Supplement to 'Penalized Deep Partially Linear Cox Models with Application to CT Scans of Lung Cancer Patients'

Yuming Sun ${ }^{1}$, Jian Kang ${ }^{2, *}$, Chinmay Haridas ${ }^{3}$, Nicholas Mayne ${ }^{4}$, Alexandra Potter ${ }^{3}$, Chi-Fu Yang ${ }^{3}$, David C. Christiani ${ }^{5}$ and Yi Li ${ }^{2, * *}$
${ }^{1}$ Department of Mathematics, William \& Mary, Williamsburg, VA 23185
${ }^{2}$ Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109
${ }^{3}$ Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114
${ }^{4}$ Department of Medicine, Duke University, Durham, NC 27710
${ }^{5}$ Department of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115
* email: jiankang@umich.edu
**email: yili@umich.edu

This paper has been submitted for consideration for publication in Biometrics

Composite Hölder Class of Smooth Functions

With constants $a, M>0$ and a positive integer d, we define a Hölder class of smooth functions as

$$
\mathcal{H}_{d}^{a}(\mathbb{D}, M)=\left\{f: \mathbb{D} \subset \mathbb{R}^{d} \rightarrow \mathbb{R}: \sum_{v:|v|<a}\left\|\partial^{v} f\right\|_{\infty}+\sum_{v:|v|=\lfloor a\rfloor} \sup _{x, y \in \mathbb{D}, x \neq y} \frac{\left|\partial^{v} f(x)-\partial^{v} f(y)\right|}{\|x-y\|_{\infty}^{a-\lfloor a\rfloor}} \leqslant M\right\}
$$

where \mathbb{D} is a bounded subset of $\mathbb{R}^{d},\lfloor a\rfloor$ is the largest integer smaller than $a, \partial^{v}:=\partial^{v_{1}} \ldots \partial^{v_{r}}$ with $v=\left(v_{1}, \ldots, v_{d}\right) \in \mathbb{N}^{d}$, and $|v|:=\sum_{j=1}^{d} v_{j}$.

For a positive integer q, let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{q}\right) \in \mathbb{R}_{+}^{q}$, and $\mathbf{d}=\left(d_{1}, \ldots, d_{q+1}\right) \in \mathbb{N}_{+}^{q+1}$, $\tilde{\mathbf{d}}=\left(\tilde{d}_{1}, \ldots, \tilde{d}_{q}\right) \in \mathbb{N}_{+}^{q}$ with $\tilde{d}_{j} \leqslant d_{j}$. We then define a composite Hölder smooth function class as
$\mathcal{H}(q, \alpha, \mathbf{d}, \tilde{\mathbf{d}}, M)=\left\{f=f_{q} \circ \cdots \circ f_{1}: f_{i}=\left(f_{i 1}, \ldots, f_{i d_{i+1}}\right)^{\top}, f_{i j} \in \mathcal{H}_{\tilde{d}_{i}}^{\alpha_{i}}\left(\left[a_{i}, b_{i}\right]^{\tilde{d}_{i}}, M\right),\left|a_{i}\right|,\left|b_{i}\right| \leqslant M\right\}$,
where $\left[a_{i}, b_{i}\right]$ is the bounded domain for each Hölder smooth function.

More Notation

Denote $a_{n} \lesssim b_{n}$ as $a_{b} \leqslant c b_{n}$ for some $c>0$ when n is sufficiently large; $a_{n} \asymp b_{n}$ if $a_{n} \lesssim b_{n}$ and $b_{n} \lesssim a_{n}$. Let $\eta(\cdot, \cdot)=\left(\boldsymbol{\beta}^{\top} \cdot, g(\cdot)\right): \mathbb{R}^{p} \times \mathbb{R}^{r} \rightarrow \mathbb{R}^{2}$ denote the collection of a linear operator and a nonlinear operator. In this section, denote by $\mathbf{v}=\left(\mathbf{x}^{\top}, \mathbf{z}^{\top}\right)^{\top}$ the random vector underlying the observed IID data of $\mathbf{v}_{i}=\left(\mathbf{x}_{i}^{\top}, \mathbf{z}_{i}^{\top}\right)^{\top}$, and (T, Δ) the random vector underlying the observed IID data of $\left(T_{i}, \Delta_{i}\right), i=1, \ldots, n$. Let $N(t)=I(T \leqslant t, \Delta=1)$ and $N_{i}(t)=I\left(T_{i} \leqslant t, \Delta_{i}=1\right)$. To simplify notation, we denote by $\eta(\mathbf{v})=\boldsymbol{\beta}^{\top} \mathbf{x}+g(\mathbf{z})$. Denote the truth of $\eta(\cdot, \cdot)$ by $\eta_{0}(\cdot, \cdot)=\left(\boldsymbol{\beta}_{\mathbf{0}}^{\top} \cdot, g_{0}(\cdot)\right)$. For two operators, say, $\eta_{1}(\cdot, \cdot)=\left(\boldsymbol{\beta}_{1}^{\top} \cdot, g_{1}(\cdot)\right)$ and $\eta_{2}(\cdot, \cdot)=\left(\boldsymbol{\beta}_{2}^{\top} \cdot, g_{2}(\cdot)\right)$, define their distance as

$$
d^{2}\left(\eta_{1}, \eta_{2}\right):=\mathbb{E}\left[\left\{\eta_{1}(\mathbf{v})-\eta_{2}(\mathbf{v})\right\}^{2}\right]=\int\left\{\eta_{1}(\mathbf{t})-\eta_{2}(\mathbf{t})\right\}^{2} f_{\mathbf{v}}(\mathbf{t}) d \mathbf{t}
$$

and the corresponding norm

$$
\|\eta\|^{2}:=\mathbb{E}\left[\eta^{2}(\mathbf{v})\right]=\int \eta^{2}(\mathbf{t}) f_{\mathbf{v}}(\mathbf{t}) d \mathbf{t}
$$

For the notational ease, we write $\eta=(\boldsymbol{\beta}, g)$ in the following.
With $Y(t)=1(T \geqslant t)$ and $Y_{i}(t)=1\left(T_{i} \geqslant t\right)$, define

$$
S_{0 n}(t, \eta)=\frac{1}{n} \sum_{i=1}^{n} Y_{i}(t) \exp \left\{\eta\left(\mathbf{v}_{i}\right)\right\}, \quad S_{0}(t, \eta)=\mathbb{E}[Y(t) \exp \{\eta(\mathbf{v})\}]
$$

and for any vector function \mathbf{h} of \mathbf{v} define

$$
S_{1 n}(t, \eta, \mathbf{h})=\frac{1}{n} \sum_{i=1}^{n} Y_{i}(t) \mathbf{h}\left(\mathbf{v}_{i}\right) \exp \left\{\eta\left(\mathbf{v}_{i}\right)\right\}, \quad S_{1}(t, \eta, \mathbf{h})=\mathbb{E}[Y(t) \mathbf{h}(\mathbf{v}) \exp \{\eta(\mathbf{v})\}]
$$

where the expectation is taken with respect to the joint distribution of T and \mathbf{v}.
Let

$$
l_{n}(t, \mathbf{v}, \eta)=\eta(\mathbf{v})-\log S_{0 n}(t, \eta), \quad l_{0}(t, \mathbf{v}, \eta)=\eta(\mathbf{v})-\log S_{0}(t, \eta)
$$

Then the partial likelihood in (2)
can be written as

$$
\ell(\eta)=\frac{1}{n} \sum_{i=1}^{n}\left\{\Delta_{i} l_{n}\left(T_{i}, \mathbf{v}_{i}, \eta\right)-\Delta_{i} \log n\right\}
$$

Since $\sum_{i=1}^{n} \Delta_{i} \log n$ does not involve unknown parameters and can be dropped in optimization, we replace below $\ell(\eta)$ by $\frac{1}{n} \sum_{i=1}^{n}\left\{\Delta_{i} l_{n}\left(T_{i}, \mathbf{v}_{i}, \eta\right)\right\}$.

Finally, for any function h of (\mathbf{v}, Δ, T), where (Δ, T) is the random vector underlying $\left(\Delta_{i}, T_{i}\right)$, define

$$
\mathbb{P}_{n}\{h(\mathbf{v}, \Delta, T)\}=\frac{1}{n} \sum_{i=1}^{n} h\left(\mathbf{v}_{i}, \Delta_{i}, T_{i}\right), \quad \mathbb{P}\{h(\mathbf{v}, \Delta, T)\}=\mathbb{E}\{h(\mathbf{v}, \Delta, T)\}
$$

and in particular, we define $L_{n}(\eta)=\mathbb{P}_{n}\left\{\Delta l_{n}(T, \mathbf{v}, \eta)\right\}$ and $L_{0}(\eta)=\mathbb{P}\left\{\Delta l_{0}(T, \mathbf{v}, \eta)\right\}$. Here, the expectation is taken with respect to the joint distribution of T, Δ and \mathbf{v}.

Proof of Theorem 1

Define $\alpha_{n}=\gamma_{n} \log ^{2} n+a_{n}=\tau_{n}+a_{n}$. For some $D>0$, let $\mathbb{R}_{D}^{p}:=\left\{\boldsymbol{\beta} \in \mathbb{R}^{p}:\|\boldsymbol{\beta}\|_{\infty}<D\right\}$ and $\mathcal{G}_{D}:=\mathcal{G}(L, \mathbf{p}, s, D)$, and define

$$
\hat{\eta}_{D}=\underset{\eta \in \mathbb{R}_{D}^{p} \times \mathcal{G}_{D}}{\operatorname{argmax}} P L(\eta) .
$$

Further, denote by $\hat{\eta}=(\hat{\boldsymbol{\beta}}, \hat{g})$ a local maximizer of $P L(\eta)$ over $\mathbb{R}^{p} \times \mathcal{G}$, that is, by setting $D=\infty$ in \mathbb{R}_{D}^{p} and \mathcal{G}_{D}. As in Zhong et al. (2022), it can be shown that if $\max \left(\|\beta\|,\|g\|_{\infty}\right) \rightarrow$ $\infty, P L(\eta) \rightarrow-\infty$; hence, when D is sufficiently large, $\hat{\eta}=\hat{\eta}_{D}$ almost surely. Therefore, in the following, we show that $d\left(\hat{\eta}_{D}, \eta_{0}\right)=O_{p}\left(\alpha_{n}\right)$, when D is sufficiently large.

To do so, it suffices to show that for any $\epsilon>0$, there exists a C such that

$$
\begin{equation*}
\mathrm{P}\left\{\sup _{\eta \in \mathcal{N}_{c}} P L(\eta)<P L\left(\eta_{0}\right)\right\} \geqslant 1-\epsilon, \tag{A.2}
\end{equation*}
$$

where $\mathcal{N}_{c}=\left\{\eta \in \mathbb{R}_{D}^{p} \times \mathcal{G}_{D}: d\left(\eta, \eta_{0}\right)=C \alpha_{n}\right\}$. If it holds, it implies with probability at least $1-\epsilon$ that there exists a $C>0$ such that a local maximum exists and is inside the ball \mathcal{N}_{c}. Hence, there exists a local maximizer such that $d\left(\hat{\eta}, \eta_{0}\right)=O_{p}\left(\alpha_{n}\right)$.

Without loss of generality, we assume that η satisfies $\mathbb{E}\{\eta(\mathbf{v})\}=\mathbb{E}\left\{\eta_{0}(\mathbf{v})\right\}$, implying $\mathbb{E}\{g(\mathbf{z})\}=0$; if not, we can always centralize it. To see this, consider any $\eta=(\beta, g)$ in the ball $B_{C}=\left\{\eta \in \mathbb{R}_{D}^{p} \times \mathcal{G}_{D}: d\left(\eta, \eta_{0}\right) \leqslant C \alpha_{n}\right\}$, its centralization $\eta^{\prime}=\left(\beta, g-\mathbb{E}\left\{\eta(\mathbf{v})-\eta_{0}(\mathbf{v})\right\}\right)$ is also in the ball B_{C}, satisfying $\mathbb{E}\left\{\eta^{\prime}(\mathbf{v})\right\}=\mathbb{E}\left\{\eta_{0}(\mathbf{v})\right\}$ and $P L\left(\eta^{\prime}\right)=P L(\eta)$.

Because of the sparsity of the β-coefficients, we arrange the indices of the covariates $\left(x_{1}, \ldots, x_{p}\right)$ so that $\beta_{j 0}=0$ when $j>s_{\beta}$. We consider

$$
\begin{align*}
& P L(\eta)-P L\left(\eta_{0}\right) \\
= & \left\{L_{n}(\eta)-L_{n}\left(\eta_{0}\right)\right\}-\sum_{j=1}^{p}\left\{p_{\lambda}\left(\left|\beta_{j}\right|\right)-p_{\lambda}\left(\left|\beta_{j 0}\right|\right)\right\} \\
\leqslant & \left\{L_{n}(\eta)-L_{n}\left(\eta_{0}\right)\right\}-\sum_{j=1}^{s_{\beta}}\left\{p_{\lambda}\left(\left|\beta_{j}\right|\right)-p_{\lambda}\left(\left|\beta_{j 0}\right|\right)\right\}, \tag{A.3}
\end{align*}
$$

where the inequality holds because $p_{\lambda}\left(\left|\beta_{j}\right|\right)-p_{\lambda}(0)>0$ when $j>s_{\beta}$.
We first deal with

$$
\begin{align*}
L_{n}(\eta)-L_{n}\left(\eta_{0}\right)= & \left\{L_{0}(\eta)-L_{0}\left(\eta_{0}\right)\right\} \tag{A.4}\\
& +\left\{L_{n}(\eta)-L_{0}(\eta)\right\}-\left\{L_{n}\left(\eta_{0}\right)-L_{0}\left(\eta_{0}\right)\right\} .
\end{align*}
$$

According to Lemma 2 in Zhong et al. (2022), we know that

$$
L_{0}(\eta)-L_{0}\left(\eta_{0}\right) \asymp-d^{2}\left(\eta, \eta_{0}\right) .
$$

Since $d\left(\eta, \eta_{0}\right)=C \alpha_{n}$, the first term in the right hand side of A.4 is of the order $C^{2} \alpha_{n}^{2}$.
After some calculation,

$$
\begin{align*}
\left(L_{n}-L_{0}\right)(\eta)-\left(L_{n}-L_{0}\right)\left(\eta_{0}\right)= & \left(\mathbb{P}_{n}-\mathbb{P}\right)\left\{\Delta l_{0}(T, \mathbf{v}, \eta)-\Delta l_{0}\left(T, \mathbf{v}, \eta_{0}\right)\right\} \\
& +\mathbb{P}_{n}\left\{\Delta \log \frac{S_{0}(T, \eta)}{S_{0}\left(T, \eta_{0}\right)}-\Delta \log \frac{S_{0 n}(T, \eta)}{S_{0 n}\left(T, \eta_{0}\right)}\right\} \tag{A.5}\\
= & I+I I .
\end{align*}
$$

According to the proof of Theorem 3.1 in Zhong et al. (2022), with $\mathcal{A}_{\delta}=\left\{(\beta, g) \in \mathbb{R}_{D}^{p} \times \mathcal{G}_{D}\right.$: $\left.\delta / 2 \leqslant d\left(\eta, \eta_{0}\right) \leqslant \delta\right\}$, it follows that

$$
\begin{gathered}
\sup _{\eta \in \mathcal{A}_{\delta}}|I|=O\left(n^{-1 / 2} \phi_{n}(\delta)\right), \\
\sup _{\eta \in \mathcal{A}_{\delta}}|I I| \leqslant O\left(n^{-1 / 2} \phi_{n}(\delta)\right),
\end{gathered}
$$

where $\phi_{n}(\delta)=\delta \sqrt{s \log \frac{\mathcal{U}}{\delta}}+\frac{s}{\sqrt{n}} \log \frac{\mathcal{U}}{\delta}$ and $\mathcal{U}=L \prod_{l=1}^{L}\left(p_{l}+1\right) \sum_{l=1}^{L} p_{l} p_{l+1}$. Then by Assumption 1 , when $\delta=C\left(\tau_{n}+a_{n}\right)$, we can show that $n^{-1 / 2} \phi_{n}\left\{C\left(\tau_{n}+a_{n}\right)\right\} \leqslant C\left(\tau_{n}+a_{n}\right)^{2}=C \alpha_{n}^{2}$.

By the Taylor expansion and the Cauchy-Schwarz inequality, the second term on the righthand side of (A.3) is bounded by

$$
\sqrt{s_{\boldsymbol{\beta}}} a_{n}\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{\mathbf{0}}\right\|+\frac{1}{2} b_{n}\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{\mathbf{0}}\right\|^{2} .
$$

Since $d\left(\eta, \eta_{0}\right)=C \alpha_{n}$, and therefore $\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{\mathbf{0}}\right\|$ is of the order $C \alpha_{n}$. Hence, this upper bound is dominated by the first term in A.4 as $b_{n} \rightarrow 0$ by the assumption.

Therefore, for any $\epsilon>0$, there exist sufficiently large $C, D>0$ so that A.2 holds, and
hence $d\left(\hat{\eta}_{D}, \eta_{0}\right)=O_{p}\left(\alpha_{n}\right)$, which gives $d\left(\hat{\eta}, \eta_{0}\right)=O_{p}\left(\alpha_{n}\right)$, where we recall $\hat{\eta}$ is the local maximizer of $P L(\eta)$ over $\mathbb{R}^{p} \times \mathcal{G}$. We note that

$$
\begin{aligned}
d^{2}\left(\hat{\eta}, \eta_{0}\right) & =\mathbb{E}\left[\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\top}\{\mathbf{x}-\mathbb{E}(\mathbf{x} \mid \mathbf{z})\}+\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\top} \mathbb{E}(\mathbf{x} \mid \mathbf{z})+\left\{\hat{g}(\mathbf{z})-g_{0}(\mathbf{z})\right\}\right]^{2} \\
& =\mathbb{E}\left[\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\top}\{\mathbf{x}-\mathbb{E}(\mathbf{x} \mid \mathbf{z})\}\right]^{2}+\mathbb{E}\left[\left\{\hat{g}(\mathbf{z})-g_{0}(\mathbf{z})\right\}+\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\top} \mathbb{E}(\mathbf{x} \mid \mathbf{z})\right]^{2}
\end{aligned}
$$

where the second equality holds because, by the definition of $d(\cdot, \cdot), \mathbb{E}$ is taken with respect to the joint density of $\mathbf{v}=\left(\mathbf{x}^{\top}, \mathbf{z}^{\top}\right)^{\top}$, which is independent of the observed data, and hence, $\hat{\boldsymbol{\beta}}$ and \hat{g}. By Assumptions 2-4, it follows $\left\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right\|=O_{p}\left(\alpha_{n}\right)$ and $\left\|\hat{g}-g_{0}\right\|_{L^{2}}=O_{p}\left(\alpha_{n}\right)$.

Proof of Theorem 2

For the claims made in Theorem 2, it suffices to show that, with probability tending to 1 , for any given $\eta=(\boldsymbol{\beta}, g)$ satisfying that $\left\|\eta-\eta_{0}\right\|=O\left(\gamma_{n} \log ^{2} n\right)$, where $\eta_{0}=\left(\boldsymbol{\beta}_{0}, g_{0}\right)$, and some constant $C>0$,

$$
P L\left\{\left(\boldsymbol{\beta}_{1}^{\top}, \mathbf{0}^{\top}\right)^{\top}, g\right\}=\max _{\left\|\boldsymbol{\beta}_{2}\right\| \leqslant C \gamma_{n} \log ^{2} n} P L\left\{\left(\boldsymbol{\beta}_{1}^{\top}, \boldsymbol{\beta}_{2}^{\top}\right)^{\top}, g\right\}
$$

where $\boldsymbol{\beta}_{1}=\left(\beta_{1}, \ldots, \beta_{s_{\beta}}\right)^{\top}$ and $\boldsymbol{\beta}_{2}=\left(\beta_{s_{\beta}+1}, \ldots, \beta_{p}\right)^{\top}$. We only need to show that, for any $j=s_{\beta}+1, \ldots, p$,

$$
\begin{array}{ll}
\partial P L(\boldsymbol{\beta}, g) / \partial \beta_{j}<0, & \text { for } 0<\beta_{j}<C \gamma_{n} \log ^{2} n \\
\partial P L(\boldsymbol{\beta}, g) / \partial \beta_{j}>0, & \text { for }-C \gamma_{n} \log ^{2} n<\beta_{j}<0
\end{array}
$$

To proceed, we note that $\partial P L(\boldsymbol{\beta}, g) / \partial \beta_{j}=\partial \ell(\eta) / \partial \beta_{j}-\operatorname{sign}\left(\beta_{j}\right) p_{\lambda}^{\prime}\left(\left|\beta_{j}\right|\right)$ for $j=s_{\beta}+$ $1, \ldots, p$. Denote by $F_{j}(\eta)$ the partial derivative of $\ell(\eta)$ w.r.t. β_{j}, i.e.

$$
F_{j}(\eta)=\frac{\partial \ell(\eta)}{\partial \beta_{j}}=\frac{1}{n} \sum_{1=1}^{n} \int_{0}^{\tau}\left\{x_{i, j}-\frac{\sum_{k=1}^{n} Y_{k}(s) x_{k, j} \exp \left(\boldsymbol{\beta}^{\top} \mathbf{x}_{k}+g\left(\mathbf{z}_{k}\right)\right)}{\sum_{k=1}^{n} Y_{k}(s) \exp \left(\boldsymbol{\beta}^{\top} \mathbf{x}_{k}+g\left(\mathbf{z}_{k}\right)\right)}\right\} d N_{i}(s),
$$

where $x_{k, j}$ (or $x_{i, j}$) is the j th element of \mathbf{x}_{k} (or \mathbf{x}_{i}). As part of η is a functional, we consider a functional expansion of $F_{j}(\eta)$ around its truth, η_{0}. Specifically, for a real number $0 \leqslant e \leqslant 1$,
we define $\mathcal{F}_{j}(e)=F_{j}\left\{\eta_{0}+e\left(\eta-\eta_{0}\right)\right\}$, a function of the scalar e only. Obviously, $\mathcal{F}_{j}(1)=F_{j}(\eta)$ and $\mathcal{F}_{j}(0)=F_{j}\left(\eta_{0}\right)$.

Taking the Taylor expansion of $\mathcal{F}_{j}(1)$ around 0 gives

$$
\begin{equation*}
\mathcal{F}_{j}(1)=\mathcal{F}_{j}(0)+\mathcal{F}_{j}^{\prime}(0)+\mathcal{F}_{j}^{\prime \prime}\left(e^{*}\right), \tag{A.6}
\end{equation*}
$$

where e^{*} is between 0 and 1 . By some calculation,

$$
\begin{aligned}
& \mathcal{F}_{j}^{\prime}(e)=-\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau}\left[\frac{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right) x_{k, j}\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)}{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right)}-\right. \\
& \left.\frac{\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right) x_{k, j}\right\}\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right)\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right\}}{\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right)\right\}^{2}}\right] d N_{i}(s),
\end{aligned}
$$

where $\mathbf{v}_{k}=\left(\mathbf{x}_{k}^{\top}, \mathbf{z}_{k}^{\top}\right)^{\top}, \xi_{e}\left(\mathbf{v}_{k}\right)=\exp \left(\left\{\eta_{0}+e\left(\eta-\eta_{0}\right)\right\}\left(\mathbf{v}_{k}\right)\right)$ and $\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)=\left(\beta-\beta_{0}\right)^{\top} \mathbf{x}_{k}+$ $\left(g-g_{0}\right)\left(\mathbf{z}_{k}\right)$, and

$$
\begin{aligned}
\mathcal{F}_{j}^{\prime \prime}(e) & =-\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau}\left[\frac{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right) x_{k, j}\left(\eta-\eta_{0}\right)^{2}\left(\mathbf{v}_{k}\right)}{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right)}\right. \\
& -\frac{2\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right) x_{k, j}\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right\}\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right)\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right\}}{\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right)\right\}^{2}} \\
& \left.-\frac{\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right) x_{k, j}\right\}\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right)\left(\eta-\eta_{0}\right)^{2}\left(\mathbf{v}_{k}\right)\right\}}{\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right)\right\}^{2}}\right] d N_{i}(s) . \\
& +\frac{2\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right) x_{k, j}\right\}\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right)\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right\}^{2}}{\left\{\sum_{k} Y_{k}(s) \xi_{e}\left(\mathbf{v}_{k}\right)\right\}^{3}}
\end{aligned}
$$

It follows that $\mathcal{F}_{j}(0)$ in A.6) is equal to

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau}\left\{x_{i, j}-\frac{\sum_{k=1}^{n} Y_{k}(s) x_{k, j} \exp \left(\boldsymbol{\beta}_{0}^{\top} \mathbf{x}_{k}+g_{0}\left(\mathbf{z}_{k}\right)\right)}{\sum_{k=1}^{n} Y_{k}(s) \exp \left(\boldsymbol{\beta}_{0}^{\top} \mathbf{x}_{k}+g_{0}\left(\mathbf{z}_{k}\right)\right)}\right\} d N_{i}(s) \\
= & \frac{1}{n} \sum_{1=1}^{n} \int_{0}^{\tau}\left\{x_{i, j}-\frac{\sum_{k=1}^{n} Y_{k}(s) x_{k, j} \exp \left(\boldsymbol{\beta}_{0}^{\top} \mathbf{x}_{k}+g_{0}\left(\mathbf{z}_{k}\right)\right)}{\sum_{k=1}^{n} Y_{k}(s) \exp \left(\boldsymbol{\beta}_{0}^{\top} \mathbf{x}_{k}+g_{0}\left(\mathbf{z}_{k}\right)\right)}\right\} d M_{i}(s),
\end{aligned}
$$

where $d M_{i}(s)=d N_{i}(s)-\lambda_{0}(s) Y_{i}(s) \exp \left(\boldsymbol{\beta}_{0}^{\top} \mathbf{x}_{i}+g_{0}\left(\mathbf{z}_{i}\right)\right) d s$ is the martingale with respect to the history up to time s. Hence, $n^{1 / 2} \mathcal{F}_{j}(0)$ converges in distribution to a normal distribution by the martingale central limit theorem (Fleming and Harrington, 2013), and therefore, $\mathcal{F}_{j}(0)=O_{p}\left(n^{-1 / 2}\right)$.

We then consider

$$
\begin{aligned}
\mathcal{F}_{j}^{\prime}(0) & =-\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau}\left[\frac{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)}{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)}\right. \\
& \left.-\frac{\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\right\}\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right\}}{\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\right\}^{2}}\right] d N_{i}(s) \\
& =-\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau}\left[\frac{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)}{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)}\right. \\
& \left.-\frac{\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\right\}\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right\}}{\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\right\}^{2}}\right] d M_{i}(s) \\
& -\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau}\left[\frac{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)}{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)}\right. \\
& \left.-\frac{\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\right\}\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right\}}{\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\right\}^{2}}\right] Y_{i}(s) \xi_{0}\left(\mathbf{v}_{i}\right) \lambda_{0}(s) d s \\
& =I_{1}+I_{2},
\end{aligned}
$$

where $\xi_{0}\left(\mathbf{v}_{k}\right)=\exp \left(\eta_{0}\left(\mathbf{v}_{k}\right)\right)=\exp \left(\boldsymbol{\beta}_{0}^{\top} \mathbf{x}_{i}+g_{0}\left(\mathbf{z}_{i}\right)\right)$. It follows that each summed item in I_{1}, i.e.,

$$
\begin{aligned}
& \int_{0}^{\tau}\left[\frac{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)}{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)}\right. \\
- & \left.\frac{\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\right\}\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right\}}{\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\right\}^{2}}\right] d M_{i}(s)
\end{aligned}
$$

is a square integrable martingale (Fleming and Harrington, 2013). Hence, by the law of large numbers for martingales (Hall and Heyde, 2014), $I_{1} \rightarrow 0$ in probability.

Also, I_{2} can be shown to be equal to

$$
\begin{aligned}
& -\int_{0}^{\tau} \frac{1}{n}\left[\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right. \\
- & \left.\frac{\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\right\}\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right\}}{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)}\right] \lambda_{0}(s) d s
\end{aligned}
$$

Define

$$
\begin{aligned}
S_{x_{j}, 1}\left(s, \eta-\eta_{0}\right)=\mathbb{E}\left[Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right], & S_{x_{j}}\left(s, \eta_{0}\right)=\mathbb{E}\left[Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\right] \\
S_{1}\left(s, \eta-\eta_{0}\right)=\mathbb{E}\left[Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right], & S_{0}\left(s, \eta_{0}\right)=\mathbb{E}\left[Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\right]
\end{aligned}
$$

Applying the empirical process arguments (Pollard, 1990; Wellner, 2005) yields that

$$
\begin{aligned}
& \sup _{s \in[0, \tau]} \left\lvert\, \frac{1}{n}\left[\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right.\right. \\
- & \left.\frac{\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right) x_{k, j}\right\}\left\{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right\}}{\sum_{k} Y_{k}(s) \xi_{0}\left(\mathbf{v}_{k}\right)}\right] \\
- & \left.S_{x_{j}, 1}\left(s, \eta-\eta_{0}\right)+\frac{S_{x_{j}}\left(s, \eta_{0}\right) S_{1}\left(s, \eta-\eta_{0}\right)}{S_{0}\left(s, \eta_{0}\right)} \right\rvert\, \rightarrow 0
\end{aligned}
$$

in probability, which implies that

$$
I_{2} \rightarrow-\int_{0}^{\tau}\left\{S_{x_{j}, 1}\left(s, \eta-\eta_{0}\right)-\frac{S_{x_{j}}\left(s, \eta_{0}\right) S_{1}\left(s, \eta-\eta_{0}\right)}{S_{0}\left(s, \eta_{0}\right)}\right\} \lambda_{0}(s) d s
$$

in probability. Collecting all these terms, we thus have that

$$
\mathcal{F}_{j}^{\prime}(0)=-\int_{0}^{\tau}\left\{S_{x_{j}, 1}\left(s, \eta-\eta_{0}\right)-\frac{S_{x_{j}}\left(s, \eta_{0}\right) S_{1}\left(s, \eta-\eta_{0}\right)}{S_{0}\left(s, \eta_{0}\right)}\right\} \lambda_{0}(s) d s+o_{p}(1)
$$

We now bound $\mathcal{F}_{j}^{\prime}(0)$. First note that, for any $s \in[0, \tau]$,

$$
\begin{aligned}
S_{x_{j}, 1}\left(s, \eta-\eta_{0}\right) & \leqslant \mathbb{E}\left[\xi_{0}\left(\mathbf{v}_{k}\right)\left|x_{k, j}\right|\left|\left(\eta-\eta_{0}\right)\left(\mathbf{v}_{k}\right)\right|\right] \\
& \leqslant \max _{\mathbf{v}_{k} \in \mathbb{D}}\left\{\xi_{0}\left(\mathbf{v}_{k}\right)\left|x_{k, j}\right|\right\} \int_{\mathbb{D}}\left|\left(\eta-\eta_{0}\right)(\mathbf{v})\right| f_{\mathbf{v}_{k}}(\mathbf{v}) d \mathbf{v} \\
& \leqslant C_{1}\left\{\int_{\mathbb{D}}\left(\eta-\eta_{0}\right)^{2}(\mathbf{v}) f_{\mathbf{v}_{k}}(\mathbf{v}) d \mathbf{v}\right\}^{1 / 2} \\
& =C_{1}\left\|\eta-\eta_{0}\right\|
\end{aligned}
$$

where $C_{1}>0$ is a constant, $f_{\mathbf{v}_{k}}(\cdot)$ is the density function of the random vector \mathbf{v}_{k}, and the last inequality stems from the Cauchy-Schwartz inequality, in conjunction with the boundedness assumptions on the covariates (i.e., \mathbb{D} is bounded) and η_{0} (Conditions 2 and 3 in the main text). Similarly, we can show that, for any $s \in[0, \tau]$,

$$
\left|S_{1}\left(s, \eta-\eta_{0}\right)\right| \leqslant C_{2}| | \eta-\eta_{0}| |,\left|S_{x_{j}}\left(s, \eta_{0}\right)\right| \leqslant C_{3}, \quad S_{0}\left(s, \eta_{0}\right) \geqslant C_{4},
$$

where $C_{2}, C_{3}, C_{4}>0$ are constants. The last inequality holds because at τ, there is at least probability of $\delta>0$ of observing subjects at risk (Condition 4 in the main text), implying that $\min _{s \in[0, \tau]} \mathbb{E}\left(Y_{k}(s) \mid \mathbf{v}_{k}\right) \geqslant \delta>0$ a.s.

As

$$
\begin{aligned}
& \left|\int_{0}^{\tau}\left\{S_{x_{j}, 1}\left(s, \eta-\eta_{0}\right)-\frac{S_{x_{j}}\left(s, \eta_{0}\right) S_{1}\left(s, \eta-\eta_{0}\right)}{S_{0}\left(s, \eta_{0}\right)}\right\} \lambda_{0}(s) d s\right| \\
\leqslant & \int_{0}^{\tau} \left\lvert\,\left\{S_{x_{j}, 1}\left(s, \eta-\eta_{0}\right) \left\lvert\, \lambda_{0}(s) d s+\int_{0}^{\tau} \frac{\left|S_{x_{j}}\left(s, \eta_{0}\right)\right|\left|S_{1}\left(s, \eta-\eta_{0}\right)\right|}{S_{0}\left(s, \eta_{0}\right)} \lambda_{0}(s) d s\right.\right.\right. \\
\leqslant & \left(C_{1}+C_{2} C_{3} C_{4}^{-1}\right) \Lambda_{0}(\tau)| | \eta-\eta_{0}| |,
\end{aligned}
$$

where $\Lambda_{0}(\tau)=\int_{0}^{\tau} \lambda_{0}(s) d s<\infty$. Therefore, $\mathcal{F}_{j}^{\prime}(0)=O_{p}\left(\left\|\eta-\eta_{0}\right\|\right)$.
Similarly, using the explicit form of $\mathcal{F}_{j}^{\prime \prime}(e)$, some calculation can show that $\mathcal{F}_{j}^{\prime \prime}\left(e^{*}\right)=$ $o_{p}\left(\left\|\eta-\eta_{0}\right\|\right)$. Then we conclude that

$$
\begin{aligned}
\partial P L(\boldsymbol{\beta}, g) / \partial \beta_{j} & =\partial \ell(\eta) / \partial \beta_{j}-\operatorname{sign}\left(\beta_{j}\right) p_{\lambda}^{\prime}\left(\left|\beta_{j}\right|\right) \\
& =\lambda\left[\lambda^{-1}\left(\mathcal{F}_{j}(0)+\mathcal{F}_{j}^{\prime}(0)+\mathcal{F}_{j}^{\prime \prime}\left(e^{*}\right)\right)-\operatorname{sign}\left(\beta_{j}\right) \lambda^{-1} p_{\lambda}^{\prime}\left(\left|\beta_{j}\right|\right)\right] .
\end{aligned}
$$

With the assumptions of $\lambda^{-1} \gamma_{n} \log ^{2}(n) \rightarrow 0$ and $\lambda^{-1} n^{-1 / 2} \rightarrow 0$, it follows that

$$
\lambda^{-1}\left(\mathcal{F}_{j}(0)+\mathcal{F}_{j}^{\prime}(0)+\mathcal{F}_{j}^{\prime \prime}\left(e^{*}\right)\right)=o_{p}(1) .
$$

On the other hand, using the condition of $\lim \inf _{n \rightarrow \infty} \liminf _{\theta \rightarrow 0+} \lambda^{-1} p_{\lambda}^{\prime}(\theta)>0$, it follows that the sign of $\partial P L(\boldsymbol{\beta}, g) / \partial \beta_{j}$ is the opposite sign of β_{j} with probability going to 1 . Hence, the claims follow.
[Figure S. 1 about here.]
[Figure S. 2 about here.]
[Figure S. 3 about here.]

References

Fleming, T. R. and Harrington, D. P. (2013). Counting processes and survival analysis, volume 625. John Wiley \& Sons.

Hall, P. and Heyde, C. C. (2014). Martingale limit theory and its application. Academic press.

Pollard, D. (1990). Empirical processes: theory and applications. Ims.
Wellner, J. A. (2005). Empirical processes: Theory and applications. Notes for a course given at Delft University of Technology page 17.

Zhong, Q., Mueller, J., and Wang, J.-L. (2022). Deep learning for the partially linear Cox model. The Annals of Statistics 50, 1348-1375.

Figure S.1: Selection of $\boldsymbol{\lambda}$ in Penalized DPLC using BIC.

Gray-scale normalization Histogram equalization

Tumor Segmentation

Feature extraction

Figure S.2: Image Preprocessing Pipeline

Figure S.3: Selection Frequency and Hazard Ratio of Selected Features: The selection frequency of the most frequently selected five texture features is reported. The hazard ratio is the average of 100 experiments

