Supplement to 'Penalized Deep Partially Linear Cox Models with Application to CT Scans of Lung Cancer Patients'

Yuming Sun¹, Jian Kang^{2,*}, Chinmay Haridas³, Nicholas Mayne⁴, Alexandra Potter³,

Chi-Fu Yang³, David C. Christiani⁵ and Yi Li ^{2,**}

 $^{1}\mathrm{Department}$ of Mathematics, William & Mary, Williamsburg, VA 23185

²Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109

³Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114 ⁴Department of Medicine, Duke University, Durham, NC 27710

⁵Department of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health,

Boston, MA02115

*email: jiankang@umich.edu

**email: yili@umich.edu

This paper has been submitted for consideration for publication in *Biometrics*

Composite Hölder Class of Smooth Functions

With constants a, M > 0 and a positive integer d, we define a Hölder class of smooth functions as

$$\mathcal{H}^{a}_{d}(\mathbb{D}, M) = \{ f : \mathbb{D} \subset \mathbb{R}^{d} \to \mathbb{R} : \sum_{v: |v| < a} \|\partial^{v} f\|_{\infty} + \sum_{v: |v| = \lfloor a \rfloor} \sup_{x, y \in \mathbb{D}, x \neq y} \frac{|\partial^{v} f(x) - \partial^{v} f(y)|}{\|x - y\|_{\infty}^{a - \lfloor a \rfloor}} \leqslant M \},$$

where \mathbb{D} is a bounded subset of \mathbb{R}^d , $\lfloor a \rfloor$ is the largest integer smaller than $a, \partial^{\upsilon} := \partial^{\upsilon_1} \dots \partial^{\upsilon_r}$ with $\upsilon = (\upsilon_1, \dots, \upsilon_d) \in \mathbb{N}^d$, and $|\upsilon| := \sum_{j=1}^d \upsilon_j$.

For a positive integer q, let $\alpha = (\alpha_1, \ldots, \alpha_q) \in \mathbb{R}^q_+$, and $\mathbf{d} = (d_1, \ldots, d_{q+1}) \in \mathbb{N}^{q+1}_+$, $\tilde{\mathbf{d}} = (\tilde{d}_1, \ldots, \tilde{d}_q) \in \mathbb{N}^q_+$ with $\tilde{d}_j \leq d_j$. We then define a composite Hölder smooth function class as

$$\mathcal{H}(q, \alpha, \mathbf{d}, \tilde{\mathbf{d}}, M) = \{ f = f_q \circ \cdots \circ f_1 : f_i = (f_{i1}, \dots, f_{id_{i+1}})^\top, f_{ij} \in \mathcal{H}_{\tilde{d}_i}^{\alpha_i}([a_i, b_i]^{\tilde{d}_i}, M), |a_i|, |b_i| \leqslant M \}$$
(A.1)

where $[a_i, b_i]$ is the bounded domain for each Hölder smooth function.

More Notation

Denote $a_n \leq b_n$ as $a_b \leq cb_n$ for some c > 0 when n is sufficiently large; $a_n \simeq b_n$ if $a_n \leq b_n$ and $b_n \leq a_n$. Let $\eta(\cdot, \cdot) = (\boldsymbol{\beta}^\top \cdot, g(\cdot)) : \mathbb{R}^p \times \mathbb{R}^r \to \mathbb{R}^2$ denote the collection of a linear operator and a nonlinear operator. In this section, denote by $\mathbf{v} = (\mathbf{x}^\top, \mathbf{z}^\top)^\top$ the random vector underlying the observed IID data of $\mathbf{v}_i = (\mathbf{x}_i^\top, \mathbf{z}_i^\top)^\top$, and (T, Δ) the random vector underlying the observed IID data of $(T_i, \Delta_i), i = 1, \ldots, n$. Let $N(t) = I(T \leq t, \Delta = 1)$ and $N_i(t) = I(T_i \leq t, \Delta_i = 1)$. To simplify notation, we denote by $\eta(\mathbf{v}) = \boldsymbol{\beta}^\top \mathbf{x} + g(\mathbf{z})$. Denote the truth of $\eta(\cdot, \cdot)$ by $\eta_0(\cdot, \cdot) = (\boldsymbol{\beta}_0^\top, g_0(\cdot))$. For two operators, say, $\eta_1(\cdot, \cdot) = (\boldsymbol{\beta}_1^\top, g_1(\cdot))$ and $\eta_2(\cdot, \cdot) = (\boldsymbol{\beta}_2^\top, g_2(\cdot))$, define their distance as

$$d^{2}(\eta_{1},\eta_{2}) := \mathbb{E}[\{\eta_{1}(\mathbf{v}) - \eta_{2}(\mathbf{v})\}^{2}] = \int \{\eta_{1}(\mathbf{t}) - \eta_{2}(\mathbf{t})\}^{2} f_{\mathbf{v}}(\mathbf{t}) d\mathbf{t},$$

and the corresponding norm

$$\|\eta\|^2 := \mathbb{E}[\eta^2(\mathbf{v})] = \int \eta^2(\mathbf{t}) f_{\mathbf{v}}(\mathbf{t}) d\mathbf{t}.$$

For the notational ease, we write $\eta = (\beta, g)$ in the following.

With $Y(t) = 1(T \ge t)$ and $Y_i(t) = 1(T_i \ge t)$, define

$$S_{0n}(t,\eta) = \frac{1}{n} \sum_{i=1}^{n} Y_i(t) \exp\{\eta(\mathbf{v}_i)\}, \qquad S_0(t,\eta) = \mathbb{E}[Y(t) \exp\{\eta(\mathbf{v})\}].$$

and for any vector function \mathbf{h} of \mathbf{v} define

$$S_{1n}(t,\eta,\mathbf{h}) = \frac{1}{n} \sum_{i=1}^{n} Y_i(t) \mathbf{h}(\mathbf{v}_i) \exp\{\eta(\mathbf{v}_i)\}, \qquad S_1(t,\eta,\mathbf{h}) = \mathbb{E}[Y(t)\mathbf{h}(\mathbf{v}) \exp\{\eta(\mathbf{v})\}],$$

where the expectation is taken with respect to the joint distribution of T and \mathbf{v} .

Let

$$l_n(t, \mathbf{v}, \eta) = \eta(\mathbf{v}) - \log S_{0n}(t, \eta), \qquad l_0(t, \mathbf{v}, \eta) = \eta(\mathbf{v}) - \log S_0(t, \eta),$$

Then the partial likelihood in (2)

can be written as

$$\ell(\eta) = \frac{1}{n} \sum_{i=1}^{n} \{ \Delta_i l_n(T_i, \mathbf{v}_i, \eta) - \Delta_i \log n \}.$$

Since $\sum_{i=1}^{n} \Delta_i \log n$ does not involve unknown parameters and can be dropped in optimization, we replace below $\ell(\eta)$ by $\frac{1}{n} \sum_{i=1}^{n} \{\Delta_i l_n(T_i, \mathbf{v}_i, \eta)\}.$

Finally, for any function h of (\mathbf{v}, Δ, T) , where (Δ, T) is the random vector underlying (Δ_i, T_i) , define

$$\mathbb{P}_n\{h(\mathbf{v},\Delta,T)\} = \frac{1}{n} \sum_{i=1}^n h(\mathbf{v}_i,\Delta_i,T_i), \qquad \mathbb{P}\{h(\mathbf{v},\Delta,T)\} = \mathbb{E}\{h(\mathbf{v},\Delta,T)\},\$$

and in particular, we define $L_n(\eta) = \mathbb{P}_n\{\Delta l_n(T, \mathbf{v}, \eta)\}$ and $L_0(\eta) = \mathbb{P}\{\Delta l_0(T, \mathbf{v}, \eta)\}$. Here, the expectation is taken with respect to the joint distribution of T, Δ and \mathbf{v} .

Proof of Theorem 1

Define $\alpha_n = \gamma_n \log^2 n + a_n = \tau_n + a_n$. For some D > 0, let $\mathbb{R}_D^p := \{ \boldsymbol{\beta} \in \mathbb{R}^p : \|\boldsymbol{\beta}\|_{\infty} < D \}$ and $\mathcal{G}_D := \mathcal{G}(L, \mathbf{p}, s, D)$, and define

$$\hat{\eta}_D = \operatorname*{argmax}_{\eta \in \mathbb{R}^p_D \times \mathcal{G}_D} PL(\eta).$$

Further, denote by $\hat{\eta} = (\hat{\beta}, \hat{g})$ a local maximizer of $PL(\eta)$ over $\mathbb{R}^p \times \mathcal{G}$, that is, by setting $D = \infty$ in \mathbb{R}^p_D and \mathcal{G}_D . As in Zhong et al. (2022), it can be shown that if $\max(||\beta||, ||g||_{\infty}) \rightarrow \infty$, $PL(\eta) \rightarrow -\infty$; hence, when D is sufficiently large, $\hat{\eta} = \hat{\eta}_D$ almost surely. Therefore, in the following, we show that $d(\hat{\eta}_D, \eta_0) = O_p(\alpha_n)$, when D is sufficiently large.

To do so, it suffices to show that for any $\epsilon > 0$, there exists a C such that

$$P\left\{\sup_{\eta\in\mathcal{N}_c}PL(\eta) < PL(\eta_0)\right\} \ge 1 - \epsilon,$$
(A.2)

where $\mathcal{N}_c = \{\eta \in \mathbb{R}^p_D \times \mathcal{G}_D : d(\eta, \eta_0) = C\alpha_n\}$. If it holds, it implies with probability at least $1 - \epsilon$ that there exists a C > 0 such that a local maximum exists and is inside the ball \mathcal{N}_c . Hence, there exists a local maximizer such that $d(\hat{\eta}, \eta_0) = O_p(\alpha_n)$.

Without loss of generality, we assume that η satisfies $\mathbb{E}\{\eta(\mathbf{v})\} = \mathbb{E}\{\eta_0(\mathbf{v})\}$, implying $\mathbb{E}\{g(\mathbf{z})\} = 0$; if not, we can always centralize it. To see this, consider any $\eta = (\beta, g)$ in the ball $B_C = \{\eta \in \mathbb{R}^p_D \times \mathcal{G}_D : d(\eta, \eta_0) \leq C\alpha_n\}$, its centralization $\eta' = (\beta, g - \mathbb{E}\{\eta(\mathbf{v}) - \eta_0(\mathbf{v})\})$ is also in the ball B_C , satisfying $\mathbb{E}\{\eta'(\mathbf{v})\} = \mathbb{E}\{\eta_0(\mathbf{v})\}$ and $PL(\eta') = PL(\eta)$.

Because of the sparsity of the β -coefficients, we arrange the indices of the covariates (x_1, \ldots, x_p) so that $\beta_{j0} = 0$ when $j > s_{\beta}$. We consider

$$PL(\eta) - PL(\eta_{0})$$

$$= \{L_{n}(\eta) - L_{n}(\eta_{0})\} - \sum_{j=1}^{p} \{p_{\lambda}(|\beta_{j}|) - p_{\lambda}(|\beta_{j0}|)\}$$

$$\leq \{L_{n}(\eta) - L_{n}(\eta_{0})\} - \sum_{j=1}^{s_{\beta}} \{p_{\lambda}(|\beta_{j}|) - p_{\lambda}(|\beta_{j0}|)\}, \quad (A.3)$$

where the inequality holds because $p_{\lambda}(|\beta_j|) - p_{\lambda}(0) > 0$ when $j > s_{\beta}$.

We first deal with

$$L_n(\eta) - L_n(\eta_0) = \{L_0(\eta) - L_0(\eta_0)\} + \{L_n(\eta) - L_0(\eta)\} - \{L_n(\eta_0) - L_0(\eta_0)\}.$$
(A.4)

According to Lemma 2 in Zhong et al. (2022), we know that

$$L_0(\eta) - L_0(\eta_0) \asymp -d^2(\eta, \eta_0).$$

Since $d(\eta, \eta_0) = C\alpha_n$, the first term in the right hand side of A.4 is of the order $C^2\alpha_n^2$.

After some calculation,

$$(L_n - L_0)(\eta) - (L_n - L_0)(\eta_0) = (\mathbb{P}_n - \mathbb{P}) \{ \Delta l_0(T, \mathbf{v}, \eta) - \Delta l_0(T, \mathbf{v}, \eta_0) \} + \mathbb{P}_n \{ \Delta \log \frac{S_0(T, \eta)}{S_0(T, \eta_0)} - \Delta \log \frac{S_{0n}(T, \eta)}{S_{0n}(T, \eta_0)} \}$$
(A.5)
= I + II.

According to the proof of Theorem 3.1 in Zhong et al. (2022), with $\mathcal{A}_{\delta} = \{(\beta, g) \in \mathbb{R}^p_D \times \mathcal{G}_D : \delta/2 \leq d(\eta, \eta_0) \leq \delta\}$, it follows that

$$\sup_{\eta \in \mathcal{A}_{\delta}} |I| = O(n^{-1/2}\phi_n(\delta)),$$
$$\sup_{\eta \in \mathcal{A}_{\delta}} |II| \leqslant O(n^{-1/2}\phi_n(\delta)),$$

where $\phi_n(\delta) = \delta \sqrt{s \log \frac{\mathcal{U}}{\delta}} + \frac{s}{\sqrt{n}} \log \frac{\mathcal{U}}{\delta}$ and $\mathcal{U} = L \prod_{l=1}^L (p_l+1) \sum_{l=1}^L p_l p_{l+1}$. Then by Assumption 1, when $\delta = C(\tau_n + a_n)$, we can show that $n^{-1/2} \phi_n \{ C(\tau_n + a_n) \} \leq C(\tau_n + a_n)^2 = C \alpha_n^2$.

By the Taylor expansion and the Cauchy-Schwarz inequality, the second term on the righthand side of (A.3) is bounded by

$$\sqrt{s_{\beta}}a_n \|\boldsymbol{\beta} - \boldsymbol{\beta}_0\| + \frac{1}{2}b_n \|\boldsymbol{\beta} - \boldsymbol{\beta}_0\|^2.$$

Since $d(\eta, \eta_0) = C\alpha_n$, and therefore $\|\boldsymbol{\beta} - \boldsymbol{\beta}_0\|$ is of the order $C\alpha_n$. Hence, this upper bound is dominated by the first term in (A.4) as $b_n \to 0$ by the assumption.

Therefore, for any $\epsilon > 0$, there exist sufficiently large C, D > 0 so that (A.2) holds, and

hence $d(\hat{\eta}_D, \eta_0) = O_p(\alpha_n)$, which gives $d(\hat{\eta}, \eta_0) = O_p(\alpha_n)$, where we recall $\hat{\eta}$ is the local maximizer of $PL(\eta)$ over $\mathbb{R}^p \times \mathcal{G}$. We note that

$$d^{2}(\hat{\eta},\eta_{0}) = \mathbb{E}[(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0})^{\top}\{\mathbf{x}-\mathbb{E}(\mathbf{x}|\mathbf{z})\} + (\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0})^{\top}\mathbb{E}(\mathbf{x}|\mathbf{z}) + \{\hat{g}(\mathbf{z})-g_{0}(\mathbf{z})\}]^{2}$$
$$= \mathbb{E}[(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0})^{\top}\{\mathbf{x}-\mathbb{E}(\mathbf{x}|\mathbf{z})\}]^{2} + \mathbb{E}[\{\hat{g}(\mathbf{z})-g_{0}(\mathbf{z})\} + (\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0})^{\top}\mathbb{E}(\mathbf{x}|\mathbf{z})]^{2},$$

where the second equality holds because, by the definition of $d(\cdot, \cdot)$, \mathbb{E} is taken with respect to the joint density of $\mathbf{v} = (\mathbf{x}^{\top}, \mathbf{z}^{\top})^{\top}$, which is independent of the observed data, and hence, $\hat{\boldsymbol{\beta}}$ and \hat{g} . By Assumptions 2-4, it follows $\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0\| = O_p(\alpha_n)$ and $\|\hat{g} - g_0\|_{L^2} = O_p(\alpha_n)$.

Proof of Theorem 2

For the claims made in Theorem 2, it suffices to show that, with probability tending to 1, for any given $\eta = (\beta, g)$ satisfying that $||\eta - \eta_0|| = O(\gamma_n \log^2 n)$, where $\eta_0 = (\beta_0, g_0)$, and some constant C > 0,

$$PL\{(\boldsymbol{\beta}_1^{\top}, \boldsymbol{0}^{\top})^{\top}, g\} = \max_{\|\boldsymbol{\beta}_2\| \leqslant C\gamma_n \log^2 n} PL\{(\boldsymbol{\beta}_1^{\top}, \boldsymbol{\beta}_2^{\top})^{\top}, g\},\$$

where $\boldsymbol{\beta}_1 = (\beta_1, \dots, \beta_{s_\beta})^\top$ and $\boldsymbol{\beta}_2 = (\beta_{s_\beta+1}, \dots, \beta_p)^\top$. We only need to show that, for any $j = s_\beta + 1, \dots, p$,

$$\partial PL(\boldsymbol{\beta}, g)/\partial \beta_j < 0, \quad \text{for } 0 < \beta_j < C\gamma_n \log^2 n;$$

 $\partial PL(\boldsymbol{\beta}, g)/\partial \beta_j > 0, \quad \text{for } -C\gamma_n \log^2 n < \beta_j < 0.$

To proceed, we note that $\partial PL(\beta, g)/\partial\beta_j = \partial \ell(\eta)/\partial\beta_j - sign(\beta_j)p'_{\lambda}(|\beta_j|)$ for $j = s_{\beta} + 1, \ldots, p$. Denote by $F_j(\eta)$ the partial derivative of $\ell(\eta)$ w.r.t. β_j , i.e.

$$F_j(\eta) = \frac{\partial \ell(\eta)}{\partial \beta_j} = \frac{1}{n} \sum_{1=1}^n \int_0^\tau \left\{ x_{i,j} - \frac{\sum_{k=1}^n Y_k(s) x_{k,j} \exp(\boldsymbol{\beta}^\top \mathbf{x}_k + g(\mathbf{z}_k))}{\sum_{k=1}^n Y_k(s) \exp(\boldsymbol{\beta}^\top \mathbf{x}_k + g(\mathbf{z}_k))} \right\} dN_i(s),$$

where $x_{k,j}$ (or $x_{i,j}$) is the *j*th element of \mathbf{x}_k (or \mathbf{x}_i). As part of η is a functional, we consider a functional expansion of $F_j(\eta)$ around its truth, η_0 . Specifically, for a real number $0 \leq e \leq 1$,

we define $\mathcal{F}_j(e) = F_j\{\eta_0 + e(\eta - \eta_0)\}$, a function of the scalar *e* only. Obviously, $\mathcal{F}_j(1) = F_j(\eta)$ and $\mathcal{F}_j(0) = F_j(\eta_0)$.

Taking the Taylor expansion of $\mathcal{F}_j(1)$ around 0 gives

$$\mathcal{F}_{j}(1) = \mathcal{F}_{j}(0) + \mathcal{F}_{j}'(0) + \mathcal{F}_{j}''(e^{*}),$$
 (A.6)

where e^* is between 0 and 1. By some calculation,

$$\mathcal{F}'_{j}(e) = -\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} \Big[\frac{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})x_{k,j}(\eta - \eta_{0})(\mathbf{v}_{k})}{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})} - \frac{\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})x_{k,j}\}\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})(\eta - \eta_{0})(\mathbf{v}_{k})\}}{\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})\}^{2}} \Big] dN_{i}(s),$$

where $\mathbf{v}_{k} = (\mathbf{x}_{k}^{\top}, \mathbf{z}_{k}^{\top})^{\top}, \, \xi_{e}(\mathbf{v}_{k}) = \exp(\{\eta_{0} + e(\eta - \eta_{0})\}(\mathbf{v}_{k})) \text{ and } (\eta - \eta_{0})(\mathbf{v}_{k}) = (\beta - \beta_{0})^{\top}\mathbf{x}_{k} + (g - g_{0})(\mathbf{z}_{k}), \text{ and}$

$$\begin{aligned} \mathcal{F}_{j}''(e) &= -\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} \Big[\frac{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})x_{k,j}(\eta - \eta_{0})^{2}(\mathbf{v}_{k})}{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})} \\ &- \frac{2\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})x_{k,j}(\eta - \eta_{0})(\mathbf{v}_{k})\}\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})(\eta - \eta_{0})(\mathbf{v}_{k})\}}{\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})\}^{2}} \\ &- \frac{\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})x_{k,j}\}\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})(\eta - \eta_{0})^{2}(\mathbf{v}_{k})\}}{\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})\}^{2}} \\ &+ \frac{2\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})x_{k,j}\}\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})(\eta - \eta_{0})(\mathbf{v}_{k})\}^{2}}{\{\sum_{k} Y_{k}(s)\xi_{e}(\mathbf{v}_{k})\}^{3}}\Big]dN_{i}(s). \end{aligned}$$

It follows that $\mathcal{F}_j(0)$ in (A.6) is equal to

$$\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ x_{i,j} - \frac{\sum_{k=1}^{n} Y_{k}(s) x_{k,j} \exp(\boldsymbol{\beta}_{0}^{\top} \mathbf{x}_{k} + g_{0}(\mathbf{z}_{k}))}{\sum_{k=1}^{n} Y_{k}(s) \exp(\boldsymbol{\beta}_{0}^{\top} \mathbf{x}_{k} + g_{0}(\mathbf{z}_{k}))} \right\} dN_{i}(s) \\
= \frac{1}{n} \sum_{1=1}^{n} \int_{0}^{\tau} \left\{ x_{i,j} - \frac{\sum_{k=1}^{n} Y_{k}(s) x_{k,j} \exp(\boldsymbol{\beta}_{0}^{\top} \mathbf{x}_{k} + g_{0}(\mathbf{z}_{k}))}{\sum_{k=1}^{n} Y_{k}(s) \exp(\boldsymbol{\beta}_{0}^{\top} \mathbf{x}_{k} + g_{0}(\mathbf{z}_{k}))} \right\} dM_{i}(s),$$

where $dM_i(s) = dN_i(s) - \lambda_0(s)Y_i(s) \exp(\boldsymbol{\beta}_0^\top \mathbf{x}_i + g_0(\mathbf{z}_i))ds$ is the martingale with respect to the history up to time s. Hence, $n^{1/2}\mathcal{F}_j(0)$ converges in distribution to a normal distribution by the martingale central limit theorem (Fleming and Harrington, 2013), and therefore, $\mathcal{F}_j(0) = O_p(n^{-1/2}).$ We then consider

$$\begin{split} \mathcal{F}'_{j}(0) &= -\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} \Big[\frac{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})x_{k,j}(\eta - \eta_{0})(\mathbf{v}_{k})}{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})(\eta - \eta_{0})(\mathbf{v}_{k})} \Big] \\ &- \frac{\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})x_{k,j}\}\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})(\eta - \eta_{0})(\mathbf{v}_{k})\}}{\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})x_{k,j}(\eta - \eta_{0})(\mathbf{v}_{k})} \\ &= -\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} \Big[\frac{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})x_{k,j}(\eta - \eta_{0})(\mathbf{v}_{k})}{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})} \\ &- \frac{\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})x_{k,j}\}\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})(\eta - \eta_{0})(\mathbf{v}_{k})\}}{\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})\}^{2}} \Big] dM_{i}(s) \\ &- \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} \Big[\frac{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})x_{k,j}(\eta - \eta_{0})(\mathbf{v}_{k})}{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})} \\ &- \frac{\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})x_{k,j}\}\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})(\eta - \eta_{0})(\mathbf{v}_{k})\}}{\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})\}^{2}} \Big] Y_{i}(s)\xi_{0}(\mathbf{v}_{i})\lambda_{0}(s)ds \\ &= I_{1} + I_{2}, \end{split}$$

where $\xi_0(\mathbf{v}_k) = \exp(\eta_0(\mathbf{v}_k)) = \exp(\boldsymbol{\beta}_0^\top \mathbf{x}_i + g_0(\mathbf{z}_i))$. It follows that each summed item in I_1 , i.e.,

$$- \frac{\int_{0}^{\tau} \left[\frac{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})x_{k,j}(\eta - \eta_{0})(\mathbf{v}_{k})}{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})} - \frac{\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})x_{k,j}\}\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})(\eta - \eta_{0})(\mathbf{v}_{k})\}}{\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})\}^{2}} \right] dM_{i}(s),$$

is a square integrable martingale (Fleming and Harrington, 2013). Hence, by the law of large numbers for martingales (Hall and Heyde, 2014), $I_1 \rightarrow 0$ in probability.

Also, I_2 can be shown to be equal to

$$-\int_{0}^{\tau} \frac{1}{n} \Big[\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})x_{k,j}(\eta - \eta_{0})(\mathbf{v}_{k}) \\ - \frac{\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})x_{k,j}\}\{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})(\eta - \eta_{0})(\mathbf{v}_{k})\}\}}{\sum_{k} Y_{k}(s)\xi_{0}(\mathbf{v}_{k})} \Big] \lambda_{0}(s) ds.$$

Define

$$S_{x_j,1}(s,\eta-\eta_0) = \mathbb{E}[Y_k(s)\xi_0(\mathbf{v}_k)x_{k,j}(\eta-\eta_0)(\mathbf{v}_k)], \quad S_{x_j}(s,\eta_0) = \mathbb{E}[Y_k(s)\xi_0(\mathbf{v}_k)x_{k,j}],$$
$$S_1(s,\eta-\eta_0) = \mathbb{E}[Y_k(s)\xi_0(\mathbf{v}_k)(\eta-\eta_0)(\mathbf{v}_k)], \quad S_0(s,\eta_0) = \mathbb{E}[Y_k(s)\xi_0(\mathbf{v}_k)].$$

Applying the empirical process arguments (Pollard, 1990; Wellner, 2005) yields that

$$\sup_{s \in [0,\tau]} \left| \frac{1}{n} \left[\sum_{k} Y_{k}(s) \xi_{0}(\mathbf{v}_{k}) x_{k,j} (\eta - \eta_{0})(\mathbf{v}_{k}) \right. \\ \left. - \frac{\left\{ \sum_{k} Y_{k}(s) \xi_{0}(\mathbf{v}_{k}) x_{k,j} \right\} \left\{ \sum_{k} Y_{k}(s) \xi_{0}(\mathbf{v}_{k}) (\eta - \eta_{0})(\mathbf{v}_{k}) \right\}}{\sum_{k} Y_{k}(s) \xi_{0}(\mathbf{v}_{k})} \right] \\ \left. - S_{x_{j},1}(s, \eta - \eta_{0}) + \frac{S_{x_{j}}(s, \eta_{0}) S_{1}(s, \eta - \eta_{0})}{S_{0}(s, \eta_{0})} \right| \rightarrow 0$$

in probability, which implies that

$$I_2 \to -\int_0^\tau \left\{ S_{x_j,1}(s,\eta-\eta_0) - \frac{S_{x_j}(s,\eta_0)S_1(s,\eta-\eta_0)}{S_0(s,\eta_0)} \right\} \lambda_0(s) ds$$

in probability. Collecting all these terms, we thus have that

$$\mathcal{F}_{j}'(0) = -\int_{0}^{\tau} \left\{ S_{x_{j},1}(s,\eta-\eta_{0}) - \frac{S_{x_{j}}(s,\eta_{0})S_{1}(s,\eta-\eta_{0})}{S_{0}(s,\eta_{0})} \right\} \lambda_{0}(s)ds + o_{p}(1)$$

We now bound $\mathcal{F}'_{j}(0)$. First note that, for any $s \in [0, \tau]$,

$$\begin{split} S_{x_j,1}(s,\eta-\eta_0) &\leqslant & \mathbb{E}[\xi_0(\mathbf{v}_k)|x_{k,j}||(\eta-\eta_0)(\mathbf{v}_k)|] \\ &\leqslant & \max_{\mathbf{v}_k\in\mathbb{D}}\{\xi_0(\mathbf{v}_k)|x_{k,j}|\}\int_{\mathbb{D}}|(\eta-\eta_0)(\mathbf{v})|f_{\mathbf{v}_k}(\mathbf{v})d\mathbf{v} \\ &\leqslant & C_1\left\{\int_{\mathbb{D}}(\eta-\eta_0)^2(\mathbf{v})f_{\mathbf{v}_k}(\mathbf{v})d\mathbf{v}\right\}^{1/2} \\ &= & C_1||\eta-\eta_0||, \end{split}$$

where $C_1 > 0$ is a constant, $f_{\mathbf{v}_k}(\cdot)$ is the density function of the random vector \mathbf{v}_k , and the last inequality stems from the Cauchy-Schwartz inequality, in conjunction with the boundedness assumptions on the covariates (i.e., \mathbb{D} is bounded) and η_0 (Conditions 2 and 3 in the main text). Similarly, we can show that, for any $s \in [0, \tau]$,

$$|S_1(s,\eta-\eta_0)| \leqslant C_2 ||\eta-\eta_0||, \ |S_{x_j}(s,\eta_0)| \leqslant C_3, \ S_0(s,\eta_0) \ge C_4,$$

where $C_2, C_3, C_4 > 0$ are constants. The last inequality holds because at τ , there is at least probability of $\delta > 0$ of observing subjects at risk (Condition 4 in the main text), implying that $\min_{s \in [0,\tau]} \mathbb{E}(Y_k(s) | \mathbf{v}_k) \ge \delta > 0$ a.s. As

$$\begin{split} &|\int_{0}^{\tau} \left\{ S_{x_{j},1}(s,\eta-\eta_{0}) - \frac{S_{x_{j}}(s,\eta_{0})S_{1}(s,\eta-\eta_{0})}{S_{0}(s,\eta_{0})} \right\} \lambda_{0}(s)ds| \\ \leqslant & \int_{0}^{\tau} |\{S_{x_{j},1}(s,\eta-\eta_{0})|\lambda_{0}(s)ds + \int_{0}^{\tau} \frac{|S_{x_{j}}(s,\eta_{0})||S_{1}(s,\eta-\eta_{0})|}{S_{0}(s,\eta_{0})} \lambda_{0}(s)ds \\ \leqslant & (C_{1} + C_{2}C_{3}C_{4}^{-1})\Lambda_{0}(\tau)||\eta-\eta_{0}||, \end{split}$$

where $\Lambda_0(\tau) = \int_0^\tau \lambda_0(s) ds < \infty$. Therefore, $\mathcal{F}'_j(0) = O_p(||\eta - \eta_0||)$.

Similarly, using the explicit form of $\mathcal{F}''_{j}(e)$, some calculation can show that $\mathcal{F}''_{j}(e^{*}) = o_{p}(||\eta - \eta_{0}||)$. Then we conclude that

$$\partial PL(\boldsymbol{\beta},g)/\partial \beta_j = \partial \ell(\eta)/\partial \beta_j - sign(\beta_j)p'_{\lambda}(|\beta_j|)$$

= $\lambda[\lambda^{-1}(\mathcal{F}_j(0) + \mathcal{F}'_j(0) + \mathcal{F}''_j(e^*)) - sign(\beta_j)\lambda^{-1}p'_{\lambda}(|\beta_j|)].$

With the assumptions of $\lambda^{-1}\gamma_n \log^2(n) \to 0$ and $\lambda^{-1}n^{-1/2} \to 0$, it follows that

$$\lambda^{-1}(\mathcal{F}_j(0) + \mathcal{F}'_j(0) + \mathcal{F}''_j(e^*)) = o_p(1).$$

On the other hand, using the condition of $\liminf_{n\to\infty} \liminf_{\theta\to 0^+} \lambda^{-1} p'_{\lambda}(\theta) > 0$, it follows that the sign of $\partial PL(\beta, g)/\partial\beta_j$ is the opposite sign of β_j with probability going to 1. Hence, the claims follow.

```
[Figure S.1 about here.][Figure S.2 about here.][Figure S.3 about here.]
```

References

- Fleming, T. R. and Harrington, D. P. (2013). Counting processes and survival analysis, volume 625. John Wiley & Sons.
- Hall, P. and Heyde, C. C. (2014). Martingale limit theory and its application. Academic press.

Pollard, D. (1990). Empirical processes: theory and applications. Ims.

- Wellner, J. A. (2005). Empirical processes: Theory and applications. Notes for a course given at Delft University of Technology page 17.
- Zhong, Q., Mueller, J., and Wang, J.-L. (2022). Deep learning for the partially linear Cox model. The Annals of Statistics 50, 1348–1375.

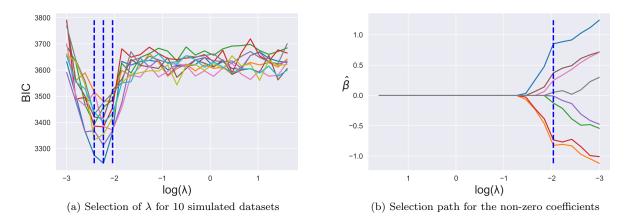
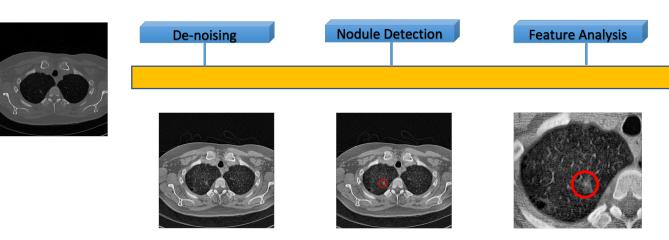


Figure S.1: Selection of λ in Penalized DPLC using BIC.



Tumor Segmentation

Feature extraction

Figure S.2: Image Preprocessing Pipeline

Gray-scale normalization Histogram equalization

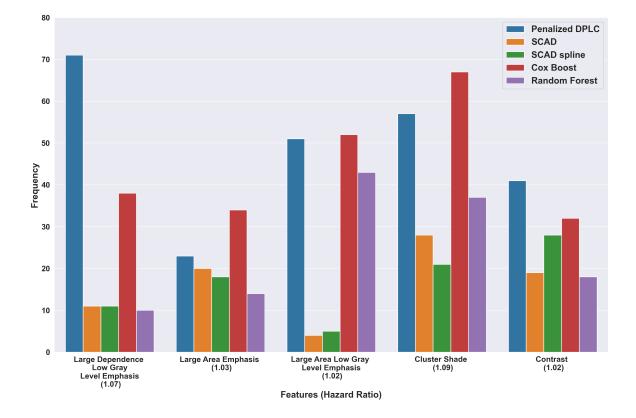


Figure S.3: Selection Frequency and Hazard Ratio of Selected Features: The selection frequency of the most frequently selected five texture features is reported. The hazard ratio is the average of 100 experiments