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Summary: Functional data analysis has emerged as a powerful tool in response to the ever-increasing resources and

efforts devoted to collecting information about response curves or anything that varies over a continuum. However,

limited progress has been made with regard to linking the covariance structures of response curves to external

covariates, as most functional models assume a common covariance structure. We propose a new functional regression

model with covariate-dependent mean and covariance structures. Particularly, by allowing variances of random scores

to be covariate-dependent, we identify eigenfunctions for each individual from the set of eigenfunctions that govern the

variation patterns across all individuals, resulting in high interpretability and prediction power. We further propose

a new penalized quasi-likelihood procedure that combines regularization and B-spline smoothing for model selection

and estimation and establish the convergence rate and asymptotic normality of the proposed estimators. The utility

of the developed method is demonstrated via simulations, as well as an analysis of the Avon Longitudinal Study of

Parents and Children concerning parental effects on the growth curves of their offspring, which yields biologically

interesting results.
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1. Introduction

The last two decades have witnessed the emergence of functional data models (Li and Hsing,

2010; Li et al., 2010; Yao and Müller, 2010; Zhong et al., 2020) as powerful tools for analyzing

large volumes of functional data collected from diverse fields, ranging from medical studies,

speech recognition, biological development, and climatology to online auctions. Heterogeneity

has also been commonly observed in functional data, as the means and variations of the

observed curves have often been manifested to depend on subjects’ characteristics (Jiang

and Wang, 2011; Li et al., 2017). Identifying and modeling such heterogeneity has sparked

much research interest. For example, several works have modeled heterogeneous functional

responses using traditional regression models; Jiang and Wang (2011) proposed a single-

index model, and Li et al. (2017) proposed a functional varying-coefficient single-index

model (FVCSIM). While both works modeled the covariate-dependent means of functional

responses, they treated the covariances of functional responses as negligible, ignoring that

they can be essential components of functional responses.

However, since functional data analysis is an infinite-dimensional process, dimensionality

reduction is the key to effectively analyzing the given data, while capturing the covariances

among functional responses embedded in the curves. Functional principal component anal-

ysis (FPCA), a covariance-based dimensionality reduction method, has demonstrated its

capability of providing parsimonious representations of infinite-dimensional processes and

has become the cornerstone for most functional data methods, including those presented in

Yao et al. (2005), Li and Hsing (2010) and Zhou et al. (2018). However, all of these methods

ignore the heterogeneity that is inherent in functional data and fail to consider external

covariates when modeling the covariance structures of functional data.

In fact, since it is difficult to incorporate covariate information into the eigen-decomposition

procedure, even the studies on covariate-adjusted PCA are limited (Li et al., 2015). Some
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works have accounted for the effects of covariates on response curves via FPCA. For example,

Chiou et al. (2003a) and Chiou et al. (2003b) proposed a functional smooth random effects

model, while conducting FPCA independently of covariates. Li et al. (2016); Chen et al.

(2019); Backenroth et al. (2018) considered a covariate-adjusted functional PCA by estab-

lishing relationships between scores and covariates. Li et al. (2016) and Chen et al. (2019)

considered the dependence of a score ξik on covariates by assuming that ξik = α′kXi + εik,

while Backenroth et al. (2018) supposed that var(ξik|Xi) = exp(X′iαk). However, these

specified links, including linear or exponential links, make the corresponding eigenfunctions

either important or unimportant for all individuals by identifying αk as zero or nonzero;

i.e., the eigenfunctions are shared by all individuals. To study individual-specific eigenfunc-

tions, Cardot (2006) assumed the dependencies of mean functions, eigenfunctions and their

corresponding FPC scores on a single covariate. Extending Cardot (2006) to accommodate

multiple covariates is challenging due to the curse of dimensionality. In addition, modeling

covariances using the method proposed by Cardot (2006) may incur considerable instability

due to the involvement of a large number of unknown eigenfunctions and score functions

that are covariate-dependent.

To address these issues, we propose a new FPCA framework to model covariate-dependent

mean and covariance functions. By allowing the covariate-dependent variances of the ran-

dom scores that are associated with eigenfunctions into the model, for each individual,

our procedure determines the magnitude of influence for a common set of eigenfunctions;

with further regularization, we identify FPCs for each individual and construct covariate-

dependent covariances for the functional responses. Compared with the existing works, our

proposal exhibits several strengths. First, with covariate-dependent means and scores, our

model allows the score of an eigenfunction to be exactly 0 for a particular subject, providing

a more parsimonious and interpretable representation for each individual. Individuals with
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different eigenfunction sets enable us to better explore their interindividual differences.

Second, based again on covariate-dependent means and scores, our model can identify the

subsets of covariates that are significant for the mean and covariance, respectively. Third,

our method allows for arbitrary functions that link multiple covariates to means and co-

variances and, therefore, possesses sufficient flexibility and robustness. Fourth, our method

naturally accommodates an efficient algorithm combining the alternating direction method

of multipliers (ADMM) and linear approximation techniques, wherein each iterative step

presents closed-form expressions or can be implemented using existing packages. Finally, we

establish uniform consistency and asymptotic normality, justifying the utility of the proposed

estimator in a large sample setting.

By comparing our method with several competing methods on finite samples, we demon-

strate its advantageous performance, especially with respect to interpretation. We also apply

it to analyze data obtained from the second generation of the Avon Longitudinal Study of

Parents and Children (ALSPAC). We demonstrate that our method provides more predic-

tive (Figure 2(f)) and insightful results than the existing methods; the proposed method

identifies that covariates, such as birth weight and diabetes, are associated with the mean

and covariance structures of functional responses (Table 4), and eight variables are identified

as being associated with the mean (Table 3), most of which are not detected by the existing

methods.

The remainder of the paper is organized as follows. Section 2 introduces the proposed

method and estimation approach, and Section 3 establishes the uniform consistency and

asymptotic normality of this technique. Sections 4 and 5 demonstrate the utility of the

proposed method via simulations and an application to the ALSPAC. Section 6 concludes

the paper with a brief discussion on further research. Technical proofs and more notations
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are relegated to the Supporting Information. The R code is available online as Supporting

Information.

2. Model and Estimation Procedure

2.1 Model

Denote by {Xi, Zi(·)}(i=1,··· ,n) n independent and identically distributed (i.i.d.) realizations

of {X, Z(·)}, where Z(·) is a random function and X is a p−dimensional vector of covariates.

Our goal is to estimate the conditional mean and covariance of Zi(·) given Xi. To proceed,

we note that, without considering Xi, a Karhunen-Loéve expansion (Ash and Gardner, 1978)

for Zi(t) would be

Zi(t) = µ(t) +
∞∑
k=1

ξikφk(t), (1)

where µ(t) = E{Zi(t)} is the overall mean function; φk(t) is the k−th orthonormal eigen-

function of the covariance function C(s, t) = cov{Zi(s), Zi(t)}, satisfying
∫
φk(t)φj(t)dt = 1

if j = k and 0 otherwise; ξik denotes FPC scores with E(ξik) = 0, var(ξik) = ρk and

cov(ξij, ξik) = 0 if j 6= k; and ρk is the eigenvalue corresponding to the eigenfunction φk(·).

Since supt∈[0,1]E{
∑∞

k=1 ξikφk(t)−
∑Kn

k=1 ξikφk(t)}2 → 0, one can reasonably suppose that

Zi(t) ≈ µ(t) +
Kn∑
k=1

ξikφk(t), (2)

as Kn →∞. The approximation of (2) with a fixed Kn is commonly adopted for longitudinal

and functional data analysis (see, e.g., Yao et al., 2005; Hall and Mohammad, 2006). To be

more flexible, Hall and Mohammad (2006) and Lin et al. (2018) considered model (2) with

Kn →∞ as n→∞, which is also adopted in this paper.

Then, with Xi, we propose modifying (2) by modeling the dependence of the functional
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response on covariates via

Zi(t) = µ(t,X′iβ) +
Kn∑
k=1

ξikφk(t), (3)

var(ξik|Xi) = ρk(X
′
iαk), i = 1, . . . , n,

where µ(·, ·), φk(·) and ρk(·) are unknown functions, and ξi = (ξik, k = 1, · · · , Kn)′ are

independent with E(ξi|Xi) = 0, cov(ξi|Xi) = Λ(Xi) and Λ(Xi) = diag{var(ξik|Xi), k =

1, · · · , Kn}. To maintain interpretability, we require the unknown φk(t), k = 1, · · · , Kn to

be the same across individuals. The model is intuitive because it links the contribution of each

functional direction, φk(·), to Zi(·) via a single-index model ρk(X
′
iαk). Its magnitude may

govern the selection of principal components for Zi(·). When conducting a traditional FPCA,

we assume that the eigenfunctions φk(t), k = 1, · · · , Kn are to be shared by all individuals. In

contrast, the proposed model (3) allows individuals to have different sets of eigenfunctions

by identifying whether ρk(X
′
iαk) is zero or not. For example, if |ρk(X′iαk)| is large, the

corresponding component φk(·) is important for individual i when explaining the proportion

of variation that is attributable to that direction; if ρk(X
′
iαk) = 0, the component φk(·) is

not selected for individual i, indicating one fewer principal component for Zi(·). Thus, each

individual’s trajectory can be more fully and parsimoniously represented by its projections

onto the functional components selected via ρk(X
′
iαk). This is also observed in our real data

analysis, which shows that the individuals satisfying X′iα2 < −0.3 are represented by two

eigenfunctions φ1(t) and φ2(t), and the rest of the individuals are represented only by φ1(t),

where α is displayed in Table 4. Model (3) is termed the functional regression model with

individual-specific mean and covariance structures (FRIS).

To make model (3) identifiable, we assume that

(IC) ‖β‖ = 1, ‖αk‖ = 1, and the first nonzero elements of β and αk are positive for

k = 1, · · · , Kn. Denoting φ(t) = {φ1(t), . . . , φKn(t)}′, φk(0) > 0 for k = 1, ...Kn. We further
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assume that
∫
φ(t)φ(t)′dt = IKn , where Id is a d× d identity matrix and ‖ · ‖ denotes the `2

norm of a vector.

To reflect that a typical functional dataset consists of observations at irregularly spaced

locations or time points, we assume that ni measurements are taken for Zi(·) at random

time points ti1, · · · , ti,ni , and we observe the random functions Zi(·) with their measurement

errors; that is,

Yi(tij) = Zi(tij) + εi(tij), j = 1, . . . , ni; i = 1, . . . , n, (4)

where εij = εi(tij) are i.i.d. measurement errors with E(εij) = 0 and var(εij) = σ2. The

number of measurements ni made on the i−th subject is also determined at random to

reflect sparse and irregular designs, which are assumed to be i.i.d. and independent of all

other random variables.

2.2 Estimation

Writing Yi = {Yi(ti1), . . . , Yi(ti,ni)}′ and ti = (ti1, . . . , ti,ni)
′, models (3) and (4) can be

expressed as E(Yi) = µi = µ(ti,X
′
iβ)=̂{µ(ti1,X

′
iβ), · · · , µ(ti,ni ,X

′
iβ)}′ and cov(Yi) =

Σi =
∑Kn

k=1 φk(ti)ρk(X
′
iαk)φk(ti)

′ + σ2Ini , where φk(ti) = {φk(ti1), · · · , φk(ti,ni)}′. Let α =

(α′1, . . . ,α
′
Kn

)′ and ρ(u) = {ρ1(u), . . . , ρKn(u)}′. Denote all of the unknown parameters and

functions by π = (β′,α′, σ2, µ,φ′,ρ′)′. One might attempt to estimate π by maximizing the

log quasi-likelihood function of Yi = {Yi(ti1), . . . , Yi(ti,ni)}′, with i = 1, · · · , n, which is given

by

Ln(π) = − 1

2n

n∑
i=1

log |Σi| −
1

2n

n∑
i=1

(Yi − µi)
′Σ−1i (Yi − µi) , (5)

up to a constant.

However, because µ(·), φ(·) and ρ(·) are infinite-dimensional functions, a direct maxi-

mization of (5) is difficult. Instead, we propose to adapt more implementable smooth spline
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techniques to estimate these functions (Chen and Tong, 2010). We approximate them by

µ(t, u) ≈ γ ′Bn(t, u), φk(t) ≈ η′kBn1(t) and ρk(u) ≈ {θ′kBn2(u)}2 , where Bn(t, u) = Bn1(t)⊗

Bn2(u), ⊗ is the Kronecker product, and Bn1(·) = {b11(·), · · · , b1,mn1(·)}
′ and Bn2(·) =

{b21(·), · · · , b2,mn2(·)}
′ are two sets of spline basis functions. We next define a sieve space as

Πn = A×Θ×
∏Kn

k=1 Θ1k×
∏Kn

k=1 Θ2k, whereA =
{

(β′,α′, σ2) : (β′,α′, σ2) ∈ Rp(1+Kn)+1
}
,Θ =

{γ ′Bn(t, u) : t ∈ [0, T ], u ∈ [−U,U ]} ,Θ1k = {η′kBn1(t) : t ∈ [0, T ]} ,Θ2k = {θ′kBn2(u) : u ∈ [−U,U ]} .

As eigenfunctions for individual i are selected by identifying whether or not ρk(X
′
iαk)

is zero, the estimator of the parameter π belonging to Πn (or π̂n) can be obtained by

maximizing

Qn(π) = Ln(π)−
Kn∑
k=1

n∑
i=1

pλ(|ρk(X′iαk)|), (6)

subject to the identifiable condition (IC), where the diagonal constraints on φ(t) are∫ T

0

Bn1(t)
⊗2dt =

1

mn1

I, η⊗2 = mn1I, (7)

with η = (η1, . . . ,ηKn)′, where a⊗2 = aa′ for any vector a. Given a set of spline basis

functions B̃n1(t), its orthonormal version satisfying (7) is obtained as follows. Denote by

A =
∫ T
0

B̃n1(t)
⊗2dt a positive definite matrix. It follows that

∫ T
0

(
A−

1
2 B̃n1(t)

)⊗2
dt = I/mn1;

hence, Bn1(t) = A−
1
2 B̃n1(t) satisfies (7).

For the choice of pλ(·), the penalty function in (6), we take the smoothly clipped absolute

deviation (SCAD) with a reasonable finite-sample performance, which satisfies ṗλ(β) =

λI{β 6 λ}+I{β > λ}(aλ−β)+/(a−1) for some a > 0 and β > 0, with ṗλ(0) = 0. We choose

a = 3.7 by following Fan and Li (2001). The penalty is operated on the function ρk(·) and

encourages it to be zero in some subregions; this is termed local sparsity. Locally sparse

methods, including functional linear regression that is interpretable (“FLiRTI”) (James

et al., 2009), a two-stage method (Zhou et al., 2013) and smooth and locally sparse (SLoS)

(Lin et al., 2017), typically identify the null subregions of a curve by splitting the domain
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into a large number of subintervals. However, adapting these methods to our case is not

straightforward because, unlike in these existing methods, the argument of ρk(·) in our

setting is X′iαk, which is individualized and involves an unknown αk.

Instead, with a spline approximation, we propose to impose the penalty on |θ′kBn2(X
′
iαk)|

and select individual-specific principal components. Particularly, |θ′kBn2(X
′
iαk)| = 0, coupled

with E(ξik) = 0, would imply a zero ξik almost surely, and hence a reduction in the principal

component φk(·) for individual i. It is worth mentioning that the penalty on |θ′kBn2(X
′
iαk)|

cannot be replaced by a penalty on |θk|. The latter may only identify whether component

φk is important for all individuals and cannot address the question of whether component

φk is important for individual i.

2.3 Optimization via the ADMM

Since (6) is a nonconcave function with a nonsmooth penalty function, we choose to use the

ADMM (Boyd et al., 2011) for optimization. Specifically, let ζik = θ′kBn2(X
′
iαk). It follows

that maximizing (6) is equivalent to minimizing an augmented Lagrangian function:

Ln(π, ζ) = −Ln(π, ζ) +
Kn∑
k=1

n∑
i=1

pλ(|ζik|) +
ν

2

Kn∑
k=1

n∑
i=1

[{
ζik − θ′kBn2(X

′
iαk) +

Cik
ν

}2

− c0

]
,(8)

where ζ = (ζ1, · · · , ζn)′; ζi = (ζi1, · · · , ζi,Kn)′; Ln(π, ζ) represents Ln(π), as defined in (5),

with Σi replaced by Bn1(ti)
′∑Kn

k=1 ηkζ
2
ikη
′
kBn1(ti)+σ2Ini ; c0 is a constant that is independent

of π and ζ; and ν is a user-specified step length for updating Cik.

Because the nonlinearity of Bn2(·) and Bn(·, ·) does not lead to closed-form expressions at

each ADMM step, we apply the following Taylor expansions:

Bn(ti,X
′
iβ) ≈ Bn(ti,X

′
iβ̃) + Ḃn(ti,X

′
iβ̃)X′i(β − β̃),

Bn2(X
′
iαk) ≈ Bn2(X

′
iα̃k) + Ḃn2(X

′
iα̃k)X

′
i(αk − α̃k), (9)

where Ḃn(t, u) = ∂Bn(t, u)/∂u, Ḃn2(u) = ∂Bn2(u)/∂u and α̃k(k = 1, · · · , Kn) and β̃ are the
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estimators of αk(k = 1, · · · , Kn) and β, respectively, from the previous step. By substituting

Bn(ti,X
′
iβ) and Bn2(X

′
iαk) in (8) with their Taylor expansions in (9), differentiating (8)

with respect to β, γ, θk and αk, and setting the derivatives to zero, we obtain the following

closed-form estimates at each step:

β =

{
n∑
i=1

Xiγ
′Ḃn(ti,X

′
iβ̃)Σ−1i Ḃn(ti,X

′
iβ̃)′γX′i

}−1

×

[
n∑
i=1

Xiγ
′Ḃn(ti,X

′
iβ̃)Σ−1i

{
Yi −Bn(ti,X

′
iβ̃)′γ + Ḃn(ti,X

′
iβ̃)′γX′iβ̃

}]
, (10)

γ =

{
n∑
i=1

Bn(ti,X
′
iβ)Σ−1i Bn(ti,X

′
iβ)′

}−1 n∑
i=1

{
Bn(ti,X

′
iβ)Σ−1i Yi

}
, (11)

θk =

{
n∑
i=1

Bn2(X
′
iαk)Bn2(X

′
iαk)

′

}−1 n∑
i=1

{
(ζ̃ik +

Cik
ν

)Bn2(X
′
iαk)

}
, (12)

αk =

[
n∑
i=1

Xi

{
θ′kḂn2(X

′
iα̃k)

}2

X′i

]−1

×

[
n∑
i=1

Xiθ
′
kḂn2(X

′
iα̃k)

{
ζ̃ik +

Cik
ν
− θ′kBn2(X

′
iα̃k) + θ′kḂn2(X

′
iα̃k)X

′
iα̃k

}]
, (13)

for k = 1, · · · , Kn.

We next estimate ζ. Denoting C = (C1, · · · ,Cn)′,Ci = (Ci1, · · · , Ci,Kn)′ and W =

(W1, · · · ,Wn)′,Wi = {θ′kBn2(X
′
iαk), k = 1, · · · , Kn}

′
, with (8), we estimate ζ by min-

imizing −Ln(π, ζ) + ν
2
‖ζ −W + C/ν‖2F + pλ(|ζ|), where pλ(|ζ|) =

∑Kn
k=1

∑n
i=1 pλ(|ζik|)

and ‖ · ‖F is the Frobenius norm of a matrix. Denote by ζ̃ the estimate of ζ at the

previous step; additionally, H(ζ;π) = −Ln(π, ζ) + ν
2
‖ζ −W + C/ν‖2F . We have H(ζ;π) 6

H(ζ̃;π) + Ḣ(ζ̃;π)′(ζ − ζ̃) + 1
2h

(ζ − ζ̃)′(ζ − ζ̃), where h is sufficiently small such that the

quadratic term dominates the Hessian of H(ζ;π). Then, we update ζ by

ζ = arg min
ζ

1

2h
‖ζ − (ζ̃ − hḢ(ζ̃;π))‖2F + pλ(|ζ|), (14)

which can be completed with the ncvreg function in R. Finally, we use the gradient descent
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method to update σ2 and ηk. Detailed steps for estimating π and ζ are summarized in the

following Algorithm, and the selection of the initial values and tuning parameters is given

in the Supporting Information.

Algorithm

1: Give initial values β(0)′,γ(0)′,η
(0)′
k ,α

(0)′
k ,θ

(0)′
k , σ2(0), and ζ

(0)
ik = θ

(0)′
k Bn2(X

′
iα

(0)
k ), i =

1, . . . , n; k = 1, . . . , Kn, C(0) = 0.

2: Set the step length κ, h, ν and the tuning parameters λ and Kn.

3: repeat

4: At the (t+1)-th iteration, update β,α,γ,θk, ζ by (10)-(14), where β̃, α̃,γ,θk, ζ̃ and

C on the right sides of (10)-(14) are replaced by the estimators from the t−th iteration.

5: η
(t+1)
k = η

(t)
k − κ∂Ln(π(t), ζ(t))/∂ηk, for k = 1, . . . , Kn,

6: σ2(t+1) = σ2(t) − κ∂Ln(π(t), ζ(t))/∂σ2,

7: C(t+1) = C(t) + ν(ζ(t+1) −W(t+1)).

8: until meeting the convergence criterion

In practice, Kn is often chosen to be 2-4, as in Yao et al. (2005), so the computation

mainly focuses on inverting Σi, whose dimensionality is the number of time points. It takes

less than 1 second to calculate the inverse of a 1000-dimensional matrix with a single 2-core

personal laptop with 8 GB of RAM. Hence, our algorithm is feasible for functional data with

a few hundred time points for each individual, which actually satisfies the requirements for

real data or is enough to contain sufficient information for functional data analysis with the

smoothing assumption. Particularly, in the case with n = 100, ni = 100 and Kn = 4, it takes

only 7 seconds to obtain the estimation via the proposed FRIS.
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3. Theoretical Properties

We are positioned to establish the estimation and selection consistency and the asymptotic

normality of the proposed estimator. For the notational ease, we write mn1 = mn2 = mn,

where mn = O(nv). The true value of π is denoted as π0 = (β′0,α
′
0, σ

2
0, µ0,φ

′
0,ρ

′
0)
′. We

specify the following sufficient conditions.

(C1) The covariates X are bounded.

(C2) (β′0,α
′
0, σ

2
0)′ ∈ A, which is a bounded closed set, and the true functions (µ0,φ

′
0,ρ

′
0)
′ ∈

Hr,2 ×
∏Kn

k=1Hr,1 ×
∏Kn

k=1Hr,1 with r > 1, where

Hr,d =

{
f(·) : | ∂lf

∂xa11 . . . ∂xadd
(x)− ∂lf

∂ya11 . . . ∂yadd
(y)| 6 c‖x− y‖s, for anyx, y ∈ Rd

}
,

for l ∈ N+, s ∈ (0, 1] with r = l + s, for any a = (a1, . . . , ad) ∈ Nd
+ with

∑d
j=1 aj = l, and for

a c > 0.

(C3) Denote by 41 = max
l+16j6kn+l+1

|tj − tj−1| and 42 = min
l+16j6kn+l+1

|tj − tj−1| the maximum

and the minimum spacing of knots, respectively. We assume that 41 = O(n−v) with v ∈

(0, 0.5), and 41/42 is bounded.

(C4) The penalty function pλ(t) is nondecreasing and concave on [0,∞). There exists a

constant b such that pλ(t) is a constant for all t > bλ. Additionally, ṗλ(0+) = O(λ).

(C5) Kn = nτ with τ 6 min(1− v, 2vr).

Conditions (C1) and (C2) are commonly assumed in the nonparametric literature (Chen

and Tong, 2010). Condition (C1) is a technical condition for controlling the tail of random

variables. Condition (C2) ensures the smoothness of the true functions. Condition (C3)

facilitates spline analysis with uniformly distributed knots. Condition (C4) can be satisfied

by some generally used penalties, including the SCAD penalty we use for our proposal.

Condition (C5) restricts the number of components to ensure the estimability of the model.
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In the FPCA literature, Kn is often chosen to be finite, automatically guaranteeing that this

condition holds (see, e.g., Yao et al., 2005; Hall and Mohammad, 2006).

We denote ρik = ρk(X
′
iαk), ρik0 = ρk0(X

′
iαk0) and O = {(i, k) : ρik0 6= 0}. We define

a mapping T : ρik → ρorik , where ρorik = T (ρik) = ρik if (i, k) ∈ O and 0 otherwise. Then,

with the notation of ρorik = ρork (X′iα
or
k ), we define Aor = {(β′,αor′, σ2) : (β′,αor′, σ2) ∈

Rp(1+Kn)+1,ρOc = 0}, Hor
r,1 =

{
ρ : ρ ∈

∏Kn
k=1Hr,1,ρOc = 0

}
, and an oracle parameter space

Θor
2n =

{
ρ : ρ ∈

∏Kn
k=1 Θ2k,ρOc = 0

}
,Πor

n = Aor ×Θ×
∏Kn

k=1 Θ1k ×Θor
2n.

To establish the asymptotic properties, we first consider an oracle estimator (defined as

π̂orn = arg max
π∈Πor

n

Ln(π)), the estimator of parameter π in Πor
n . Since we focus only on the

asymptotic normality of ϑ = (β′,α′), we rewrite π̂orn as (ϑ̂
or′
n , ψ̂

or′
n )′, where ϑ̂orn = (β̂

or′
n , α̂or′n )′

and ψ̂
or

n = (σ̂or2n , µ̂orn , φ̂
or′
n , ρ̂or′n )′. We use λmin(A) and λmax(A) to denote the largest and the

smallest eigenvalues of a matrix A, respectively. For any vector ζ = (ζ1, . . . , ζn)′ ∈ Rn, a func-

tion f(t), and π and π̃, we define ‖ζ‖ =
√∑n

i=1 ζ
2
i , ‖f‖ = (

∫
t∈T f(t)2dt)1/2, and ‖π− π̃‖ ={

‖β − β̃‖2 + (σ2 − σ̃2)2 + ‖µ− µ̃‖2 +
∑Kn

k=1

(
‖αk − α̃k‖2 + ‖φk − φ̃k‖2 + ‖ρk − ρ̃k‖2

)}1/2

.

Theorem 1 (Consistency and convergence rate of oracle estimators): Under conditions

(C1)-(C5), denoting δn = n−(1−2v)/2 +
√
Knn

−(1−v)/2 +
√
Knn

−vr, we have

‖π̂orn − π0‖ = Op(δn).

The first and second terms in δn, corresponding to the estimation error for µ(t, u) and

2Kn univariate functions (φk, ρk), k = 1, · · · , Kn, respectively, are related to the spline order

nv and the structural parameter Kn = nτ of the model (3); the last term in δn is the ap-

proximation error for using spline functions to approximate nonparametric functions. When

Kn does not vary with n, i.e., τ = 0, Theorem 1 implies that ‖π̂orn − π0‖ = Op(n
−r/(2r+2))

with v = 1/(2r + 2), in which case, the convergence rate δn is indeed the optimal rate for

approximating a nonparametric function (Stone, 1980).
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Theorem 2 (Asymptotic normality of oracle estimators): Denote by I(ϑ0) = P{l∗(π0)}⊗2

and Λ = λmin {I(ϑ0)}, where l∗(π0) is defined as in the Appendix. Under conditions (C1)-

(C5), if 0 < v < 1/4, τ < min{1/2 − v, 2v(r − 1), v(2r − 1)/2} and nτ−1/2/Λ = op(1) for

r > 1, for any vector u with ||u|| = 1, as n→∞, we have

√
nu′I(ϑ0)

1/2(ϑ̂orn − ϑ0)
d−→ N(0, 1).

Theorem 2 leads to the selection consistency and the asymptotic normality of ϑ̂n, as

summarized by the following.

Theorem 3 (Oracle properties): Under conditions (C1)-(C5), if λmax

{
P∂2Ln(π0)/∂ρ∂ρ

′
}

is finite, inf
(i,k)∈O

|ρik0| > bλ and λ� δn for some constant b > 0, we have

(1) P (π̂n = π̂orn )→ 1;

(2) ‖π̂n − π0‖ = Op(δn), where δn is defined as in Theorem 2.

(3) Under the conditions in Theorem 2, we have

√
nu′I(ϑ0)

1/2(ϑ̂n − ϑ0)
d−→ N(0, 1)

for any vector u with ‖u‖ = 1.

The asymptotic normality of ϑ̂n given by Theorem 3 lays the groundwork for inference;

however, it is not feasible to draw an inference by directly using the theoretical covariance,

which involves infinite-dimensional unknown parameters. We use bootstrap resampling to

estimate the covariance of ϑ̂n. Denote by ϑ̂∗n = (β̂
∗′
n , α̂

∗′
n )′ the bootstrap estimator of ϑ. We

show that ϑ̂∗n has the same asymptotic distribution as the proposed estimator.

Theorem 4 (Distribution consistency of bootstrap estimators): Under conditions (C1)-

(C5), if τ < 1/2− v, we have that for any k,

sup
x∈Rp
|P
{√

n(β̂
∗
n − β̂n) 6 x

}
− P (

√
n
{
β̂n − β0) 6 x

}
| = op(1),
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sup
x∈Rp
|P
{√

n(α̂∗nk − α̂nk) 6 x
}
− P

{√
n(α̂nk −αk0) 6 x

}
| = op(1),

where the inequalities are taken in a componentwise manner.

4. Simulation

We assess the finite-sample performance of the proposed FRIS by comparing it with two

competing methods, namely, the functional smooth random effects model (FSREM) (Chiou

et al., 2003b) and the method with a covariate-dependent mean structure and a covariate-

independent covariance structure, that is, the same score variance (SSV) across individuals.

We vary n = 100 to 500 and ni = 10 to 20. For each 1 6 i 6 n, observation time points ti are

randomly sampled from U(0, 1), and the covariates Xi = (Xi1, Xi2, Xi3)
′ are independently

generated from the uniform distribution U(−1, 1). For a fair comparison, we consider three

scenarios, each following the assumptions of the FRIS, SSV and FSREM. We compare the

methods by using the bias, standard deviation (sd) and root-mean-square error (RMSE)

criteria, which is defined as

bias =

[
1

ngrid

ngrid∑
i=1

{Ef̂(xi)− f(xi)}2
]1/2

, sd =

[
1

ngrid

ngrid∑
i=1

E{f̂(xi)− Ef̂(xi)}2
]1/2

,

RMSE = (bias2 + sd2)1/2, where xi(i = 1, . . . , ngrid) are the grid points at which f(·) is esti-

mated, Ef̂(xi) is approximated by the sample mean, and ngrid = 100. The predictive perfor-

mance is assessed by the normalized mean squared error (NMSE) of the out-of-sample period,

which is defined as NMSE =
∑n
i=1

∑ni
j=1(Ŷi(tij)−Yi(tij))

2∑n
i=1

∑ni
j=1(Y−Yi(tij))2

, where Y = 1∑n
i=1 ni

∑n
i=1

∑ni
j=1 Yi(tij)

and {Xi, Zi(·), Yi}, i = 1, · · · , n are independent of the samples used to predict Yi. The

NMSE is a unitless error measure, where a smaller NMSE indicates better performance. In

addition, the nominal Type-1 error rates and power for the β and α of the proposed FRIS

can also be assessed since inference is required to identify the subsets of covariates that are

significant for the mean and covariance, respectively. For each simulation configuration, a

total of N = 500 datasets are independently generated.
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Example 1. We generate Yi = {Yi(ti1), · · · , Yi(ti,ni)}′ from a model satisfying the as-

sumptions of the FRIS: E(Yi|Xi) = µi(Xi) = µ(ti,X
′
iβ), cov(Yi|Xi) = Σi, where µ(ti, u) =

(µ(ti1, u), · · · , µ(ti,ni , u))′, Σi =
∑3

k=1 φk(ti)ρk(X
′
iαk)φk(ti)

′ + σ2Ini with σ2 = 1, µ(t, u) =

10×{u·cos(t)+(1−u)·sin(t)}, φk(ti) = {φk(ti1), · · · , φk(ti,ni)}′ with φ1(t) =
√

2 cos(πt), φ2(t) =

√
2 sin(πt), φ3(t) =

√
2 cos(3πt), and ρk(u) = 102−ku2I(u < 0), k = 1, 2, 3. We set β =

(0.2, 0.8, 0.6)′, α1 = (0.8, 0.1, 0.4)′, α2 = (0.2, 0.6, 0.8)′, and α3 = (0.5, 0.8, 0.3)′. In this

example, we consider two kinds of distributions for Yi: (1) Normal: Yi ∼ N{µi(Xi),Σi};

(2) Mixture Normal: Σ
−1/2
i {Yi − µi(Xi)} ∼ 1

2
N(−1/2, I) + 1

2
N(1/2, I);

Let mn1 = mn2 = 6 and Kn = 4; Tables 1 and S1 show that the proposed estimator

presents smaller biases and variances than the SSV for both kinds of distributions; the SSV

is seriously biased for ρk(·) because it ignores its heteroskedasticity. The performance of the

proposed approach improves as n or ni increases. Figures 1(a) and 1(b), which display the

NMSEs of the FRIS, SSV and FSREM, further reveal that the proposed method achieves

the best predictive performance in all of the examined cases. Of note, the FSREM performs

better than the SSV when n = 500, but worse than the SSV when n = 100, possibly because

the FSREM requires a larger sample size due to the increased model complexity.

Table 2 summarizes the selection results of the eigenfunctions under Example 1, where

the false positive rate (FPR) records the fraction of the individuals that are incorrectly

selected, the false negative rate (FNR) corresponds to the fraction of the individuals that

are incorrectly excluded for an eigenfunction, and the accuracy (ACC) reflects the fraction

of the individuals whose eigenfunctions are correctly identified. With small FPRs, FNRs and

large ACCs for φk, k = 1, 2, 3, as in Table 2, it appears that the FRIS can correctly identify

the eigenfunction contributions for each individual with high probability under both normal

and mixed normal distributions.

In addition, Figures S1-S3 in the Supporting Information display the estimates of the
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eigenfunctions φk(t), the score variances ρk(u), k = 1, 2, 3, and the mean function µ(t, u) to

evaluate the performance of the nonparametric estimators. The proposed method performs

well in that its the estimated functions are close to the true functions, and its confidence

bands completely cover the true functions.

[Table 1 about here.]

[Table 2 about here.]

[Figure 1 about here.]

Example 2. To assess the Type-1 error rates and power of the FRIS for β and α, we

generate data in the same way as in Example 1(1), but we take β = (0.8, 0, 0.6), αk =

(0, 0.9, 0.4), ρk(u) = 10−ku2I(u < 0), k = 1, 2, 3 and µ(t, u) = 2 × {u · cos(t) + (1 − u) ·

sin(t)}. Table S2 shows the calculated Type-1 error rates and power levels obtained under

a significance level of 0.05, suggesting that the Type-1 error rates of all parameters are

controlled at approximately 0.05, and the power tends to 1 as the sample size increases.

Example 3. We generate data with a common score variance, satisfying the assumption

of the SSV. Specifically, we generate data in the same way as in Example 1(1), except that

ρk(u) = ρk for k = 1, 2, 3 and ρ1 = 5, ρ2 = 1, ρ3 = 0.5. Table S3 presents the biases and

empirical standard deviations produced for the parametric and nonparametric estimates

obtained by the FRIS and SSV, while Figure 1(c) shows the NMSEs obtained for the FRIS,

SSV and FSREM estimators. Table S3 and Figure 1(c) indicate that, in general, the FRIS

performs as well as the SSV and is better than the FSREM in terms of the NMSE metric.

This result is reasonable because the SSV correctly uses the information of constant score

variances, while the FRIS estimates score variances as nonparametric functions of covariates.

Example 4. We generate data following Chiou et al. (2003b). That is, given covariates

Xi, Yi(t) follows a normal distribution, Yi(t) = µ(t) +
∑3

k=1Aikφk(t), and we assume that
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the observed random curves are conditional on the covariates,

E{Yi(t)|Xi} = µ(t) +
3∑

k=1

E(Aik|Xi)φk(t), cov{Yi(s), Yi(t)|Xi} =
3∑

k=1

var(Aik|Xi)φk(s)φk(t),

where E(Aik|Xi) = µk(X
′
iβk), var(Aik|Xi) = ρk(X

′
iαk), and µ(t) = t2 + 1; µ1(u) = 1 −

cos(u ·π), µ2(u) = {1−cos(u ·π)}/5, µ3(u) = {1−cos(u ·π)}/10, ρk(u) =
√
αk(u), k = 1, 2, 3,

and φk(t) are the same as in Example 1, and βk = (0.8, 0, 0.6)′,αk = (0, 1, 0)′ for each k.

These settings imply that Xi1 and Xi3 are associated with the mean, and the second covariate

Xi2 is related to the covariance of the functional response. Figure 1(d) shows the NMSEs

obtained for the FRIS, SSV and FSREM estimators under Example 4. Since the data are

generated by following the assumptions of the FSREM, it is not surprising that the FSREM

has the lowest NMSE among all three methods. However, the proposed FRIS is comparable

to the FSREM and is better than the SSV for the FSREM data. We also show the p-values

obtained by the FRIS for β and α in Table S4, which suggests that the mean significantly

depends on Xi1 and Xi3 and that the covariance is associated with Xi2 under a significance

level of 0.05. This means that the Type-1 error can be effectively controlled by the FRIS

even for the FSREM data.

In summary, by examining a variety of scenarios, the proposed method clearly has the

best performance if the required assumptions are satisfied and still achieves a reasonable

performance when such assumptions are violated, which might pave the way for its real-

world application.

5. Analysis of the ALSPAC

The ALSPAC, known as Children of the 90s, is a birth cohort study based in England.

Between 1991 and 1992, 14,000 pregnant women were recruited; they, along with their

children arising from the pregnancies and their partners, were followed up intensively over

two decades, with the goal of investigating the environmental and genetic factors that affect
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a persons health and development. We apply our proposed method to analyze a dataset from

the ALSPAC, and study a variety of pregnancy and maternal factors that may influence the

growth trajectories of children. Specifically, the functional responses in our analysis are the

body mass index (BMI) curves of children measured from 0 to 7-24 years, and the nine

covariates include the birth weight, birth length, presence of maternal gestational diabetes,

amniocentesis noted during pregnancy, number of children previously delivered by a mother,

and method of delivery. Only one child of a single mother was included in this study. For

the method of delivery, spontaneous delivery is set as the baseline, while other methods

(e.g., assisted breech, caesarean section and forceps delivery) are coded as distinct dummy

variables. After conducting quality control and removing the subjects with missing values,

we obtain 7,313 individuals for the data analysis. We further center the birth weight and

birth length values to better interpret their coefficients and the intercept.

We analyze the data by using our proposed FRIS. For comparisons, we also model the data

by using the SSV and FSREM. We choose mn1 = 4, mn2 = 5, Kn = 4, κ = 0.001, ν = 0.1,

and h = 0.01 and select the tuning parameters using the generalized cross-validation (GCV)

criterion. The GCV results obtained for the tuning parameter λ are shown in Figure 2(e),

which suggests that λ = 0.158 might be the best choice. We draw inferences based on 200

bootstrap replications. Table 3 compares the FRIS, SSV and FSREM in terms of their point

estimates and p-values for β, which accounts for covariate-mean relationships. Figure S4(a)

and Figure S4(b) of the Supporting Information show the mean estimates of µ(t, u) for the

FRIS and SSV, respectively. Table 3 shows that our proposed FRIS gives smaller p−values,

suggesting that it may be more efficient than the SSV and the FSREM; that is consistent

with the simulation findings. The FRIS identifies three additional significant covariates at

the significance level of 0.05, which are not detected by either the SSV or the FSREM. Table

3 also shows that the birth weight, birth length, maternal gestational diabetes, amniocentesis
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noted during pregnancy, number of children previously delivered by a mother, and method

of delivery covariates are all strongly associated with the mean childhood BMI.

We elaborate on the results obtained by the FRIS, which may have biological implications.

For example, compared with spontaneous delivery, children delivered by assisted breech tend

to have lower BMIs, while children delivered by caesarean section and vacuum extraction

tend to have higher BMIs, confirming the impact of caesarean section on the risk of children

becoming overweight and obese, as reported in Ireland (Masukume et al., 2018). Indeed,

caesarean section is identified by the FRIS to be the most predominant risk factor for

an increased BMI, whereas its effect is barely significant when using the SSV method.

Furthermore, our FRIS detects that birth weight and maternal gestational diabetes are two

significant risk factors with large effects on increased childhood BMI; this is consistent with

the results of two recent studies (Wang et al., 2018). These two effects are also detected by

the SSV but at less significant levels. Moreover, the FRIS identifies that amniocentesis during

pregnancy is negatively correlated with childhood BMI. This makes sense biologically because

amniocentesis, a prenatal test for diagnosing birth defects, carries high risks of procedure-

related pregnancy loss, preterm labor, and respiratory distress (Seeds, 2004). Last, the FRIS

identifies that birth order is related to childhood BMI, coinciding with Ochiai et al. (2012),

who found that being the youngest child was associated with childhood obesity.

[Table 3 about here.]

Table 4 reveals that our proposed FRIS gives much smaller p−values, again suggesting its

efficiency compared to that of the FSREM. In particular, the FRIS identifies five additional

significant covariates that are not detected by the FSREM at the significance level of 0.05

for covariance. Table 4 shows that all considered covariates are strongly associated with the

covariance of childhood BMI.

[Table 4 about here.]
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Figures 2(a)-2(d) display the estimated eigenfunctions and score variance functions, as well

as their 95% pointwise confidence bands. Figure 2(a) for the first group of eigenfunctions

φ1(·) shows that the periodicity of BMI exhibits peaks and troughs at infancy, 5 years old, 12

years old and 18 years old. Figure 2(b) for the second group of eigenfunctions φ2(·) implies

that the BMI has large fluctuations at 5 years old and 18 years old. Figure 2(c) shows that

ρ1(u) is nonzero for all individuals, while Figure 2(d) shows that some individuals may have

zero values for ρ2(u), suggesting φ2(t) is not necessary for all individuals. Particularly, those

satisfying X′iα2 > −0.3 are expressed only by eigenfunctions φ1(t), while the others are

expressed by both φ1(t) and φ2(t), where α2 is listed in Table 4. Hence, the individuals for

which X′iα2 < −0.3 have larger fluctuations at 5 years old and 18 years old.

[Figure 2 about here.]

We finally evaluate the three methods according to their prediction performances via

the NMSE metric defined in Section 4; see Figure 2(f). The proposed FRIS performs the

best, followed by the FSREM, suggesting the necessity of properly handling heterogeneous

functional data.

6. Discussion

Under the framework of FPCA, we introduce a new strategy for functional regression by

allowing FPC scores to be covariate-dependent and thus for the covariance structures of

the functional responses to be individualized, which may lead to a more parsimonious and

interpretable representation of heterogeneous functional data for each individual. To tackle

the nonconvexity and nonsmoothness of the penalized quasi-likelihood function when drawing

inferences, we combine the ADMM and a locally linearized and majorized coordinate descen-

dent algorithm to achieve computational readiness. The nonconvexity factor also requires

reasonable initial values. In the Supporting Information, we provide initial values based on
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four steps, whose validity is confirmed by simulation studies. The proposed estimator exhibits

selection and estimation consistency, is asymptotically normally distributed, and possesses

a reasonable finite sample performance.

Several directions are available for future research. First, it might be possible to extend

our method to a more complicated mean model with time-varying coefficient, especially by

utilizing a sufficiently long follow-up period. Second, by modeling the covariance matrix

of the scores derived from the correlated functional data, it is possible to extend the pro-

posed method to cases where functional profiles are correlated. Third, stemming from the

established framework that accommodates a single-index structure for mean and covariance

functions, we may be able to develop a more flexible model with multiple-index means and

covariances; however, this work may require substantial efforts, especially for situations with

unknown numbers of indices. Fourth, as our method requires the functional responses to

be continuous, the accommodation of discrete responses is worthy of further investigation

for addressing specific scientific questions. Finally, with the emergence of high-throughput

predictors, how to extend the current modeling framework and inference procedures to

allow high-dimensional covariates may be of substantial interest; we will conduct this work

elsewhere.

Acknowledgements

This research were partially supported by National Natural Science Foundation of China

(Nos. 11931014, 11829101, 12171374) and Fundamental Research Funds for the Central

Universities (No. JBK1806002) of China.

Data Availability Statement

The data that support the findings in this paper are available from the Avon Longitudinal

Study of Parents and Children. Restrictions apply to the availability of these data, which



22 Biometrics, 000 0000

were used under license for this study. Data are available at https://www.bristol.ac.uk/

alspac/ with the permission of the Avon Longitudinal Study of Parents and Children.

References

Ash, R. B. and Gardner, M. F. (1978). Topics in stochastic processes. Academic, New York.

Backenroth, D., Goldsmith, J., Harran, M. D., Cortes, J. C., Krakauer, J. W., and Kitago, T.

(2018). Modeling motor learning using heteroskedastic functional principal components

analysis. Journal of the American Statistical Association 113, 1003–1015.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization

and statistical learning via the alternating direction method of multipliers. Foundations

and Trend in Machine learning 3, 1–122.

Cardot, H. (2006). Conditional functional principal components analysis. Scandinavian

Journal of Statistics 34, 317–335.

Chen, K. and Tong, X. (2010). Varying coefficient transformation models with censored

data. Biometrika 97, 969–976.

Chen, X., Li, H., Liang, H., and Lin, H. (2019). Functional response regression analysis.

Journal of Multivariate Analysis 169, 218–233.

Chiou, J., Müller, H., and Wang, J. (2003a). Functional response models. Statistica Sinica

14, 675–693.

Chiou, J. M., Müller, H. G., and Wang, J. L. (2003b). Functional quasi-likelihood regression

models with smooth random effects. Journal of the Royal Statistical Society, Series B

65, 405–423.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American Statistical Association 96, 1348–1360.

Hall, P. and Mohammad, H. (2006). On properties of functional principal components

analysis. Journal of the Royal Statistical Society, Series B 68, 109–126.

https://www.bristol.ac.uk/alspac/
https://www.bristol.ac.uk/alspac/


Functional data analysis with covariate-dependent mean and covariance structures 23

James, G. M., Wang, J., and Zhu, J. (2009). Functional linear regression that’s interpretable.

The Annals of Statistics 37, 2083–2108.

Jiang, C. and Wang, J. L. (2011). Functional single index models for longitudinal data. The

Annals of Statistics 39, 362–388.

Li, G., Shen, H., and Huang, J. (2016). Supervised sparse and functional principal component

analysis. Journal of Computational and Graphical Statistics 26, 859–878.

Li, G., Yang, D., Nobel, A. B., and Shen, H. (2015). Supervised singular value decomposition

and its asymptotic properties. Journal of Multivariate Analysis 146, 7–17.

Li, J., Huang, C., and Zhu, H. (2017). A functional varying-coefficient single-index model for

functional response data a functional varying-coefficient single-index model for functional

response data. Journal of the American Statistical Association 112, 1169–1181.

Li, Y. and Hsing, T. (2010). Uniform convergence rates for nonparametric regression and

principal component analysis in functional/longitudinal data. The Annals of Statistics

38, 3321–3351.

Li, Y., Wang, N., and Carroll, R. J. (2010). Generalized functional linear models with

semiparametric single-index interactions. Journal of the American Statistical Association

105, 621–633.

Lin, Z., Cao, J., Wang, L., and Wang, H. (2017). Locally sparse estimator for functional

linear regression models. Journal of Computational and Graphical Statistics 26, 306–318.

Lin, Z., Müller, H. G., and Yao, F. (2018). Mixture inner product spaces and their application

to functional data analysis. The Annals of Statistics 104, 545–560.

Masukume, G., O’Neill, S. M., Baker, P. N., Kenny, L. C., Morton, S. M., and Khashan,

A. S. (2018). The impact of caesarean section on the risk of childhood overweight and

obesity: new evidence from a contemporary cohort study. Scientific reports 8, 1–9.

Ochiai, H., Shirasawa, T., Ohtsu, T., Nishimura, R., Morimoto, A., Obuchi, R., et al. (2012).



24 Biometrics, 000 0000

Number of siblings, birth order, and childhood overweight: a population-based cross-

sectional study in japan. BMC public health 12, 1–7.

Seeds, J. W. (2004). Diagnostic mid trimester amniocentesis: how safe? American journal

of obstetrics and gynecology 191, 607–615.

Stone, C. (1980). Optimal rate of convergence for nonparametric estimators. The Annals of

Statistics 8, 1348–1360.

Wang, J., Wang, L., Liu, H., Zhang, S., Leng, J., Li, W., et al. (2018). Maternal gesta-

tional diabetes and different indicators of childhood obesity: a large study. Endocrine

connections 7, 1464–1471.

Yao, F. and Müller, H. G. (2010). Functional quadratic regression. Biometrika 97, 49–64.

Yao, F., Müller, H. G., and Wang, J. L. (2005). Functional data analysis for sparse

longitudinal data. Journal of the American Statistical Association 100, 577–590.

Zhong, Q., Lin, H., and Li, Y. (2020). Cluster non-gaussian functional data. Biometrics 77,

852–865.

Zhou, J., Wang, N. Y., and Wang, N. (2013). Functional linear model with zero-value

coefficient function at sub-regions. Statistica Sinica 23, 25–50.

Zhou, L., Lin, H., and Liang, H. (2018). Efficient estimation of the nonparametric mean and

covariance functions for longitudinal and sparse functional data. Journal of the American

Statistical Association 113, 1550–1564.

Supporting Information

Tables and figures referenced in Sections 4-5 are available with this paper at the Biometrics

website on Wiley Online Library. The R code for the proposed method is available on GitHub

https://github.com/LinhzLab/.

https://github.com/LinhzLab/


Functional data analysis with covariate-dependent mean and covariance structures 25

(a) Example 1(1): Normal FRIS data

(b) Example 1(2): Mixed Normal FRIS data

(c) Example 3: SSV data

(d) Example 4: FSREM data

Figure 1. NMSE of three methods: FRIS, SSV and FSREM for Example 1, 3, 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. (a)(b)Estimates of the eigenfunctions for φ1(t) and φ2(t), respectively; (c)(d)
Estimates of the score variance functions for ρ1(u) and ρ2(u), respectively (solid-average of
the estimated function; dashed-95% pointwise confident band); (e) GCV results of tuning
parameters λ; (f) NMSEs of FRIS, SSV and FSREM for Avon Longitudinal Study of Parents
and Children.
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Table 1
Comparisons of FRIS and SSV under Example 1; presented are bias (sd).

Normal Mixture Normal

FRIS SSV FRIS SSV

ni = 10

n = 100

β1 0.0010(0.0117) 0.0023(0.0163) 0.0003(0.0147) 0.0036(0.0244)

β2 0.0004(0.0069) 0.0008(0.0102) 0.0005(0.0084) 0.0022(0.0152)

β3 0.0007(0.0076) 0.0007(0.0118) 0.0009(0.0093) 0.0009(0.0167)

µ(·, ·) 0.0152(0.2844) 0.0247(0.4859) 0.0164(0.4131) 0.0369(0.5704)

ρ1(·) 0.1435(0.4244) 4.3897(2.2415) 0.1673(0.4384) 4.4381(2.5859)

ρ2(·) 0.0281(0.1374) 0.4939(0.2575) 0.0346(0.1369) 0.5228(0.2598)

ρ3(·) 0.0054(0.0212) 0.0442(0.0444) 0.0071(0.0248) 0.0483(0.0481)

n = 500

β1 0.0010(0.0058) 0.0016(0.0113) 0.0009(0.0066) 0.0011(0.0129)

β2 0.0004(0.0031) 0.0005(0.0080) 0.0003(0.0039) 0.0007(0.0086)

β3 0.0002(0.0032) 0.0007(0.0085) 0.0002(0.0043) 0.0003(0.0094)

µ(·, ·) 0.0056(0.1204) 0.0163(0.2458) 0.0065(0.1337) 0.0395(0.4699)

ρ1(·) 0.1409(0.4134) 4.3890(2.2071) 0.1518(0.4239) 3.9318(2.3274)

ρ2(·) 0.0230(0.1245) 0.4714(0.2311) 0.0231(0.1349) 0.5212(0.2451)

ρ3(·) 0.0051(0.0207) 0.0436(0.0440) 0.0064(0.0215) 0.0521(0.0495)

ni = 20

n = 100

β1 0.0008(0.0109) 0.0016(0.0128) 0.0002(0.0149) 0.0017(0.0248)

β2 0.0001(0.0054) 0.0004(0.0083) 0.0005(0.0082) 0.0016(0.0142)

β3 0.0002(0.0056) 0.0006(0.0099) 0.0010(0.0084) 0.0006(0.0156)

µ(·, ·) 0.0136(0.3247) 0.0215(0.4428) 0.0157(0.3521) 0.0299(0.4783)

ρ1(·) 0.1429(0.4241) 4.4168(2.2785) 0.1753(0.4607) 4.4328(2.5274)

ρ2(·) 0.0306(0.1405) 0.4759(0.2023) 0.0257(0.1357) 0.5312(0.2351)

ρ3(·) 0.0056(0.0215) 0.0466(0.0433) 0.0069(0.0229) 0.0520(0.0495)

n = 500

β1 0.0006(0.0050) 0.0005(0.0061) 0.0009(0.0070) 0.0009(0.0100)

β2 0.0002(0.0029) 0.0003(0.0054) 0.0006(0.0039) 0.0007(0.0068)

β3 0.0001(0.0030) 0.0002(0.0069) 0.0005(0.0042) 0.0009(0.0077)

µ(·, ·) 0.0059(0.0958) 0.0133(0.2534) 0.0062(0.1125) 0.0152(0.2814)

ρ1(·) 0.1408(0.4126) 4.1304(1.9150) 0.1511(0.4431) 4.3713(2.2832)

ρ2(·) 0.0264(0.1319) 0.4604(0.1676) 0.0232(0.1355) 0.5265(0.2219)

ρ3(·) 0.0048(0.0205) 0.0438(0.0428) 0.0058(0.0219) 0.0533(0.0481)
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Table 2
The selection results of the eigenfunctions under Example 1; presented are mean (sd).

Normal Mixture Normal

ni = 10 ni = 20 ni = 10 ni = 20

n = 100 n = 500 n = 100 n = 500 n = 100 n = 500 n = 100 n = 500

φ1

FPR 0.0398(0.0837) 0.0502(0.1010) 0.0549(0.0929) 0.0523(0.0963) 0.0475(0.0950) 0.0773(0.1628) 0.0626(0.1030) 0.0630(0.1074)

FNR 0.0291(0.0291) 0.0398(0.0426) 0.0277(0.0302) 0.0369(0.0408) 0.0282(0.0290) 0.0421(0.0434) 0.0281(0.0297) 0.0413(0.0443)

φ2

FPR 0.1067(0.1635) 0.0959(0.1583) 0.1024(0.1664) 0.1021(0.1643) 0.0920(0.1573) 0.1018(0.1576) 0.0958(0.1591) 0.0987(0.1542)

FNR 0.0572(0.0635) 0.0641(0.0724) 0.0520(0.0604) 0.0559(0.0647) 0.0634(0.0657) 0.0578(0.0664) 0.0517(0.0598) 0.0572(0.0677)

φ3

FPR 0.0663(0.1425) 0.0708(0.1460) 0.0805(0.1538) 0.0746(0.1471) 0.0834(0.1551) 0.0649(0.1389) 0.0829(0.1574) 0.0656(0.1375)

FNR 0.0832(0.0881) 0.0885(0.0928) 0.0804(0.0894) 0.0783(0.0907) 0.0797(0.0923) 0.0807(0.0927) 0.0874(0.0991) 0.0806(0.0943)

ACC 0.8755(0.0532) 0.8503(0.0543) 0.8722(0.0564) 0.8577(0.0551) 0.8680(0.0561) 0.8603(0.0531) 0.8686(0.0551) 0.8565(0.0547)
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Table 3
Comparisons of the estimates for β, accounting for covariate-mean relationships and obtained by FRIS, SSV and

FSREM; presented are point estimates (Est.) and p−values for the ALSPAC study.

FRIS SSV FSREM (β1) FSREM (β2)

Est. p-value Est. p-value Est. p-value Est. p-value

spontaneous β0 0.0827 0.7170 -0.0638 0.8208 0.0950 0.8181 0.1241 0.4301

birth weight β1 0.3752 0.0000 0.3281 0.0283 0.5348 0.0000 0.7300 0.0000

birth length β2 -0.1507 0.0000 -0.1389 0.0608 -0.4040 0.0002 -0.4297 0.0001

diabetes β3 0.5470 0.0000 0.7021 0.0007 0.1534 0.1250 0.2731 0.0063

amniocentesis β4 -0.3512 0.0002 -0.2938 0.0597 0.0187 0.8517 0.0558 0.5768

# of children β5 0.3859 0.0145 0.2068 0.3880 -0.0867 0.3859 -0.1153 0.2489

assisted breech β6 -0.1928 0.0346 -0.2540 0.0742 0.1135 0.2564 0.1403 0.1606

Caesarean section β7 0.4306 0.0000 0.3955 0.0221 0.3550 0.0004 0.1154 0.2485

forceps delivery β8 0.0276 0.4520 0.0519 0.1585 0.2785 0.4151 -0.1227 0.7417

vacuum extraction β9 0.1864 0.0019 0.1523 0.0844 0.3665 0.0002 -0.0158 0.8745
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Table 4
Comparisons of the estimates of α, accounting for covariate-covariance relationships; presented are point estimates

(Est.) and p−values for ALSPAC data.

FRIS FSREM

α1 α2 α1 α2

Est. p−value Est. p−value Est. p−value Est. p−value

spontaneous 0.6297 0.0000 -0.1166 0.2823 0.3173 0.4020 -0.0982 0.8092

birth weight 0.0588 0.3444 0.2781 0.0000 0.1918 0.0220 0.4033 0.0000

birth length -0.0014 0.9693 0.2771 0.0000 -0.0807 0.2799 -0.2047 0.0425

diabetes 0.4916 0.0000 0.3391 0.0012 -0.1311 0.7338 -0.4010 0.2268

amniocentesis -0.3442 0.0006 0.4673 0.0001 0.4095 0.2559 -0.6868 0.0492

# of children 0.3822 0.0000 0.1369 0.1185 -0.5482 0.0400 0.0588 0.7893

assisted breech 0.2492 0.0001 0.2662 0.0813 -0.0472 0.8417 0.0555 0.8450

Caesarean section -0.1053 0.0248 0.3240 0.0001 0.3765 0.2805 -0.3448 0.3587

forceps delivery -0.0972 0.1556 0.4059 0.0003 0.4238 0.2242 0.1194 0.7331

vacuum extraction 0.1051 0.0268 0.3737 0.0011 0.2167 0.5644 -0.1167 0.7834
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