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Summary

Wide heterogeneity exists in cancer patients’ survival, ranging from a few months
to several decades. To accurately predict clinical outcomes, it is vital to build an
accurate predictive model that relates patients’ molecular profiles with patients’ sur-
vival. With complex relationships between survival and high-dimensional molecular
predictors, it is challenging to conduct non-parametric modeling and irrelevant pre-
dictors removing simultaneously. In this paper, we build a kernel Cox proportional
hazards semi-parametric model and propose a novel regularized garrotized kernel
machine (RegGKM) method to fit the model. We use the kernel machine method
to describe the complex relationship between survival and predictors, while auto-
matically removing irrelevant parametric and non-parametric predictors through a
LASSO penalty. An efficient high-dimensional algorithm is developed for the pro-
posed method. Comparison with other competing methods in simulation shows that
the proposed method always has better predictive accuracy. We apply this method
to analyze a multiple myeloma dataset and predict patients’ death burden based on
their gene expressions. Our results can help classify patients into groups with differ-
ent death risks, facilitating treatment for better clinical outcomes.
KEYWORDS:
Cox proportional hazards model, high-dimensional data, kernel machine, survival prediction, reproducing
kernel Hilbert space, multiple myeloma

1 INTRODUCTION

There is wide variation in the survival of cancer patients, which can range from only a few months to several decades. Despite
advancements in cancer treatment, there is still a lack of effective therapies for numerous types of cancer. In addition to designing
effective cancer prevention programs, 1 it is crucial to develop predictive models that robustly correlate patients’ molecular
profiles, 2 including genotypes and gene expressions, with their overall prognosis. This aligns with precision medicine.

With high-dimensional molecular predictors, regularization methods have been widely used for model selection and estima-
tion. In survival settings, a family of penalized partial likelihood methods, such as the least absolute shrinkage and selection
operator (LASSO)3 and the smoothly clipped absolute deviation method (SCAD),4 has been proposed for Cox proportional haz-
ards (PH) model. These methods select variables by shrinking some regression coefficients to exactly zero. For example, Engler
and Li 5 adapt the elastic net approach to achieve variable selection for the Cox PH model, and Zhao and Li 6 propose a princi-
pled sure independence screening approach for selecting high dimensional predictors; all of these works are based on a Cox PH
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model, implicitly stipulating a linear relationship between predictors and log-hazard. As the linear assumptions may not hold in
some applications, various nonparametric or partially linear models of predictors’ effects have been proposed under the Cox PH
framework. Hastie and Tibshirani 7 consider several step-wise nonlinear selection procedures; Du et al 8 propose a joint estima-
tion and selection method for the Cox partially linear model, in which the regression parameters in the parametric component
are subjected to a SCAD penalty, while variable selection in the nonparametric component is performed in a nested fashion;
Lian et al 9 perform variable selection and estimation under an additive model.

Kernel machine has recently emerged as a powerful nonparametric method, by making only qualitative assumptions on func-
tions, instead of a predetermined function or a nonparametric additive structure. It is widely used for quantifying complex
nonlinear and interactive effects, especially under high-dimensional settings. In ordinary regression, common kernel machine
approaches include Least Squares Kernel Machine,10, 11 Garrote Kernel Machine Testing,12 as well as garrotized kernel-based
variable selection procedures,13–16 which have been developed for dimension reduction of the feature space. With censored out-
comes, Leng and Zhang 17 extend the Component Selection and Smoothing Operator (COSSO) method 18 to the Cox PH model.
The COSSO method is designed in the framework of smoothing splines ANOVA model and requires the use of univariate ker-
nels, which may not sufficiently accommodate complex relationships. Li and Luan 19 estimate a fully nonparametric kernel Cox
regression model by relating gene expression profiles with survival response. Sinnott and Cai 20 propose a multiple kernel learn-
ing estimation method for censored survival outcomes. However, few of these works are available for variable selection, partly
due to the challenge of nonparametric modeling with censored outcomes, especially under high-dimensional scenarios.

To fill the gap, we propose a kernel Cox partially linear proportional hazards model and a novel garrotized kernel machine
method. Our model flexibly depicts the possible complex relationship between the response and predictors while allowing differ-
ent non-parametric predictors to have different marginal effects. We design an efficient algorithm for implementing the proposed
method. Our work is non-trivial and addresses several computational issues in practice. First, it is difficult to directly maximize
the Cox PH objective function corresponding to the regularized garrotized kernel machine regression model. We tackle this by
employing a quadratic approximation approach. Second, it is challenging to conduct efficient large-scale optimization in high-
dimensional settings. We develop a spectral projected gradient method to handle this issue. Our method has been implemented
in R (R Development Core Team 2020) and the code is available at https://github.com/rongyaohua/RegGKM.

The paper is structured as follows. Section 2 formulates the Cox PH kernel machine model, introduces the garrotized kernel-
based estimation and variable selection method, and proposes an efficient computation algorithm for fitting the model. Section
3 performs simulations to examine the finite sample performance of the proposed method, and Section 4 applies the proposed
method to a multiple myeloma dataset. Finally, Section 5 concludes the paper with conclusions and the future work.

2 METHODS

2.1 Regularized garrotized kernel machine for Cox partially linear model
Denote by 𝐷𝑖 and 𝐶𝑖 the time from onset of one disease to death and the potential censoring time, respectively, for patient 𝑖,
𝑖 = 1,… , 𝑛. Let 𝑇𝑖 = min{𝐷𝑖, 𝐶𝑖} be the observed survival time, and 𝜏𝑖 = 𝐼(𝐷𝑖 ≤ 𝐶𝑖) be the death indicator. For the 𝑖-th
patient, let 𝑿𝑖 = (𝑋𝑖1,… , 𝑋𝑖𝑃 )𝑇 be a 𝑃 ×1 vector of clinical covariates such as age, and 𝒁𝑖 = (𝑍𝑖1,… , 𝑍𝑖𝑄)𝑇 be a 𝑄×1 vector
of gene expressions. We assume independent censoring so that 𝐷𝑖 and 𝐶𝑖 are independent conditional on 𝑿𝑖 and 𝒁𝑖. We adopt
the following Cox partially linear proportional hazards model, where the conditional hazard function for the 𝑖-th patient with
covariates 𝑿𝑖,𝒁𝑖 is

𝑔(𝑡|𝑿𝑖,𝒁𝑖) = lim
𝑑𝑡→0

1
𝑑𝑡

𝑃 𝑟(𝑡 ≤ 𝐷𝑖 < 𝑡 + 𝑑𝑡|𝐷𝑖 ≥ 𝑡,𝑿𝑖,𝒁𝑖) = 𝑔0(𝑡) exp(𝑿𝑇
𝑖 𝜷 + ℎ(𝒁𝑖)), (1)

where 𝑔0(𝑡) is the baseline hazard function, 𝜷 = (𝛽1,… , 𝛽𝑃 )𝑇 quantifies the linear effects of nongenomic covariates on the
(log) hazard, and ℎ(⋅) ∶ 𝑄 →  is an unknown function describing possibly complicated relationships between genes and
log-hazard.

We propose a kernel machine representation for ℎ(⋅) by specifying that it lies in 𝐾 , a reproducing kernel Hilbert space
() corresponding to the positive definite kernel function 𝐾(⋅, ⋅) ∶ 𝑄×𝑄 → . The kernel function 𝐾(𝒁𝑖,𝒁𝑗) can be
viewed as a measure quantifying the similarity between gene profiles 𝒁𝑖 and 𝒁𝑗 for two subjects. The mathematical properties
of 𝐾 imply that any unknown function ℎ(𝒁) in 𝐾 can be represented as a weighted linear combination of the given kernel
function 𝐾(⋅, ⋅) evaluated at each sample point: ℎ(𝒁) =

∑𝑛
𝑖=1 𝐾(𝒁𝑖,𝒁; 𝜌)𝛼𝑖, where the weights 𝜶 = (𝛼1,… , 𝛼𝑛) is an 𝑛 × 1

coefficient vector.21, 22

https://github.com/rongyaohua/RegGKM
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The choice of kernel function determines the particular function space where the unknown smooth function ℎ(⋅) is assumed to
lie. Two popular kernel functions are the Gaussian and 𝑑-th polynomial kernels. The Gaussian Kernel is defined as 𝐾(𝒁1,𝒁2) =
exp{−

∑𝑄
𝑞=1(𝑍1𝑞−𝑍2𝑞)2∕𝜌}, where 𝜌 is a tuning parameter. Its corresponding  contains many nonlinear functions 23 and

can approximate any continuous function.24 The 𝑑-th polynomial kernel is 𝐾(𝒁1,𝒁2) = (𝒁𝑇
1 𝒁2 + 𝜌)𝑑 , where both 𝜌 and 𝑑 are

tuning parameters. The 𝑑-th polynomial kernel generates the function space spanned by all possible 𝑑-order monomials of the
components of 𝒁. We use a set of functions 𝜙(𝒁) = {𝑍𝑘, 𝑍𝑘𝑍𝑘′} (𝑘, 𝑘

′ = 1,… , 𝑄) to represent the orthogonal basis functions
that form an implicit orthogonal basis for the  defined by the second-order polynomial kernel. In this model, the second-
order polynomial terms are included, incorporating cross-product terms. Both Gaussian and the 𝑑-th (𝑑 > 1) polynomial kernels
allow for gene-gene interactions.10 There are other choices of kernel function, such as the neural network, smoothing spline 25

and identity-by-state kernels.26 By choosing appropriate kernel functions, the complexity and form of the gene-risk function can
be controlled. We use the Gaussian kernel to illustrate our new method, but in principle our approach is applicable to all of these
kernel functions.

The unweighted kernel function mentioned above implicitly assumes that each nonparametric predictor has an equal effect on
hazard. But in reality, predictors in the nonparametric part may present different effects. To reflect this, we consider a garrotized
kernel proposed by Rong et al,15 i.e., given a base kernel 𝐾(⋅, ⋅), the garrotized kernel 𝐾 (𝑔)(⋅, ⋅) is

𝐾 (𝑔)(𝒁𝑖,𝒁𝑗 ; 𝜹) = 𝐾(𝒁∗
𝑖 ,𝒁

∗
𝑗 ),

𝒁∗
𝑢 = (𝛿1∕21 𝑍𝑢1,… , 𝛿1∕2𝑄 𝑍𝑢𝑄)𝑇 , 𝑢 = 𝑖, 𝑗,

𝛿𝑞 ≥ 0, 𝑞 = 1,… , 𝑄.

(2)

For instance, the garrotized Gaussian kernel takes the form of 𝐾 (𝑔)(𝒁𝑖,𝒁𝑗 ; 𝜹) = exp{ −
∑𝑄

𝑞=1 𝛿𝑞(𝑍𝑖𝑞 −𝑍𝑗𝑞)2}. The unknown
parameter vector 𝜹 needs to be estimated. Each 𝛿𝑞 measures the effect of gene 𝑍𝑞 on survival. For instance, 𝛿𝑞 = 0 means that
the corresponding gene 𝑍𝑞 is an irrelevant predictor, and, hence, the garrotized kernel may offer a flexible means to identify the
irrelevant predictive genes in 𝒁. Depending on the base kernel chosen 𝐾(⋅, ⋅), the function ℎ(⋅) can still be complicated and may
not necessarily have an additive or ANOVA structure, for example allowing for complex high-order gene-gene interactions.

With predictors 𝑿 and 𝒁 standardized to have zero mean and unit variance, we propose to maximize a regularized log-partial
likelihood:

arg max
𝜶,𝜷,𝜹

1
𝑛

𝑛
∑

𝑖=1
𝜏𝑖

[

𝑿𝑇
𝑖 𝜷 + ℎ(𝒁𝑖) − log

{

∑

𝑙∈𝑅𝑖

exp(𝑿𝑇
𝑙 𝜷 + ℎ(𝒁𝑙))

}]

− 𝜆1
𝑃
∑

𝑝=1
|𝛽𝑝| − 𝜆2

𝑄
∑

𝑞=1
𝛿𝑞 −

1
2
𝜆3‖ℎ‖

2
𝐾(𝑔)

,

(3)

where 𝑅𝑖 = {𝑙 ∶ 𝑇𝑙 ≥ 𝑇𝑖} indexes patients at risk at time 𝑇𝑖, 𝜹 ∶ 𝛿𝑞 ≥ 0, 𝑞 = 1,… , 𝑄, 𝜆1 and 𝜆2 are nonnegative regularization
parameters, 𝜆3 > 0 is a tuning parameter pursuing the trade-off between complexity of model and goodness of fit, and ‖ℎ‖2𝐾(𝑔)is the functional norm defined in 𝐾 (𝑔) generated by the garrotized kernel. Imposing a LASSO penalty on the parameters 𝜷 and
𝜹 may be suitable to accommodate sparsity, or only a small number of clinical and genetic predictors are actually associated
with survival, while the penalty on ℎ(⋅) is standard in kernel machine regression models.13, 15, 25

The proposed regularization (3) enables estimation and variable selection of model (1) based on the garrotized kernel (2). The
solution to this problem is given by Kimeldorf and Wahba27 via the representer theorem. That is, the optimal ℎ(⋅) has the form of:

ℎ(𝒁) =
𝑛
∑

𝑗=1
𝛼𝑗𝐾

(𝑔)(𝒁,𝒁𝑗 ; 𝜹),

where 𝐾 (𝑔)(⋅, ⋅) is the garrotized kernel and 𝛼 = (𝛼1,… , 𝛼𝑛)𝑇 is an unknown coefficient vector. Consequently, maximization
of (3) is equivalent to maximizing

𝑓 (𝜶, 𝜷, 𝜹) = 1
𝑛

𝑛
∑

𝑖=1
𝜏𝑖

[

𝑿𝑇
𝑖 𝜷 + 𝒌𝑖(𝜹)𝜶 − log

{

∑

𝑙∈𝑅𝑖

exp(𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶)

}]

− 𝜆1
𝑃
∑

𝑝=1
|𝛽𝑝| − 𝜆2

𝑄
∑

𝑞=1
𝛿𝑞 −

1
2
𝜆3𝜶𝑇𝑲(𝜹)𝜶,

(4)
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where 𝒌𝑖(𝜹) = (𝐾 (𝑔)(𝒁𝑖,𝒁1; 𝜹),… , 𝐾 (𝑔)(𝒁𝑖,𝒁𝑛; 𝜹)), and 𝑲(𝜹) is an 𝑛 × 𝑛 symmetric Gram matrix, with the 𝑖𝑗-th element of
𝑲𝑖𝑗(𝜹) = 𝐾 (𝑔)(𝒁𝑖,𝒁𝑗 ; 𝜹), 𝑖, 𝑗 = 1,… , 𝑛. Equivalently, the objective function (4) can be written as

𝑓 (𝜶, 𝜷, 𝜹) = 1
𝑛
𝝉𝑇 [𝑿𝜷 +𝑲(𝜹)𝜶 −𝑨(𝜶, 𝜷, 𝜹)]

− 𝜆1‖𝜷‖1 − 𝜆2‖𝜹‖1 −
1
2
𝜆3𝜶𝑇𝑲(𝜹)𝜶,

(5)

where 𝝉 = (𝜏1,… , 𝜏𝑛)𝑇 is a 𝑛× 1 death indicator vector, 𝑿 = (𝑿1,… ,𝑿𝑛)𝑇 is the 𝑛× 𝑃 clinical covariate matrix, 𝑨(𝜶, 𝜷, 𝜹) =
{log[

∑

𝑙∈𝑅1

exp(𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶)],…, log[ ∑

𝑙∈𝑅𝑛

exp(𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶)]}𝑇 is an 𝑛 × 1 vector, ‖ ⋅ ‖1 is the 𝐿1 norm.

We refer to the solution of equation (5) as the Regularized Garrotized Kernel Machine estimate (RegGKM) for the Cox
partially linear proportional hazards model. Our proposed method, as outlined in the following section, does not impose any
restrictions on the number of genomic covariates that can be used in the model.

2.2 Algorithm
We propose a group coordinate descent algorithm to maximize (5) to estimate the parameters of 𝜶, 𝜷, 𝜹, which can be computed
along a regularization path as follows.

Step 1. Set initial estimates 𝜶0,𝜷0,𝜹0.
Step 2. Update 𝜶, 𝜷, 𝜹 cyclically for a given regularization parameter 𝝀 = (𝜆1, 𝜆2, 𝜆3). Specifically,

• With the values of 𝜶, 𝜹 fixed at �̃�, �̃�, the objective function (5) can be written as
𝑓 (�̃�, 𝜷, �̃�) = 1

𝑛
𝝉𝑇

[

𝑿𝜷 +𝑲(�̃�)�̃� −𝑨(�̃�, 𝜷, �̃�)
]

− 𝜆1‖𝜷‖1 − 𝜆2‖�̃�‖1 −
1
2
𝜆3�̃�𝑇𝑲(�̃�)�̃�,

As it may be difficult to directly maximize this nonconvex objective function, we propose to use a quadratic function
to approximate it locally and adopt a penalized reweighted least squares approach to update 𝜷.3 Denote the log-partial
likelihood as 𝓁𝑛(𝜶, 𝜷, 𝜹) =

1
𝑛
𝝉𝑇 [𝑿𝜷 + 𝑲(𝜹)𝜶 − 𝑨(𝜶, 𝜷, 𝜹)] and define 𝜼 = 𝑿𝜷 + 𝑲(𝜹)𝜶. Let 𝓁′

𝑛(𝜼) and 𝓁
′′

𝑛 (𝜼) be
the gradient and Hessian of the log-partial likelihood with respect to 𝜼, respectively; see their explicit expressions in
the Appendix. Given the current estimate �̃� = 𝑿𝜷 +𝑲(�̃�)�̃�, maximizing log-partial likelihood 𝓁𝑛(𝜼) is equivalent
to maximizing a two-term Taylor expansion of the log-partial likelihood

1
2𝑛

[𝒀 (�̃�) −𝑿𝜷 −𝑲(�̃�)�̃�]𝑇𝓁′′

𝑛 (�̃�)[𝒀 (�̃�) −𝑿𝜷 −𝑲(�̃�)�̃�],

where 𝒀 (�̃�) = �̃�−𝓁′′

𝑛 (�̃�)
−1𝓁

′

𝑛(�̃�). Similar to Tibshirani,3 to avoid computational difficulty, we approximate the Hessian
matrix with a diagonal one, e.g., setting off-diagonal elements to zero, and minimize the penalized reweighted least
squares w.r.t. 𝜷

1
2𝑛

[𝒀 (�̃�) −𝑿𝜷 −𝑲(�̃�)�̃�]𝑇 [𝑾 (�̃�)][𝒀 (�̃�) −𝑿𝜷 −𝑲(�̃�)�̃�] + 𝜆1‖𝜷‖1,

where 𝑾 (�̃�) is a diagonal matrix that has the same diagonal elements as −𝓁′′

𝑛 (�̃�). Hence, treating 𝒀 (�̃�) −𝑲(�̃�)�̃� as
the working response, 𝑾 (�̃�) as weight, standard procedures for solving LASSO regression estimates could be used
to estimate the 𝜷.28, 29

• Fixing 𝜷, 𝜹 at values 𝜷, �̃�, we update 𝜶. The maximization problem (5) can be expressed as
𝑓 (𝜶, 𝜷, �̃�) = 1

𝑛
𝝉𝑇

[

𝑿𝜷 +𝑲(�̃�)𝜶 −𝑨(𝜶, 𝜷, �̃�)
]

− 𝜆1‖𝜷‖1 − 𝜆2‖�̃�‖1 −
1
2
𝜆3𝜶𝑇𝑲(�̃�)𝜶.

To investigate the impact of initial values on the algorithm, we have conducted simulation experiments. The results demonstrate that the proposed algorithm is not
sensitive to initial values. We select (1∕𝑄,… , 1∕𝑄) and (1∕𝑛,… , 1∕𝑛) as the initial values for 𝜹 and 𝜶, respectively. The initial value of 𝜷 is the LASSO estimate obtained
by fitting a penalized linear COX model.
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Similar to the updating procedure of 𝜷, maximizing the previous function is equivalent to minimizing the following
function w.r.t 𝜶,

1
2𝑛

[𝒀 (�̃�) −𝑿𝜷 −𝑲(�̃�)𝜶]𝑇𝑾 (�̃�)[𝒀 (�̃�) −𝑿𝜷 −𝑲(�̃�)𝜶] + 1
2
𝜆3𝜶𝑇𝑲(�̃�)𝜶,

which is a quadratic function of 𝜶. It follows that the update for 𝜶 is the solution to a linear system of equations
[1
𝑛
𝑲(�̃�)𝑾 (�̃�)𝑲(�̃�) + 𝜆3𝑲(�̃�)

]

𝜶 = 1
𝑛
𝑲(�̃�)𝑾 (�̃�)(𝒀 (�̃�) −𝑿𝜷).

If the left-hand side of the above equation becomes a singular matrix, it is necessary to add a diagonal matrix with
small entries, such as 0.00001, to stabilize the estimate.

• For 𝜹, given the estimates of 𝛼, 𝛽, (5) can be written as
𝑓 (�̃�, 𝜷, 𝜹) = 1

𝑛
𝝉𝑇

[

𝑿𝜷 +𝑲(𝜹)�̃� −𝑨(�̃�, 𝜷, 𝜹)
]

− 𝜆1‖𝜷‖1 − 𝜆2‖𝜹‖1 −
1
2
𝜆3�̃�𝑇𝑲(𝜹)�̃�.

With the updated values of 𝜷,𝜶, say, 𝜷, �̃�, updating 𝜹 can be done by solving a nonlinear optimization problem under
the constraint of 𝜹 > 𝟎. To address the difficulty in high-dimensional optimization, we propose using the spectral
projected gradient (SPG) method, a non-monotone projected gradient algorithm. This method is well-suited for
solving large-scale convex-constrained optimization problems in a more efficient manner when gradients are readily
computable, as is the case for the gradient of the objective function with respect to 𝜹, as detailed in the Appendix.
Additionally, its implementation does not require the Hessian matrix, making it ideal for high-dimensional problems
with thousands of predictors. We implement the SPG method by using the function SPG in the R package of BB.30

Step 3. Repeat Step 2 until convergence or the number of iteration reaches a pre-specified maximum number of iterations .

2.3 Selection of tuning parameters
Once the solution path has been determined, it is necessary to select the optimal set of regularization/tuning parameters, denoted
as 𝝀 = (𝜆1, 𝜆2, 𝜆3). The selection of 𝝀 is an important aspect within the kernel machine framework. Our proposed RegGKM
procedure is relatively new and there is no established criterion available for selecting the tuning parameters. We suggest using
cross-validated partial log-likelihood 31 to determine the optimal tuning parameters.

In general, tuning parameters can be selected using 𝐾-fold cross validation. This process involves dividing the data into 𝐾
pieces, training the model using 𝐾 − 1 pieces, and validating on the 𝑘-th piece, as described by Friedman et al 29 and Van
Houwelingen et al 31 . This procedure is repeated, validating on each of the 𝐾 pieces in turn, and finally, the 𝐾 deviances are
summed. However, as noted by Friedman et al,29 cross-validation in the Cox model presents some subtle differences. For example,
when using leave-one-out cross-validation, the predictive partial likelihood for the left-out observation is either identically 1
for all 𝜂 (if the left-out observation is an observed event) or undefined (if the left-out observation is right-censored). To fix this
ill-conditioned problem, we use the cross-validated partial log-likelihood (CVPL) scheme proposed by Van Houwelingen et al.
For the 𝑘-th fold, denote the leave-one-fold-out estimates as 𝜷−𝑘(𝝀), �̂�−𝑘(𝝀), �̂�−𝑘(𝝀), which are computed by maximizing the
leave-one-fold-out penalized partial log-likelihood 𝓁−𝑘(𝜶, 𝜷, 𝜹) + 𝜆1‖𝜷‖1 + 𝜆2‖𝜹‖1 +

1
2
𝜆3𝜶𝑇𝑲(𝜹)𝜶 based on non-left-out data

for a given 𝝀. 31 32 Our goodness of fit for a given 𝝀 can be measured by

CVPL(𝝀) =
𝐾
∑

𝑘=1
{𝓁(𝜷−𝑘(𝝀), �̂�−𝑘(𝝀), �̂�−𝑘(𝝀)) − 𝓁−𝑘(𝜷−𝑘(𝝀), �̂�−𝑘(𝝀), �̂�−𝑘(𝝀))}. (6)

For a given regularization path Λ = (𝝀1,𝝀2,…), we compute the estimates of 𝜶(𝝀), 𝜷(𝝀), and 𝜹(𝝀) for each 𝝀 in 𝚲 and obtain
a solution path. Finally, we maximize the proposed cross-validated partial log-likelihood (CVPL) with respect to 𝝀 to obtain the
optimal tuning/regularization parameters, which correspond to the optimal estimates. Specifically, the regularization parameter
𝝀 in the second step of the algorithm is initially selected from a large range and gradually narrowed down based on the proposed
CVPL until the optimal regularization parameter is accurately selected within a small range.
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3 SIMULATION

3.1 Prediction measures
In simulations and real data analysis, we use CVPL, along with C-statistics and area under the time-dependent receiver operating
characteristic (ROC) curves (AUC), to compare our proposed RegGKM method with other competing methods. The latter two
metrics are defined as follows, and are calculated by R packages “survC1”, “survivalROC” and “risksetROC”.

(i) C-statistic. For a specified follow-up period, say, (0, 𝜉), the C-statistic is defined as 33

𝐶𝜉 = 𝑃𝑟(𝑓 (𝑋1, 𝑍1) > 𝑓 (𝑋2, 𝑍2)|𝐷2 > 𝐷1, 𝐷1 < 𝜉),

where 𝑓 (𝑋,𝑍) = 𝑋𝑇 𝛽 + ℎ̂(𝑍) is the estimated risk score by the RegGKM method. When 𝐷 is right censored, Uno et al33

account for censoring via inverse probability weighting, obtaining a censoring-adjusted estimate of 𝐶𝜉 :

�̂�𝜉 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝜏𝑖{�̂�(𝑇𝑖)}−2𝐼(𝑇𝑖 < 𝑇𝑗 , 𝑇𝑖 < 𝜉)𝐼(𝑋𝑇

𝑖 𝛽 + ℎ̂(𝑍𝑖) > 𝑋𝑇
𝑗 𝛽 + ℎ̂(𝑍𝑗))

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝜏𝑖{�̂�(𝑇𝑖)}−2𝐼(𝑇𝑖 < 𝑇𝑗 , 𝑇𝑖 < 𝜉)

,

where 𝐼(⋅) is the indicator function and �̂�(⋅) is the Kaplan-Meier estimator for censoring distribution 𝐺(𝑡) = 𝑃𝑟(𝐶 > 𝑡). As for
the choice of 𝜉, Uno et al.33 recommend to choose 𝜉 to balance estimation accuracy and numerical stability. Following Uno et
al.33 , we have chosen 𝜉 to be the 70 percentile of observed survival time when computing C-statistics in the simulations and in
the real data analysis.

(ii) AUC. The ROC curve displays the true positive rate (sensitivity) versus the false positive rate (1-specificity) for all possible
cutpoints, providing all possible combinations of true-positive and false-positive rates. In a survival setting, the AUC at 𝑡, i.e.,
AUC(𝑡), is equal to the probability that the marker value of a randomly chosen diseased subject is above the marker value of a
randomly chosen subject alive at that time, where the marker value is equal to 𝑋𝑇 𝛽 + ℎ̂(𝑍) for the RegGKM method, and can
also be viewed as a concordance index. The overall AUC over (0, 𝜉) is the weighted integral of AUC(𝑡) over (0, 𝜉). 34 As in the
calculation of the C-statistic, the choice of 𝜉 entails a delicate balance between achieving accurate estimations and maintaining
numerical stability. Following the guidance provided by Heagerty and Zheng34 and based on our own experience, we have chosen
𝜉 to be the 90% of the maximum observed survival time when computing the overall AUC in the simulations and in the real
data analysis.

3.2 Comparison with LASSO-COX
To investigate the finite sample performance, we firt compare our proposed RegGKM method with the LASSO-COX method.
The data are generated from the following Cox partially linear proportional hazards model,

𝑔(𝑡|𝑋𝑖, 𝑍𝑖) = exp(𝑋𝑇
𝑖 𝛽 + ℎ(𝑍𝑖)), (7)

where the non-genomic covariates𝑋𝑖𝑝 and genomic covariates𝑍𝑖𝑞 are independently generated from𝑈 (−0.01, 0.01) and𝑈 (0, 3),
respectively. To imitate the complex relationships between gene expression levels and the hazard, the nonparametric function
ℎ(⋅) is set to have a complex form with nonlinear functions of the 𝑍’s and interactions among the 𝑍’s. In practice, without
prior knowledge, the true relevant predictors are not known in advance. The predictor set used in modeling is always larger than
the true relevant predictor set. To mimic such a scenario, we consider the following 7 settings, where Settings 1-2, 3-5 and 6-7
represent the multivariate, high-dimensional and ultrahigh-dimensional cases, respectively.

1: 𝑃 = 1, 𝑄 = 5, 𝛽 = 1, ℎ(𝑍) = 0.6 cos(𝑍1)𝑍2 + 0.36𝑍2
1 − 0.3 exp(𝑍1)𝑍2 − 0.36 sin(𝑍2) cos(𝑍3) + 0.6 exp(𝑍3) sin(𝑍4) −

0.48𝑍2 sin(𝑍4) − 0.12 cos(𝑍3)𝑍2
4 − 0.12 exp(𝑍4) cos(𝑍5) − 0.48 sin(𝑍4)𝑍2

5 . We fit Model (7) without any additional
irrelevant predictors.

2: 𝑃 = 2, 𝑄 = 15, 𝛽 = (1, 0)𝑇 , ℎ(⋅) is the same as in Setting 1. We fit Model (7) with 1 additional irrelevant 𝑋 predictor and
10 additional irrelevant 𝑍 predictors.

3: 𝑃 = 200, 𝑄 = 15, 𝛽 = (𝛽𝑇1 , 𝛽
𝑇
0 )

𝑇 , where 𝛽1 = (1, 1, 1, 1, 1)𝑇 and 𝛽0 is the zero vector, ℎ(𝑍) = 0.72 cos(𝑍1)𝑍2 −
0.24 exp(𝑍1)𝑍2 + 0.72 exp(𝑍2) sin(𝑍3) − 0.12 cos(𝑍1)𝑍2

3 − 0.12 exp(𝑍2) cos(𝑍3). We fit Model (7) with 195 additional
irrelevant 𝑋 predictors and 12 additional irrelevant 𝑍 predictors.
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4: 𝑃 = 15, 𝑄 = 200, 𝛽 = (𝛽𝑇1 , 𝛽
𝑇
0 )

𝑇 , where 𝛽1 = (1, 1, 1, 1, 1)𝑇 and 𝛽0 is the zero vector, ℎ(⋅) is the same as in Setting 3. We
fit Model (7) with 10 additional irrelevant 𝑋 predictors and 197 additional irrelevant 𝑍 predictors.

5: 𝑃 = 200, 𝑄 = 200, 𝛽 = (𝛽𝑇1 , 𝛽
𝑇
0 )

𝑇 , where 𝛽1 = (1, 1, 1, 1, 1)𝑇 and 𝛽0 is the zero vector, ℎ(⋅) is the same as in Setting 3.
We fit Model (7) with 195 additional irrelevant 𝑋 predictors and 197 additional irrelevant 𝑍 predictors.

6: 𝑃 = 1, 𝑄 = 1000, 𝛽 = 1, ℎ(⋅) is the same as in Setting 3. We fit Model (7) with 997 additional irrelevant 𝑍 predictors.
7: 𝑃 = 1000, 𝑄 = 1000, 𝛽 = (𝛽𝑇1 , 𝛽

𝑇
0 )

𝑇 , where 𝛽1 = (1, 1, 1, 1, 1)𝑇 and 𝛽0 is the zero vector, ℎ(⋅) is the same as in Setting 3.
We fit Model (7) with 995 additional irrelevant 𝑋 predictors and 997 additional irrelevant 𝑍 predictors.

The censoring time is generated from an exponential distribution with mean𝑈 exp(𝑋𝑇 𝛽+ℎ(𝑍)), where𝑈 is randomly generated
from a uniform distribution. The different censor rates depend on different uniform distributions from which 𝑈 is randomly
generated. For each setting, only the garrotized Gaussian kernel is used to fit model (7). We take the sample size 𝑛 = 100 and
conduct a total of 1,000 experiments for each parameter configuration.

The CVPLs, C-statistics and AUCs of RegGKM and LASSO-COX for the seven settings under different censor rates are
reported in Table 1 (multivariate settings) and Table 2 (high-dimensional and ultrahigh-dimensional settings). The simulation
results clearly suggest that our proposed RegGKM method outperforms the LASSO-COX in CVPL, C-statistics and AUC
under all of the scenarios examined. The RegGKM method has a better prediction performance compared to the LASSO-COX
method, possibly because the proposed RegGKM method is more model-free, while the LASSO-COX method is sensitive to the
misspecified model when the data are generated from a Cox partially linear model. This may suggest that, if there are complex
nonlinear structures and gene-gene interactions, the RegGKM method could capture these effects better than the LASSO-COX
method and hence gains more accuracy.

3.3 Comparison with COSSO-COX
To evaluate the performance of our proposed RegGKM method against the COSSO-COX method, we fit a Cox partially linear
hazards model based on the RegGKM method, and a nonparametric model, an additive ANOVA model including only the main
effects, using the COSSO-COX method. As the COSSO-COX method is not suitable for high-dimensional settings, we only
considered Settings 1 and 2 in Section 3.2 and conducted a total of 100 replications for each parameter configuration.

Table 3 presents a comparison of the predictive performance of these two methods, considering two settings with different
censor rates. The results clearly demonstrate that our proposed RegGKM method surpasses the COSSO-COX method in terms of
average CVPLs, C-statistics, and AUCs. This is likely due to the fact that the RegGKM method allows for complex relationships,
including gene-gene interactions, while the COSSO-COX method only considers main effects in its additive model.

4 ANALYSIS OF THE MULTIPLE MYELOMA DATASET

We applied the RegGKM method to study multiple myeloma using data from the Gene Expression Omnibus (GSE24080).
The dataset contained 20162 genes from 169 patients, including 125 patients who were observed to die during followup and
44 patients who were censored. Our goal was to develop a more accurate predictive model for multiple myeloma patients’
survival that takes into account both gene expression measurements and clinical information. To do this, we first conducted a
preliminary screening of genes based on existing findings35 and retained 129 genes deemed most relevant to survival outcomes.
Then, we applied the proposed RegGKM method, incorporating five linearly modeled clinical features (age, creatinine, lactate
dehydrogenase, albumin and percent of plasma cells in a bone marrow biopsy) and 129 nonparametrically modeled genes. In
general, the selection of a kernel function can be guided by subject matter knowledge or the specific signals researchers wish to
consider, such as linear or nonlinear effects. Since our focus was on gene expression data, we recommend using the garrotized
Gaussian kernel, which allows for flexible capture of various linear and nonlinear effects in gene expression data.20 It is worth
noting that different types of genomic data may have natural kernel choices. For instance, the identity-by-state kernel has been
frequently used for genotype data. Additionally, we compared the results with those obtained using the COSSO-COX and
LASSO-COX methods.

To evaluate the predictive accuracy of the three methods, we randomly divided the observations into a training set (85 observa-
tions), a validation set (42 observations) for finding the optimal tuning parameters, and a testing set (the remaining observations)
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for prediction evaluation. The average cross-validated partial likelihood (CVPL), C-statistics, and area under the curve (AUC)
for each method were calculated over 500 replications and reported in Table 4. As shown in the table, our RegGKM method
demonstrated superior predictive accuracy compared to the other two methods. The genes selected by the RegGKM method can
provide important information about the biological processes underlying multiple myeloma. For example, FCGR2B (Fc frag-
ment of IgG receptor IIb), FGFR3 (fibroblast growth factor receptor 3) and DUSP5 (dual-specificity phosphatase 5) were the top
three genes selected most frequently by RegGKM over 500 replications. FCGR2B was found to be negatively correlated with
the overall survival rate in patients with clear cell renal cell carcinoma,36 FGFR3 is mutated or overexpressed in many bladder
cancers,37 and DUSP5 has been implicated in skin carcinogenesis. 38

The LASSO-COX approach also selected genes: CD163 (CD163 molecule), KIT (proto-oncogene, receptor tyrosine kinase)
and DSG2 (desmoglein 2). These differ from those selected by the RegGKM method and may provide complementary infor-
mation about the biology of multiple myeloma. However, the improved predictive performance of RegGKM compared to the
LASSO-COX and COSSO-COX methods highlights the benefits of our proposed method, which accommodates complex inter-
actions and relationships between genes and hazards. Our results suggest that a simple linear assumption is not flexible enough
to capture the complex relationships between genes, hazard, and gene-gene interactions.

5 CONCLUSION

To improve the prediction accuracy of the Cox proportional hazard model when dealing with the complex relationships between
response and predictors in high-dimensional settings, we constructed a kernel Cox regression model by introducing the reg-
ularized garrotized kernel machine method and designed an efficient algorithm for implementation. A vital advantage of the
proposed RegGKM method is that it not only captures the complex relationships between microarray gene expression pro-
files and hazard and allows for possible interactions among genes, but also removes the irrelevant predictors automatically and
hence possesses more predictive accuracy compared to the competing methods. Several simulations and the analysis of the MM
patients survival data reveal that the predictive superiority of our proposed RegGKM method to the existing methods.

It is worth mentioning that we considered only kernel Cox proportional hazard model using a garrotized Gaussian kernel. Of
course, the proposed garrotized kernel machine procedure can also be extended to other survival models, such as accelerated
failure model. Besides, the RegGKM method can also accommodate more kinds of data, such as longitudinal and missing data.
We are also pursuing extensions to quantile regression and will present the results elsewhere.
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APPENDIX

𝓁
′

𝑛(𝜼) and 𝓁
′′

𝑛 (𝜼)
To update the values of 𝜷 and 𝜶, we compute 𝓁

′

𝑛(𝜼) and 𝓁
′′

𝑛 (𝜼) in Section 2.2 as follows. Let 𝜼 = (𝜂1, 𝜂2,… , 𝜂𝑛)𝑇 , where
𝜂𝑖 = 𝑿𝑇

𝑖 𝜷 + 𝒌𝑇
𝑖 (𝜹)𝜶. The log-partial likelihood function can be written as

𝓁𝑛(𝜼) =
1
𝑛

𝑛
∑

𝑗=1
𝜏𝑗{𝜂𝑗 − log[

∑

𝑙∈𝑅𝑗

exp(𝜂𝑙)]}.

Let 𝐸𝑖 = {𝑅𝑚 ∶ 𝑖 ∈ 𝑅𝑚} denote the risk sets containing individual 𝑖, and 𝐸𝑖𝑖′ = {𝑅𝑚 ∶ 𝑖, 𝑖′ ∈ 𝑅𝑚} be the risk sets containing
both individuals 𝑖 and 𝑖′ . Straightforward calculations yield

𝜕𝓁𝑛(𝜼)
𝜕𝜂𝑖

= 1
𝑛
[𝜏𝑖 − exp(𝜂𝑖)

∑

𝑚∈𝐸𝑖

𝜏𝑚
∑

𝑙∈𝑅𝑚
exp(𝜂𝑙)

],

𝜕2𝓁𝑛(𝜼)
𝜕𝜂2𝑖

= −1
𝑛
exp(𝜂𝑖)

∑

𝑚∈𝐸𝑖

𝜏𝑚
∑

𝑙∈𝑅𝑚
exp(𝜂𝑙)

+ 1
𝑛
exp(2𝜂𝑖)

∑

𝑚∈𝐸𝑖

𝜏𝑚
{
∑

𝑙∈𝑅𝑚
exp(𝜂𝑙)}2

,

𝜕2𝓁𝑛(𝜼)
𝜕𝜂𝑖𝜕𝜂𝑖′

= 1
𝑛
exp(𝜂𝑖) exp(𝜂𝑖′ )

∑

𝑚∈𝐸𝑖𝑖′

𝜏𝑚
{
∑

𝑙∈𝑅𝑚
exp(𝜂𝑙)}2

, (𝑖 ≠ 𝑖′).
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Gradient with respect to 𝜹
Assuming no ties in the observed failure times, we arrange them into an ascending order. Since updating of 𝜹 may involve large-
scale optimization, we need to derive the gradient of objective function (5) with respect to 𝜹 to accelerate the implementation
of the spectral projected gradient method.

We first recall objective function (5),

𝑓 (𝜶, 𝜷, 𝜹) = 1
𝑛
𝝉𝑇 [𝑿𝜷 +𝑲(𝜹)𝜶 −𝑨(𝜶, 𝜷, 𝜹)]

− 𝜆1‖𝜷‖1 − 𝜆2‖𝜹‖1 −
1
2
𝜆3𝜶𝑇𝑲(𝜹)𝜶.

Denote 𝐼 = 𝜕𝝉𝑇𝑲(𝜹)𝜶
𝜕𝜹

, 𝐼𝐼 = 𝜕𝝉𝑇𝑨(𝜶,𝜷,𝜹)
𝜕𝜹

, 𝐼𝐼𝐼 = 𝜕𝜶𝑇𝑲(𝜹)𝜶
𝜕𝜹

and 𝐼 , 𝐼𝐼 and 𝐼𝐼𝐼 are calculated in the following Proof. 𝟏, Proof. 𝟐
and Proof. 𝟑, respectively.
Proof. 1.

𝐼 = 𝜕𝝉𝑇𝑲(𝜹)𝜶
𝜕𝜹 𝑄×1

=
(

𝜕𝑲(𝜹)
𝜕𝜹

)𝑇

𝑄×𝑛𝑛

(

𝜕𝝉𝑇𝑲(𝜹)𝜶
𝜕𝑲(𝜹)

)𝑇

𝑛𝑛×1
=
(

𝜕𝑲(𝜹)
𝜕𝜹

)𝑇
(

𝝉𝑇 ⊗ 𝜶𝑇 )𝑇 ,

where ⊗ represents “Kronecker product” and
(

𝜕𝑲(𝜹)
𝜕𝜹

)𝑇 can be expressed as follows.
(

𝜕𝑲(𝜹)
𝜕𝜹

)𝑇

=

(

(

𝜕𝑲𝟏(𝜹)
𝜕𝜹

)𝑇

,
(

𝜕𝑲𝟐(𝜹)
𝜕𝜹

)𝑇

,⋯⋯ ,
(

𝜕𝑲𝒏(𝜹)
𝜕𝜹

)𝑇
)

𝑄×𝑛𝑛

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧1𝑞 − 𝑧1𝑞
)2
}(

−
(

𝑧11 − 𝑧11
)2
)

… exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧1𝑞 − 𝑧𝑛𝑞
)2
}(

−
(

𝑧11 − 𝑧𝑛1
)2
)

…
⋮ ⋮ ⋮
⋮ ⋮ ⋮

exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧1𝑞 − 𝑧1𝑞
)2
}(

−
(

𝑧1𝑄 − 𝑧1𝑄
)2
)

… exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧1𝑞 − 𝑧𝑛𝑞
)2
}(

−
(

𝑧1𝑄 − 𝑧𝑛𝑄
)2
)

…

exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧𝑛𝑞 − 𝑧1𝑞
)2
}(

−
(

𝑧𝑛1 − 𝑧11
)2
)

… exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧𝑛𝑞 − 𝑧𝑛𝑞
)2
}(

−
(

𝑧𝑛1 − 𝑧𝑛1
)2
)

⋮ ⋮ ⋮
⋮ ⋮ ⋮

exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧𝑛𝑞 − 𝑧1𝑞
)2
}(

−
(

𝑧𝑛𝑄 − 𝑧1𝑄
)2
)

… exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧𝑛𝑞 − 𝑧𝑛𝑞
)2
}(

−
(

𝑧𝑛𝑄 − 𝑧𝑛𝑄
)2
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠𝑄×𝑛𝑛

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧1𝑞 − 𝑧1𝑞
)2
}

… exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧1𝑞 − 𝑧𝑛𝑞
)2
}

… exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧𝑛𝑞 − 𝑧1𝑞
)2
}

…
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧1𝑞 − 𝑧1𝑞
)2
}

… exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧1𝑞 − 𝑧𝑛𝑞
)2
}

… exp
{

−
∑𝑄

𝑞=1 𝛿𝑞
(

𝑧𝑛𝑞 − 𝑧1𝑞
)2
}

…

exp

{

−
𝑄
∑

𝑞=1
𝛿𝑞
(

𝑧𝑛𝑞 − 𝑧𝑛𝑞
)2
}

⋮
⋮

exp

{

−
𝑄
∑

𝑞=1
𝛿𝑞
(

𝑧𝑛𝑞 − 𝑧𝑛𝑞
)2
}

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑄×𝑛𝑛

∗

⎛

⎜

⎜

⎜

⎜

⎝

−
(

𝑧11 − 𝑧11
)2

⋯ −
(

𝑧11 − 𝑧𝑛1
)2

⋯ −
(

𝑧𝑛1 − 𝑧11
)2

⋯ −
(

𝑧𝑛1 − 𝑧𝑛1
)2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−
(

𝑧1𝑄 − 𝑧1𝑄
)2

⋯ −
(

𝑧1𝑄 − 𝑧𝑛𝑄
)2

⋯ −
(

𝑧𝑛𝑄 − 𝑧1𝑞
)2

⋯ −
(

𝑧𝑛𝑄 − 𝑧𝑛𝑄
)2

⎞

⎟

⎟

⎟

⎟

⎠𝑄×𝑛𝑛



=
(

𝑬𝑄×1(Vec(𝑲(𝜹)))𝑇 ∗ 𝑩
)

𝑄×𝑛𝑛

where 𝑬 is a 𝑄 × 1 vector whose elements are 1, Vec(⋅) is a matrix vec operator, ∗ represents hadamard product and 𝑩 =
(−𝑢[, , 1],−𝑢[, , 2],⋯ ,−𝑢[, , 𝑛]) is a 𝑄 × 𝑛𝑛 matrix where −𝑢[, , 1], −𝑢[, , 2], ⋯, −𝑢[, , 𝑛] are expressed as

−𝑢[, , 1] =

⎛

⎜

⎜

⎜

⎜

⎝

−
(

𝑧11 − 𝑧11
)2

⋯ −
(

𝑧11 − 𝑧𝑛1
)2

⋮ ⋮ ⋮
⋮ ⋮ ⋮

−
(

𝑧1𝑄 − 𝑧1𝑄
)2

⋯ −
(

𝑧1𝑄 − 𝑧𝑛𝑄
)2

⎞

⎟

⎟

⎟

⎟

⎠𝑄×𝑛

,

−𝑢[, , 2] =

⎛

⎜

⎜

⎜

⎜

⎝

−
(

𝑧21 − 𝑧11
)2

⋯ −
(

𝑧21 − 𝑧𝑛1
)2

⋮ ⋮ ⋮
⋮ ⋮ ⋮

−
(

𝑧2𝑄 − 𝑧1𝑄
)2

⋯ −
(

𝑧2𝑄 − 𝑧𝑛𝑄
)2

⎞

⎟

⎟

⎟

⎟

⎠𝑄×𝑛

,

⋮

−𝑢[, , 𝑛] =

⎛

⎜

⎜

⎜

⎜

⎝

−
(

𝑧𝑛1 − 𝑧11
)2

⋯ −
(

𝑧𝑛1 − 𝑧𝑛1
)2

⋮ ⋮ ⋮
⋮ ⋮ ⋮

−
(

𝑧𝑛𝑄 − 𝑧1𝑄
)2

⋯ −
(

𝑧𝑛𝑄 − 𝑧𝑛𝑄
)2

⎞

⎟

⎟

⎟

⎟

⎠𝑄×𝑛

.

In summary, 𝐼 = 𝜕𝝉𝑇𝑲(𝜹)𝜶
𝜕𝜹

can be written as

𝐼 =
𝜕𝝉𝑇𝑲(𝜹)𝜶

𝜕𝜹 𝑄×1 =
(

𝑬𝑄×1(Vec(𝑲(𝜹)))𝑇 ∗ 𝑩
)

𝑄×𝑛𝑛 (𝝉 ⊗ 𝜶)𝑛𝑛×1.

Proof. 2.

𝐼𝐼 =
𝜕𝝉𝑇𝑨(𝜶, 𝜷, 𝜹)

𝜕𝜹 𝑄×1
=
(

𝜕𝑲(𝜹)
𝜕𝜹

)𝑇

𝑄×𝑛𝑛

(

𝜕𝝉𝑇𝑨(𝜶, 𝜷, 𝜹)
𝜕𝑲(𝜹)

)𝑇

𝑛𝑛×1

=
(

𝑬𝑄×1(Vec(𝑲(𝜹)))𝑇 ∗ 𝑩
)

𝑄×𝑛𝑛

(

𝜕𝝉𝑇𝑨(𝜶, 𝜷, 𝜹)
𝜕𝑲(𝜹)

)𝑇

𝑛𝑛×1
.

𝜕𝝉𝑇𝑨(𝜶,𝜷,𝜹)
𝜕𝑲(𝜹)

can be expressed as follows,

𝜕𝝉𝑇𝑨(𝜶, 𝜷, 𝜹)
𝜕𝑲(𝜹)

=
((

𝜕𝝉𝑇𝑨(𝜶, 𝜷, 𝜹)
𝜕𝒌𝟏(𝜹)

)

,
(

𝜕𝝉𝑇𝑨(𝜶, 𝜷, 𝜹)
𝜕𝒌2(𝜹)

)

,⋯⋯ ,
(

𝜕𝝉𝑇𝑨(𝜶, 𝜷, 𝜹)
𝜕𝒌𝒏(𝜹)

))

1×𝑛𝑛

=

(

𝜏1

[

exp
(

𝑿𝑇
1 𝜷 + 𝒌1(𝜹)

)]

𝜶𝑇

∑

𝑙∈𝑅1
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) , 𝜏1

[

exp
(

𝑿𝑇
2 𝜷 + 𝒌2(𝜹)

)]

𝜶𝑇

∑

𝑙∈𝑅1
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) + 𝜏2

[

exp
(

𝑿𝑇
2 𝜷 + 𝒌2(𝜹)

)]

𝜶𝑇

∑

𝑙∈𝑅2
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) ,⋯

)

1×𝑛𝑛

= 𝑭 ∗
(

𝜶𝑇 ,𝜶𝑇 ,⋯ ,𝜶𝑇 )

1×𝑛𝑛,

where 𝑭 = (𝑔1,⋯ , 𝑔1, 𝑔2,⋯ , 𝑔2,⋯ , 𝑔𝑛,⋯ , 𝑔𝑛) is a 1 × 𝑛𝑛 vector and 𝑔𝑖 (𝑖 = 1, 2,⋯ 𝑛) are repeated 𝑛 times, respectively.

𝑔𝑖 = 𝜏1

[

exp
(

𝑿𝑇
𝑖 𝜷 + 𝒌𝑖(𝜹)

)]

∑

𝑙∈𝑅1
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) +⋯ + 𝜏𝑖

[

exp
(

𝑿𝑇
𝑖 𝜷 + 𝒌𝑖(𝜹)

)]

∑

𝑙∈𝑅𝑖
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) , 𝑖 = 1, 2,⋯ , 𝑛.

Denote 𝑮 = (𝑔1,⋯ , 𝑔𝑛), which can be written as,
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𝑮 =

(

𝜏1

[

exp
(

𝑿𝑇
1 𝜷 + 𝒌1(𝜹)

)]

∑

𝑙∈𝑅1
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) , 𝜏1

[

exp
(

𝑿𝑇
2 𝜷 + 𝒌2(𝜹)

)]

∑

𝑙∈𝑅1
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) + 𝜏2

[

exp
(

𝑿𝑇
2 𝜷 + 𝒌2(𝜹)

)]

∑

𝑙∈𝑅2
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) ,⋯

)

1×𝑛

=

(

𝜏1
∑

𝑙∈𝑅1
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) ,
𝜏1

∑

𝑙∈𝑅1
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) +
𝜏2

∑

𝑙∈𝑅2
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) ,⋯

)

1×𝑛

∗
(

exp
(

𝑿𝑇
1 𝜷 + 𝒌1(𝜹)

)

, exp
(

𝑿𝑇
2 𝜷+ 𝒌2(𝜹)

)

,⋯
)

1×𝑛

=

(

𝜏1
∑

𝑙∈𝑅1
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) ,
𝜏2

∑

𝑙∈𝑅2
exp

(

𝑿𝑇
𝑙 𝜷 + 𝒌𝑙(𝜹)𝜶

) ,⋯

)

1×𝑛

⎛

⎜

⎜

⎜

⎜

⎝

1 1 ⋯ 1
0 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎞

⎟

⎟

⎟

⎟

⎠𝑛×𝑛

∗
(

exp
(

𝑿𝑇
1 𝜷 + 𝒌1(𝜹)

)

, exp
(

𝑿𝑇
2 𝜷 + 𝒌2(𝜹)

)

,⋯
)

1×𝑛 .

The 𝑮 is derived for facilitating calculation of 𝑭 and 𝐼𝐼 can be obtained,

𝐼𝐼 =
𝜕𝝉𝑇𝑨(𝜶, 𝜷, 𝜹)

𝜕𝜹 𝑄×1
=
(

𝑬𝑄×1(Vec(𝑲(𝜹)))𝑇 ∗ 𝑩
)

𝑄×𝑛𝑛

(

𝑭 ∗
(

𝜶𝑇 ,𝜶𝑇 ,⋯ ,𝜶𝑇 ))

𝑛𝑛×1 .

Proof. 3. Similar to 𝐼 , 𝐼𝐼𝐼 can be written as,
𝜕𝜶𝑇𝑲(𝜹)𝜶

𝜕𝜹 𝑄×1 =
(

𝑬𝑄×1(Vec(𝑲(𝜹)))𝑇 ∗ 𝑩
)

𝑄×𝑛𝑛 (𝜶 ⊗ 𝜶)𝑛𝑛×1.

Combining Proof. 𝟏, Proof. 𝟐 and Proof. 𝟑, we obtain the following results,
𝜕𝑓 (𝜶, 𝜷, 𝜹)

𝜕𝜹
= 1

𝑛

[

(

𝑬𝑄×1(Vec(𝑲(𝜹)))𝑇 ∗ 𝑩
)

𝑄×𝑛𝑛 (𝝉 ⊗ 𝜶)𝑛𝑛×1

−
(

𝑬𝑄×1(Vec(𝑲(𝜹)))𝑇 ∗ 𝑩
)

𝑄×𝑛𝑛

(

𝑭 ∗
(

𝜶𝑇 ,𝜶𝑇 ,⋯ ,𝜶𝑇 ))

𝑛𝑛×1

]

− 𝜆2𝑬𝑄×1 −
1
2
𝜆3

(

𝑬𝑄×1(Vec(𝑲(𝜹)))𝑇 ∗ 𝑩
)

𝑄×𝑛𝑛 (𝜶 ⊗ 𝜶)𝑛𝑛×1,
where 𝑬, 𝑩 and 𝑭 have been previously defined.



14 Yaohua Rong ET AL

TABLE 1 Comparison of prediction performances of the RegGKM and the LASSO-COX methods under multivariate settings

CR Setting n P Q Prediction Measure RegGKM LASSO-COX

0%
1 100 1 5

CVPL -2.9387 (0.0906) -3.3393 (0.3033)
C-statistics 0.8601 (0.0238) 0.8106 (0.0248)

AUC 0.9502 (0.0349) 0.9291 (0.0569)

2 100 2 15
CVPL -2.9776 (0.0933) -3.2197 (0.0998)

C-statistics 0.8503 (0.0228) 0.8060 (0.0276)
AUC 0.9508 (0.0359) 0.9208 (0.0758)

10%
1 100 1 5

CVPL -2.7987 (0.1225) -3.1099 (0.3284)
C-statistics 0.8508 (0.0243) 0.8081 (0.0235)

AUC 0.9161 (0.0675) 0.8771 (0.0917)

2 100 2 15
CVPL -2.8069 (0.1279) -3.0079 (0.1285)

C-statistics 0.8509 (0.0215) 0.8040 (0.0248)
AUC 0.9187 (0.0712) 0.8744 (0.0897)

20%
1 100 1 5

CVPL -2.6329 (0.1593) -2.9271 (0.3126)
C-statistics 0.8503 (0.0258) 0.8025 (0.0269)

AUC 0.8802 (0.1019) 0.8454 (0.1195)

2 100 2 15
CVPL -2.6438 (0.1286) -2.8353 (0.1397)

C-statistics 0.8409 (0.0212) 0.7957 (0.0282)
AUC 0.8809 (0.1032) 0.8261 (0.1232)

* The average CVPLs, C-statistics and AUCs over 100 replications, with standard deviations in parentheses, are given in the
last two columns when the censor rates equal to 0%, 10% and 20%, respectively.

How to cite this article: Rong, Yaohua, Zhao, Sihai Dave, Zheng, Xia, and Li, Yi (2022), Kernel Cox partially linear regression:
building predictive models for cancer patients’ survival, Statistics in Medicine, 2022;00:1–6.
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TABLE 2 Comparison of prediction performances of the RegGKM and the LASSO-COX methods under high-dimensional and
ultrahigh-dimensional settings

CR Setting n P Q Prediction Measure RegGKM LASSO-COX

0%

3 100 200 15
CVPL -3.1062 (0.0896) -3.5176 (0.0670)

C-statistics 0.8402 (0.0254) 0.7341 (0.0332)
AUC 0.9687 (0.0263) 0.9053 (0.0771)

4 100 15 200
CVPL -3.3618 (0.0843) -3.5396 (0.0552)

C-statistics 0.7498 (0.0391) 0.7331 (0.0293)
AUC 0.9456 (0.0426) 0.9012 (0.0792)

5 100 200 200
CVPL -3.3976 (0.0908) -3.5419 (0.0748)

C-statistics 0.7583 (0.0429) 0.7179 (0.03341)
AUC 0.9402 (0.0716) 0.8997 (0.0852)

6 100 1 1000
CVPL -3.3412 (0.0872) -3.5593 (0.0733)

C-statistics 0.7417 (0.0485) 0.7165 (0.0314)
AUC 0.9264 (0.0575) 0.9088 (0.0723)

7 100 1000 1000
CVPL -3.4549 (0.1035) -3.5813 (0.0917)

C-statistics 0.7429 (0.0461) 0.7049 (0.0344)
AUC 0.9401 (0.0762) 0.9014 (0.0782)

10%

3 100 200 15
CVPL -2.8910 (0.1458) -3.2383 (0.1380)

C-statistics 0.8326 (0.0271) 0.7381 (0.0322)
AUC 0.9209 (0.0663) 0.8375 (0.0904)

4 100 15 200
CVPL -3.1813 (0.1221) -3.2909 (0.1196)

C-statistics 0.7342 (0.0542) 0.7216 (0.0294)
AUC 0.8709 (0.1096) 0.8351 (0.1065)

5 100 200 200
CVPL -3.1796 (0.1419) -3.2783 (0.1308)

C-statistics 0.7409 (0.0435) 0.7129 (0.0341)
AUC 0.8873 (0.0873) 0.8509 (0.0832)

6 100 1 1000
CVPL -3.1596 (0.1216) -3.3069 (0.1321)

C-statistics 0.7239 (0.0538) 0.7102 (0.0352)
AUC 0.8599 (0.0913) 0.8263 (0.0957)

7 100 1000 1000
CVPL -3.2358 (0.1539) -3.3221 (0.1347)

C-statistics 0.7269 (0.0573) 0.7029 (0.0371)
AUC 0.8678 (0.0993) 0.8429 (0.1095)

20%

3 100 200 15
CVPL -2.9429 (0.1372) -3.3058 (0.1236)

C-statistics 0.8401 (0.0262) 0.7358 (0.0336)
AUC 0.9218 (0.0669) 0.8587 (0.0818)

4 100 15 200
CVPL -2.9726 (0.1559) -3.0524 (0.1496)

C-statistics 0.7189 (0.0633) 0.7169 (0.0360)
AUC 0.8459 (0.0958) 0.7792 (0.1041)

5 100 200 200
CVPL -2.9597 (0.1753) -3.0132 (0.1604)

C-statistics 0.7158 (0.0667) 0.7133 (0.0394)
AUC 0.8296 (0.1041) 0.7964 (0.1085)

6 100 1 1000
CVPL -2.9719 (0.1758) -3.0178 (0.1587)

C-statistics 0.7169 (0.0743) 0.7112 (0.0422)
AUC 0.8141 (0.1366) 0.7981 (0.1009)

7 100 1000 1000
CVPL -2.9558 (0.1681) -3.0445 (0.1603)

C-statistics 0.7189 (0.0492) 0.6943 (0.0408)
AUC 0.8301 (0.0994) 0.7738 (0.1359)

* The average CVPLs, C-statistics and AUCs over 100 replications, with standard deviations in parentheses, are given in the last two
columns when the censor rates equal to 0%, 10% and 20%, respectively.
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TABLE 3 Comparison of prediction performances of the RegGKM and the COSSO-COX methods

CR Setting n Q Prediction Measure RegGKM COSSO-COX

0%
1 100 5

CVPL -2.9442 (0.0851) -3.2851 (0.2782)
C-statistics 0.8530 (0.0236) 0.7965 (0.0325)

AUC 0.9466 (0.0344) 0.9338 (0.0651)

2 100 15
CVPL -2.9759 (0.0885) -3.7764 (2.2882)

C-statistics 0.8492 (0.0202) 0.7821 (0.0431)
AUC 0.9450 (0.0381) 0.9022 (0.1321)

10%
1 100 5

CVPL -2.8098 (0.1226) -3.1522 (0.3518)
C-statistics 0.8437 (0.0245) 0.7845 (0.0440)

AUC 0.9076 (0.0671) 0.8431 (0.1127)

2 100 15
CVPL -2.8078 (0.1264) -3.9195 (2.6411)

C-statistics 0.8449 (0.0204) 0.7733 (0.0542)
AUC 0.9122 (0.0685) 0.8348 (0.1581)

20%
1 100 5

CVPL -2.6215 (0.1591) -3.2968 (2.6661)
C-statistics 0.8393 (0.0257) 0.7752 (0.0483)

AUC 0.8823 (0.0981) 0.8072 (0.1340)

2 100 15
CVPL -2.6793 (0.1524) -4.1370 (2.6629)

C-statistics 0.8345 (0.0256) 0.7482 (0.0583)
AUC 0.8789 (0.0883) 0.7619 (0.1375)

* The last four columns give the average CVPLs, C-statistics and AUCs over 100 replications with standard deviations
in parentheses, when the censor rates equal to 0%, 10%, 20%, respectively.

TABLE 4 Average prediction performances for three methods over 500 replications, with standard deviations in parentheses

Methods CVPL (SD) C-statistics (SD) AUC (SD)
RegGKM -2.0508 (0.1894) 0.6816 (0.0574) 0.7446 (0.1048)

COSSO-COX -2.1353 (0.2519) 0.6396 (0.0635) 0.6987 (0.1135)
LASSO-COX -2.0850 (0.2105) 0.6714 (0.0659) 0.7245 (0.1196)
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