (0 or 1) with means between 0.05 and 0.2. The number of

covariates varies from 5, 10, 20 to 50, and the sample size is chosen to be N = 10, 000 from

10 center. The remaining set-ups are the same as Setting A.

Table 1 compares the average computing time, the average biases and the average inte-

grated mean square error (IMSE) over the simulated time points for the Newton approach,

the gradient ascent, the stochastic gradient ascent with step size determined by ADAM

algorithm (Diederik et al., 2015), and the proposed BSA, under simulation Setting B with

N = 10, 000 and various numbers of covariates.

Table 1 shows that the Newton approach incurs large biases and IMSE; the gradient

ascent and the stochastic gradient ascent improve upon the biases, but converge slowly; the

proposed BSA is computationally efficient and achieves the smallest biases in all scenarios.

Web Figure S2 further compares the average estimated coefficients across various iterations

of the proposed method and the gradient ascent, using simulation setting B. Compared

with gradient-based procedure, the proposed BSA is less sensitive to the choice of learning

rate, which confirms the numerical properties provided in Section 3. Figure 2 compares the

average estimates and the 95% empirical percentiles over 100 simulation replications for

the conventional Newton approach and the BSA algorithm. We vary the number of basis

functions from 5 to 10. The simulation set-up is based on Setting A with 10 variables. The

performance of the Newton is more sensitive to the number of basis function, which can be

explained in part as follows: in the late stage of the follow-up period, the at-risk set is small,

causing unstable estimation of the Hessian matrix. The proposed BSA is less sensitive to the
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number of basis functions, achieving more stable results. Web Table S1 compares the biases

and IMSE for various approaches which select the number of basis functions based on the

simulation setting B. Five-fold cross-validation achieves the smallest estimation biases in all

scenarios and outperforms alternative approaches such as AIC and BIC. Web Table S2 and

Figures S3 and S4 compare the performance of various methods under the simulation setting

with heterogeneous center effects. Web Table S2 and Figure S4 further assess a simulation

setting with a high censoring proportion (approximately between 50% and 60%).

4.3 Testing for Time-Varying Effects

Finally, to assess the testing performance for time-varying effects, we consider a simulation

setting (termed Setting C) with two continuous predictors. The corresponding coefficients

are set to be β1 = 1 and β2(t) = γsin{3(πt/4)} with γ varying between 0 and 3, representing

the magnitude of the time-varying effects. We vary the number of centers from 10 (with

1, 000 subjects per center) to 100 (with 100 subjects per center). The remaining set-ups are

the same as Setting A.

Comparing the proposed testing algorithm with the test based on the scaled Schoenfeld

residuals (implemented by R Survival package), Figure 3 reports the empirical Type-I error

and the empirical power based on Setting C. The proposed algorithm (10) outperforms

the Schoenfeld method with a higher power and a smaller Type-I error. Web Table S3

further assesses the empirical Type-I error and the empirical power for the robust inference

procedure, using simulation setting C with 100 centers.

5. Analysis of the National Kidney Transplant Dataset

Data are obtained from the U.S. Organ Procurement and Transplantation Network (OPTN).

Included in our analysis are 351, 719 patients (from 293 centers) who underwent kidney

transplantation between January 1988 and December 2012. Failure time is defined as the
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time from transplantation to graft failure or death, whichever occurred first. To study the

10-year post-transplant survival, patient survival is censored 10 year post-transplant or at the

end of study in 2012. The overall censoring rate was 62%. Covariates (P = 164) in this study

include baseline recipient characteristics such as age, race, gender, BMI, time on dialysis,

indicator of previous kidney transplant, immunosuppression, and cormorbidity conditions

(e.g. glomerulonephritis, polycystic kidney disease, diabetes, and hypertension), and donor

characteristics such as blood type, cold ischemic time and donor type. Race is categorized as

White, African American, Asian, and the other. Cold ischemia time is categorized as low (20

hours or less) and high (longer than 20 hours). Donors are categorized as living, of standard

criteria, and of expanded criteria. Waiting time on dialysis is categorized as low (less than 1

years), medium (1-5 years) and high (greater than 5 years). More details are in Table 2.

To determine the number of basis functions, we perform 5-fold cross-validation (Verweij

and van Houwelingen, 1993) and choose 10 basis functions for further analysis. Our proposed

test identifies a total of 12 variables with significant time-varying effects; see Figure 4 with

95% point-wise confidence intervals (dashed lines) as well as additional results provided in

Web Figure S5. Figures 4a and 4b show that anti-viral therapies and anti-rejection immuno-

suppressant medications have a strong protective effect shortly after transplantation, but

the association weakens over time. One possible explanation is that these therapies prevent

rejection of new kidneys and declining rates of acute rejection have led to improvements in

short term kidney transplant survival, but the effects may wane over time (Muntean and

Lucan, 2013). Figure 4c supports the previous findings (Meier et al., 2000) that long waiting

on dialysis (greater than 5 years) negatively impacts post-transplant survival. Figure 4d

indicates that the effects of stroke, the most frequent donor cause of death, varies over time,

showing an increased risk of worsening recipient outcomes initially, followed by a slightly

weakening association over time. Though stroke is a predictor for worse survival for kidney
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transplantation, it is associated with a low rate of rejection immediately after the renal

transplantation (Frohnert et al., 1997), which may lead to time-varying associations.

Figure 4e indicates that the survival of African Americans continues to be poorer than

that of non-African Americans. The change of its covariate effect after transplant may be

partly due to higher immunological risk among American Africans, leading to higher acute

rejection rates and graft loss (Harding et al., 20017). We have detected some novel signals.

For example, polycystic kidney disease (PKD) is the most common genetic kidney disease

and is present among 2% to 9% of ESRD patients (Rozanski et al., 2005). With conflicting

reports of renal allograft outcomes for PKD patients (Hadimeri et al., 1997), Figure 4g

suggests time-varying associations of PKD with survival; thus, accounting for time-varying

effects provides valuable clinical information that could have been missed otherwise. Finally,

Web Figure S5c shows that male recipients is a protective factor immediately after the renal

transplantation and then has a much worse prognosis than female. One possible explanation

is that women have better immunosuppressant compliance than men, and females undergo

follow-up visits and show more concern to protect graft function (Puoti et al., 2016).

6. Discussion

Detecting and accounting for time-varying effects are particularly important in the context of

clinical studies (Dekker et al., 2008; Yu et al., 2014; Chen et al., 2015; Estes, 2018). However,

in survival analysis, the computational burden to model time-varying effects increases quickly

as the sample size or the number of predictors grows. We propose a block-wise steepest

ascent method, which iteratively updates the optimal block-wise direction along which the

directional derivative is maximized and, hence, the approximate increment in log-partial

likelihood is greatest. Numerical results show that the proposed algorithm provides sufficient

and rapid updates, achieving much computational efficiency.
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Supporting Information

Web Appendices, Tables, and Figures referenced in Sections 3, 4.2, 4.3 and 5 are avail-

able with this paper at the Biometrics website on Wiley Online Library. We also provide

a publicly available R package BSATV, hosted on the GitHub (https://github.com/UM-

KevinHe/TimeVaryingCox).

(a) Computation Iterations (b) Computation Time

Figure 1: Comparisons of iterations, computation time and biases; Setting B with N=10,000

and P=5; the Newton approach is implemented by R Survival package, the stochastic gradient

ascent is implemented by the adaptive moment estimation (ADAM) approach. The timings

were taken on a HP workstation with 4-core 3.50-GHz Intel Core E5-1620v3 processor and

32GB RAM. This figure appears in color in the electronic version of this article, and any

mention of color refers to that version.
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(a) Newton (K=5) (b) Newton (K=10)

(c) BSA (K=5) (d) BSA (K=10)

Figure 2: Average estimated coefficient functions (solid lines) and 95% empirical percentiles

(dashed lines) for different number of spline basis functions; 100 simulation iterations; Setting

A with N=10,000 and P=10. This figure appears in color in the electronic version of this

article, and any mention of color refers to that version.
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(a) Type I Error (b) Power

Figure 3: Comparisons of Type-I error and Power for testing of time-varying effects at

significance level 0.05; Setting C with N=2,000; Two continuous covariates are generated with

coefficients β1 = 1 and β2(t) = γsin{3(πt/4)}, where γ varies between 0 and 3, representing

the magnitude of the time-varying effects; The average type-I error rate is only evaluated for

the time-invariant β1(t), and the average power is only evaluated for the time-variant β2(t).

This figure appears in color in the electronic version of this article, and any mention of color

refers to that version.
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(a) Anti-viral Therapies (b) Immunosuppressant Medications

(c) Long Waiting Times (d) Stroke

(e) African American (f) Polycystic Kidney Disease

Figure 4: Data analysis results: estimated coefficient functions (solid lines) and 95% point-

wise confidence interval (dashed lines) for time-varying effects. This figure appears in color

in the electronic version of this article, and any mention of color refers to that version.
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P Method Time Bias IMSE

5

Newton 0.22 0.646 0.592

Gradient Ascent 169.33 0.249 0.202

Stochastic Gradient Ascent 183.51 0.290 0.256

BSA 25.60 0.156 0.136

20

Newton 1.10 0.305 0.169

Gradient Ascent 687.15 0.136 0.058

Stochastic Gradient Ascent 415.43 0.140 0.070

BSA 43.48 0.075 0.055

50

Newton 9.05 0.147 0.086

Gradient Ascent 1620.21 0.150 0.050

Stochastic Gradient Ascent 757.07 0.118 0.038

BSA 95.27 0.064 0.030

Table 1: Average computation time (in seconds), average estimation error (Bias) and average

integrated mean square error (IMSE) for various methods; based on Setting B with N=10,000.
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Variable Categories Counts Proportions

Donor Type
Deceased 229,465 65.2%

Living 122,254 34.8%

Recipient Gender
Male 211,880 60.2%

Female 139,839 39.8%

Recipient Race

White 248,254 70.6%

Black 82,816 23.5%

Asian 15,347 4.4%

Other 5,302 1.5%

Recipient BMI

Underweight 16,866 4.8%

Normal 109,385 31.1%

Overweight 152,765 43.4%

Obesity 72,703 20.7%

Recipient Age

< 10 years 6,596 1.9%

[10, 18) years 12,405 3.5%

[18, 25) years 18,059 5.1%

[25, 35) years 47,894 13.6%

[35, 45) years 68,963 19.6%

[45, 55) years 84,151 23.9%

[55, 65) years 76,081 21.6%

[65, 75) years 34,281 9.7%

>= 75 years 3,289 0.9%

Recipient Anti-viral Therapies
Yes 169,037 48.1%

No 182,682 51.9%

Recipient Immunosuppressant Medications
Yes 341,677 97.1%

No 10,042 2.9%

Recipient: Polycystic Kidney Disease
Yes 31,558 9.0%

No 320,161 91.0%

Waiting Time on Dialysis

Short (< 1 years) 135,585 38.5%

Medium (1 − 5 years) 165,012 46.9%

Long (> 5 years) 51,122 14.5%

Cold Ischemia Time
High (> 20 hours) 91,861 26.1%

Low (<= 20 hours) 259,858 73.9%

Expanded Criteria Donor
Yes 31,126 8.8%

No 320,593 91.2%

Donor Cause of Death: Stroke
Yes 82,474 23.4%

No 269,245 76.6%

Table 2: Baseline characteristics of kidney transplantation data.


