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Summary: In many longitudinal settings, time-varying covariates may not be measured at the same time as

responses and are often prone to measurement error. Naive last-observation-carried-forward methods incur estimation

biases, and existing kernel-based methods suffer from slow convergence rates and large variations. To address these

challenges, we propose a new functional calibration approach to efficiently learn longitudinal covariate processes based

on sparse functional data with measurement error. Our approach, stemming from functional principal component

analysis, calibrates the unobserved synchronized covariate values from the observed asynchronous and error-prone

covariate values, and is broadly applicable to asynchronous longitudinal regression with time-invariant or time-varying

coefficients. For regression with time-invariant coefficients, our estimator is asymptotically unbiased, root-n consistent,

and asymptotically normal; for time-varying coefficient models, our estimator has the optimal varying coefficient

model convergence rate with inflated asymptotic variance from the calibration. In both cases, our estimators present

asymptotic properties superior to the existing methods. The feasibility and usability of the proposed methods are

verified by simulations and an application to the Study of Women’s Health Across the Nation, a large-scale multi-site

longitudinal study on women’s health during mid-life.
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1. Introduction

In many decade-long longitudinal studies, participants’ heath information is repeatedly

measured by diverse instruments, such as blood tests, physical examinations, nutritional

evaluations and psychological assessments. These tests and assessments usually follow dif-

ferent schedules, and are not synchronized in time. The resulting data structures create an

asynchronous issue where the response variable and covariates are not measured at the same

time. For example, in our motivating Study of Women’s Health Across the Nation (SWAN;

https://www.swanstudy.org/), a multi-site longitudinal study on women’s health during

their mid-life years, a total of 3,302 women were followed from 1996 to 2008 to study their

physical, biological, psychological, and social changes that occurred during the menopausal

transition. These health-related metrics were grouped into physical, hormone, and cardio-

vascular measurements. Fig 1(a) shows the measurement times for hormone, physical and

cardiovascular measurements for a random sample of SWAN participants. As seen, these

measurements were taken following different schedules. During this important transition,

of particular interest is the level of the follicle-stimulating hormone (FSH), our response

variable. Two important physical and cardiovascular covariates, the body mass index (BMI)

and triglycerides (TG), are also repeatedly measured but on different schedules. Another

complication as manifested by Fig 1(b), a spaghetti plot for the longitudinal trajectories

of these three variables from a randomly selected participant, is that these asynchronized

variables also exhibit short term fluctuations, which need to be modeled as measurement

error or nugget effect (Carroll et al., 2006).

There has been some literature on analyzing incomplete longitudinal data using missing

data techniques such as the inverse probability weighting: Robins et al. (1995) assumed the

response and time-varying covariates must be missing or present simultaneously; Cook et al.

(2004) assumed that the repeated measurements within a subject are complete before the

https://www.swanstudy.org/


2 Biometrics, October 2022

subject dropout from the study. These methods rely on parametric modeling of the missing

data mechanism and are not designed for data that are asynchronous by design.

More recently, Cao et al. (2015) modeled asynchronous longitudinal data under generalized

linear models with either time-invariant or time-varying coefficients, by proposing kernel-

weighted estimating equation methods to down-weight covariates that are further away in

time from the response. These kernel-weighted estimators are consistent and asymptotically

normal, but with slow convergence rates. For time-invariant regression models, their esti-

mated regression coefficients converge in a nonparametric kernel regression rate instead of the

usual root-n parametric rate; for time-varying coefficient models, their estimator converges

in a bivariate nonparametric smoothing rate, which is much slower than classic convergence

rate of varying coefficient models in Cai et al. (2000) and sensitive to bandwidth selection,

as shown in our simulation studies. Also, none of the existing methods adequately address

the measurement error issue arising from the asynchronous variables.

[Figure 1 about here.]

To address these limitations, we propose to model the longitudinal trajectories of the

covariates in the SWAN study as functional data (Ramsay and Silverman, 2005), and use

the functional principal component analysis (FPCA) technique (Li and Hsing, 2010) to

impute the missing synchronized covariate values from the observed asynchronous, error-

prone covariate values. We then use the imputed values in second stage regression analyses.

This method is similar in spirit to the regression calibration method in the measurement error

literature (Carroll et al., 2006), but is completely nonparametric. We therefore term our

proposed methodology Functional Calibration for Asynchronous Regression (FCAR). The

proposed method can be easily implemented using existing software, such as the ‘fdapace’

package in R, and combined with other existing regression methodology such as the common

linear regression with time-invariant regression coefficients and the time-varying coefficients
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(Hoover et al., 1998). We show that our estimators for time-invariant coefficient regression

models are root-n consistent and asymptotic normal, while our estimators for time-varying

coefficient models enjoy the optimal convergent rate as Hoover et al. (1998), which is one

order of magnitude faster than the existing methods such as Cao et al. (2015). We also

show that our method can be extended to accommodate multiple asynchronous longitudinal

covariate processes using multivariate FPCA (Happ and Greven, 2018; Dai et al., 2021).

We are aware of the related work on asynchronous longitudinal regression using functional

data analysis approaches. For example, Şentürk and Müller (2010) and Şentürk et al. (2013)

proposed to estimate the time-varying coefficient function by estimating the covariance

function of the time-varying covariate and cross-covariance function between the covariate

and response processes using bivariate kernel smoothing. However, their method is associ-

ated with the same slower bivariate smoothing convergence rate as Cao et al. (2015). Our

simulation study shows our method outperforms Şentürk et al. (2013) and Cao et al. (2015)

in efficiency and numerical stability.

The paper is organized as follows. We introduce our model assumptions in Section 2,

propose the new functional calibration method and apply it to longitudinal regression models

with time-invariant or time-varying coefficients in Section 3. The asymptotic properties

of the proposed estimators are established in Section 4, while the practical performance

of the proposed methods is illustrated by simulation studies in Section 5. We apply the

proposed methods to analyze the SWAN data and investigate the potential effects of BMI and

triglycerides on follicle-stimulating hormone changes during menopausal transition in Section

6. We provide concluding remarks in Section 7. We present technical proofs and additional

numerical results (tables and graphs) and extend the proposed method to multivariate time-

varying covariate processes in the Appendix.
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2. Model Assumptions

Let {Xi(t), Yi(t)}, i = 1, . . . , n, be independent and identically distributed (iid) bivariate

longitudinal processes defined on a compact time interval T ⊂ R, where Yi(t) is the response

of the ith subject at time t and Xi(t) is the time-varying covariate process. For simplicity, we

focus on the case where Xi(t) is a univariate process, and present its multivariate extension

in Appendix B. We will consider both the time-invariant coefficient model

Yi(t) = β0 + β1Xi(t) + εi(t), (1)

and the time-varying coefficient model

Yi(t) = β0(t) + β1(t)Xi(t) + εi(t). (2)

In Model (1), βββ = (β0, β1)
T are the time-invariant intercept and slope parameters, while

β0(·) and β1(·) are the time-varying counterparts in Model (2). In both models, we assume

εi(t) are iid zero-mean error processes with covariance function Ω(s, t) = Cov{ε(s), ε(t)}. We

also assume that Xi(t) and εi(t) are independent of each other.

Longitudinal variables are observed on discrete time points. Denote by Ti = (Ti1, . . . , Timy,i)
T

the time points when Yi(·) is observed, and by Yi = (Yi1, . . . , Yimy,i)
T the observed re-

sponse vector, where Yij = Yi(Tij), j = 1, . . . ,my,i. On the other hand, in an asynchronous

longitudinal design, X(t) are observed on time points Si = (Si1, . . . , Simx,i)
T. Let Xi =

(Xi1, . . . , Ximx,i)
T where Xij = Xi(Sij), j = 1, . . . ,mx,i. As illustrated in our motivating

example, Si and mx,i can be completely different from Ti and my,i. In addition, these time-

varying covariates are usually contaminated with measurement error (Liao et al., 2011).

These measurement errors, not necessarily arising from instrument error, may be due to

local variations. In the SWAN study, as the BMI and triglycerides level naturally fluctuate

over days or even within the same day, it is reasonable to use their long-term or average values

as the “true” values to predict the response; failing to take into account the measurement

error can result in biased estimates and reduced statistical power (Carroll et al., 2006). To
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proceed, we relate Xij, the “truth”, to its observed error-contaminated surrogates, Wij, via

an additive measurement error model:

Wij = Xij + Uij, j = 1, . . . ,mx,i, i = 1, . . . , n, (3)

where Uij are iid zero-mean measurement errors with variance σ2
u and independent of Xi.

Model (1) or (2), coupled with (3), is referred to as asynchronous longitudinal regression with

measurement error.

Let Wi = (Wi1, . . . ,Wimx,i)
T be the observed surrogate values that are asynchronous with

Yi, whereas we denote by X∗i = {Xi(Ti1), . . . , Xi(Timy,i)}T the unobserved true covariate

values that are synchronized with Yi. In the measurement error literature (Carroll et al.,

2006), a commonly used technique to impute X∗i from observed surrogate Wi is regression

calibration, which ignores longitudinal correlations, does not capture the dynamic changes

in the time-varying covariates and may incur efficiency loss. We instead propose to calibrate

the value of X∗i using a more efficient functional data analysis approach. We assume that

the time-varying covariate X(t), t ∈ T is a stochastic process defined on T with mean and

covariance functions

µ(t) = E{Xi(t)}, R(s, t) = Cov{Xi(s), Xi(t)}, s, t,∈ T .

The covariance function is a smooth, symmetric, positive semi-definite function with a

spectral decomposition of R(s, t) =
∑q

k=1 ωkψk(s)ψk(t), where ω1 > ω2 > · · · > ωq > 0 are

the eigenvalues, and ψk(·) are the corresponding eigenfunctions (or principal components)

such that
∫
T ψk(t)ψk′(t)dt = I(k = k′). By the Karhunen–Loève theorem,

Xi(t) = µ(t) +
∑q

k=1ξikψk(t), t ∈ T , (4)

for i = 1, . . . , n, where ξik =
∫
T {Xi(t)−µ(t)}ψk(t)dt are the principal component scores with

mean zero and Cov(ξik, ξik′) = ωkI(k = k′). The number of principal components q can be

infinity in theory, but it is common to assume that Xi(t) has a reduced rank representation
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with a finite q (Li et al., 2013). This is especially suitable for longitudinal or sparse functional

data, where the number of measurements on each trajectories is so small that one cannot

realistically estimate a large number of principal components. In practice, q is chosen in a

data-driven fashion (Yao et al., 2005; Li et al., 2013), which is to be detailed in Section 3.1.

3. Functional Calibration for Asynchronous Regression

3.1 Calibration using Functional Principal Component Analysis

Let µµµi = {µ(Si1), . . . , µ(Simx,i)}T and ψψψik = {ψk(Si1), . . . , ψk(Simx,i)}T, k = 1, . . . , q, be

the mean and eigenfunctions interpolated on the observed time points, and put Ψi =

[ψψψi1, . . . ,ψψψiq]. Under the reduced rank model (4) with a finite rank q, the within-subject

covariance matrix for Wi is Σi = Cov(Wi) = ΨiΛΨT
i + σ2

uI, where Λ = diag(ω1, . . . , ωq). If

µµµi and Λ were known, a roadmap for calibrating the unobserved, synchronized covariates X∗i

would be as follows. First, the best linear unbiased predictors (BLUP) for the FPC scores

would be

ξ̃ξξi = (ξ̃i1, . . . , ξ̃iq)
T = ΛΨT

i Σ−1i (Wi − µµµi). (5)

Second, one could predict the functional trajectory of Xi(t) by

X̃i(t) = µ(t) +
∑q

k=1ξ̃ikψk(t). (6)

Finally, interpolating these predicted trajectories on the observation times of Y , we could

predict the unobserved, synchronized covariates X∗i by

X̃∗i = µµµ∗i +
∑q

k=1ξ̃ikψψψ∗ik = µµµ∗i + Ψ∗iξ̃ξξi, (7)

whereµµµ∗i = {µ(Ti1), . . . , µ(Timy,i)}T, Ψ∗i = {ψψψ∗i1, . . . ,ψψψ∗iq} andψψψ∗ik = {ψk(Ti1), . . . , ψk(Timy,i)}T,

k = 1, . . . , q.

However, as µµµi and Λ are unknown, and in order to complete this calibration roadmap,

we need to estimate them based on the observed data {Wi, i = 1, . . . , n}. Let K(·) be a



Functional Calibration 7

kernel function, and denote by Kh(u) = K(u/h)/h where h is the bandwidth. Following Yao

et al. (2005) and Li and Hsing (2010), we use local linear smoothers to estimate mean and

covariance functions. For any fixed t, we estimate µ(t) by µ̂(t) = â0, where

(â0, â1) = argmin
a0,a1

1

n

n∑
i=1

1

mx,i

mx,i∑
j=1

{Wij − a0 − a1(Sij − t)}2Khµ(Sij − t),

with hµ > 0 being the bandwidth. We then estimate R(s, t) by R̂(s, t) = â0 with

(â0, â1, â2) = argmin
a0,a1,a2

1

n

n∑
i=1

[
1

Mx,i

∑
j 6=l

{LijLil − a0 − a1(Sij − s)− a2(Sil − t)}2

×KhR(Sij − s)KhR(Sil − t)
]
,

where Lij = Wij − µ̂(Sij), Mx,i = mx,i(mx,i− 1), and hR > 0 is the bandwidth. Similarly, we

can estimate the variance function V (t) = Var{W (t)} = R(t, t) + σ2
u by V̂ (t) = â0 where

(â0, â1) = argmin
a0,a1

1

n

n∑
i=1

1

mx,i

mx,i∑
j=1

{L2
ij − a0 − a1(Sij − t)}2KhV (Sij − t).

Then we estimate σ2
u by

σ̂2
u =

1

|T |

∫
T
{V̂ (t, t)− R̂(t, t)}dt.

To estimate the functional principal components, we take a spectral decomposition of R̂(s, t)

R̂(s, t) =
∑

kω̂kψ̂k(s)ψ̂k(t),

which can be solved numerically by discretizing the smoothed covariance.

Let µ̂µµi, ψ̂ψψik, Ψ̂i, Λ̂, and Σ̂i be the estimated counterparts of µµµi, ψψψik, Ψi, Λ, and Σi using

the kernel estimators described above. We adopt the PACE method of Yao et al. (2005) to

estimate the principal component score ξik by a sample version of BLUP (5), i.e.,

ξ̂ξξi = (ξ̂i1, . . . , ξ̂iq)
T = Λ̂Ψ̂T

i Σ̂−1i {Wi − µ̂µµi}. (8)

With (4), we can recover the covariate process by

X̂i(t) = µ̂(t) +
∑q

k=1ξ̂ikψ̂k(t), t ∈ T . (9)

The number of components q can be selected by minimizing the Akaike information
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criterion (AIC). There are two commonly used versions of AIC based on a marginal log-

likelihood (Rice and Wu, 2001),

AICmarg(q) =
n∑
i=1

{
mi log(2π) + log(det Σ̂iq) + (Wi − µ̂µµi)TΣ̂−1iq (Wi − µ̂µµi)

}
+ 2q, (10)

and a conditional log-likelihood (Li et al., 2013),

AICcond(q) = N log

(
N−1

n∑
i=1

||σ̂2
uΣ̂
−1
iq (Wi − µ̂µµi)||22

)
+N + 2nq, (11)

where N =
∑n

i=1mx,i, Σ̂iq = Ψ̂iqΛ̂qΨ̂
T
iq + σ̂2

uI, Λ̂q = diag(ω̂1, . . . , ω̂q), Ψ̂iq = [ψ̂ψψi1, . . . , ψ̂ψψiq],

and the subscript ‘q’ emphasizes the dependence on the number of FPC’s.

3.2 Asynchronous Regression using Calibrated Covariates

With µ̂µµ∗i, ψ̂ψψ∗ik and Ψ̂∗i (the kernel estimates interpolated at Ti instead of Si), the empirical

version of the calibrated covariate X̃∗i is X̂∗i = µ̂µµ∗i + Ψ̂∗iξ̂ξξi, and the design matrices using

calibrated covariates are Xi = (1, X̂∗i), i = 1, . . . , n. The regression coefficients in Model (1)

can be estimated by

β̂ββ := (β̂0, β̂1)
T = (XTX)−1XTY, (12)

where Y = (YT
1 , . . . ,Y

T
n )T and X = (XT

1 , . . . ,XT
n )T.

For Model (2), we estimate βββ(t) := {β0(t), β1(t)}T by using the local linear estimator of

Hoover et al. (1998), with the unobserved Xi(Tij) replaced by the calibrated value X̂i(Tij)

as defined in (9). That is, we estimate βββ(t) by b̂0 from

(b̂0, b̂1) = argmin
b0,b1

n∑
i=1

my,i∑
j=1

{Yij − XT
ijb0 − XT

ijb1(Tij − t)}2Kh(Tij − t), (13)

where Xij = {1, X̂i(Tij)}T and h > 0 is the bandwidth.

4. Asymptotic Theory

4.1 Preliminaries

For ease of exposition, we assume in the asymptotic theory that bothX(t) and Y (t) have been

centered, such that µ(t) ≡ 0 in (4), β0 = 0 in (1) and β0(t) = 0 in (2). We focus on estimating
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the slope parameter β1 and the slope function β1(t) in Models (1) and (2), respectively;

extensions to non-centered situations are straightforward but with more notation. For any

positive constant sequences {an} and {bn}, denote by an ≺ bn if an/bn → 0 as n→∞.

Recall X∗i is the unobserved covariate vector synchronized with the response Yi, X̃∗i =

Ψ∗iξ̃ξξi is the best linear unbiased predictor of X∗i as defined in (7), and X̂∗i is the em-

pirical version of X̃∗i replacing the unknown functions with their kernel estimators. Let

εεεi = {εi(Ti1), . . . , εi(Timy,i)}T be the vector of measurement error as defined in model (1) or

(2), with the covariance matrix ΩΩΩi = {Ω(Tij, Tij′)}
my,i
j,j′=1.

We assume that the numbers of observations (mx,i,my,i) are random with P (2 6 mx,i,my,i 6

M) = 1 for a constant M <∞. Given mx,i, Sij are iid copies of the random variable S with a

density fS(·); and given my,i, Tij are iid copies of the random variable T with a density fT (·).

Both fT (·) and fS(·) are strictly greater than 0, with bounded derivatives on T . Assume that

{Xi(t), εi(t),mx,i,my,i,Ti,Si} are iid tuples across i. In addition, we assume the following

conditions hold.

(C.1) The kernel function K(·) is a symmetric probability density function on [−1, 1] with

σ2
K :=

∫ 1

−1
u2K(u)du <∞, ν0 :=

∫ 1

−1
K2(u)du <∞.

(C.2) All eigenfunctions ψk(t), k = 1, . . . , q, are twice differentiable, and the second derivatives

ψ
′′

k (t) are uniformly continuous on T .

(C.3) There exists a constant C > 4 such that E(|Uij|C) + E

{
sup
t∈T
|Xi(t)|C

}
<∞.

(C.4) Assume hR → 0, hV → 0 as n → ∞, (log n/n)1/3 ≺ hR ≺ n−1/4 and (log n)n−3/4 ≺ hV ≺

n−1/4.

Remark 1. These conditions are common in functional data analysis. Under them, Li and

Hsing (2010) proved that the FPCA estimators possess the following uniform convergence
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properties

sup
s,t∈T
|R̂(s, t)−R(s, t)| = O{h2R +

√
log n/(nh2R)} a.s.,

σ̂2
u − σ2

u = O{h2R +
√

log n/(nhR) + h2V + log n/(nhV )} a.s.,

sup
t∈T
|ψ̂k(t)− ψk(t)| = O{h2R +

√
log n/(nhR)} a.s.,

ω̂k − ωk = O(
√

log n/n) a.s. k = 1, . . . , q.

Recall X̃i(t) defined in (6) is the BLUP for Xi(t) and X̂i(t) in (9) is its empirical counterpart.

By straightforward calculations,

sup
t∈T
|X̂i(t)− X̃i(t)| = O{h2R +

√
log n/(nhR) + h2V + log n/(nhV )} a.s. (14)

It is well-known in the measurement error literature (Carroll et al., 2006), replacing Xi(t)

with the calibrated value E{Xi(t) |Wi} will result in consistent but less efficient estimators.

Equation (14) shows that our functional calibration X̂i(t) uniformly converges to the BLUP

X̃i(t), and hence our estimators in (12) and (13) are consistent; however, the derivation of

their asymptotic distributions needs much involved analysis.

4.2 Asymptotic Properties of FCAR Estimator for the Time-Invariant Regression Model

The following theorem establishes the asymptotic property of the coefficient estimator (12)

under the time-invariant regression model (1).

Theorem 1: Under the assumptions above, the estimated slope parameter for model (1)

has the following asymptotic distribution

√
n(β̂1 − β1)

d−→ Normal{0, (γ1 + β2
1γ2)/γ

2
x},

where

γx = E(X̃T
∗iX̃∗i) = E

{
tr
(
Ψ∗iΛΨT

i Σ−1i ΨiΛΨ∗
T
i

)}
,

γ1 = E

{
tr(Ψ∗iΛΨT

i Σ−1i ΨiΛΨT
∗iΩΩΩi)

}
,
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γ2 = Var

[my,i∑
j=1

X̃i(Tij){Xi(Tij)− X̃i(Tij)}+
1

Mx,i

∑
j 6=j′

u∗i,jj′A(Sij, Sij′)

]
, (15)

u∗i,jj′ = WijWij′ − R(Sij, Sij′), A(s1, s2) is defined in Lemma 2 in the Appendix, and the

expectations are taken over (Xi, εεεi,mx,i,my,i,Ti,Si).

Remark 2. Under the special case that the BLUP X̃i(t) is also the conditional mean

E{Xi(t)|Wi}, for example when ξξξi and Ui are jointly Gaussian, {X̃i(t)−Xi(t), t ∈ T } is un-

correlated with any function of Wi. One can show, under such an circumstance, γ2 = γ21+γ22,

where γ21 = Var[
∑my,i

j=1 X̃i(Tij){Xi(Tij)−X̃i(Tij)}] and γ22 = Var{M−1
x,i

∑
j 6=j′ u

∗
i,jj′A(Sij, Si′j′)}.

Under the additional Gaussian assumption on ξξξi and Ui, we can also obtain

γ21 = E
[
tr
{
Ψ∗iΛΨT

i Σ−1i ΨiΛΨ∗
T
i Ψ∗iΛ(I−ΨT

i Σ−1i ΨiΛ)Ψ∗
T
i

}]
.

As in the classic regression calibration literature (Carroll et al., 2006), one can define β̃ββ to

be the counterpart of β̂ββ in (12) replacing X̂i(t) with X̃i(t), as if all the functional and scalar

parameters in (3) and (4) are known, then (γ1+β2
1γ21)/γ

2
x is the asymptotic variance of β̃1. In

our problem, β2
1γ22/γ

2
x is the additional variation caused by the FPCA estimation errors, i.e.

those caused by substituting µ(t), ψk(t), ωk and σ2
u with their functional estimators described

in Section 3.1. .

While it is tempting to treat the calibrated values X̂∗i as the truth and use the naive

standard error for linear regression to infer β1, the decomposition of the asymptotic variance

in Theorem 1 suggests that this approach ignores the extra variations caused by calibration

of the covariate values as well as estimation errors from FPCA. As a result, the naive

approach leads to an underestimated variation, a low coverage rate in confidence intervals and

illegitimate inferences. We recommend estimating the standard error of β̂ββ using bootstrap,

where we resample the subjects and repeat the FPCA procedure to the bootstrap samples

to properly account for these extra variations.
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4.3 Asymptotic Properties of FCAR Estimator for the Time-Varying Regression Model

Again we assume both X(t) and Y (t) are centered so that β0(t) = 0 and we can focus on

estimating β1(t) in Model (2). We also make the additional assumptions.

(C.5) The slope function β1(t) is twice continuously differentiable on T .

(C.6) The kernel function in fitting the time-varying regression model in (13) is Lipschitz contin-

uous and satisfies (C.1).

(C.7) The bandwidth h in (13) satisfies hR/h→ 0, log(n)h5/hR → 0, nh7 → 0 and nh→∞.

Theorem 2: Under the framework outlined in Section 4.1 and assumptions (C.1)—

(C.7), the estimated slope function for model (2) has the following asymptotic distribution

√
nhΓ0(t){β̂1(t)− β1(t)−

1

2
β
(2)
1 (t)σ2

Kh
2} d−→ Normal[0,Γ1(t) + β2

1(t){Γ2(t) + Γ3(t)}],

for any t ∈ T , where m̄y = E(my,i), Γ0(t) = m̄yfT (t)Γx(t),

Γx(t) = Var{X̃i(t)} = ψψψT(t)ΛE(ΨT
i Σ−1i Ψi)Λψψψ(t),

Γ1(t) = m̄yΓx(t)Ω(t, t)fT (t)ν0,

Γ2(t) = m̄yE[X̃2(t){X(t)− X̃(t)}2]ν0,

Γ3(t) = m̄2
yfS(t)ν0

[
E(M−1

x,i )

∫
Π(t, s2, s2)Q2(s2, t)fS(s2)ds2

+E{M−1
x,i (mx,i − 2)}

∫
Π(t, s2, s3)Q(s2, t)Q(s3, t)fS(s2)fS(s3)ds2ds3

]
,

Q(s, t) = ψψψT(t)ΛE(ΨT
i Σ−1i Ψi)ψψψ(s)fT (t)/{fS(s)fS(t)}, Π(s1, s2, s3) = E{X2(s1)X(s2)X(s3)}+

R(s2, s3)σ
2
u−R(s1, s2)R(s1, s3)+I(s2 = s3){R(s1, s1)σ

2
u+σ4

u}, and the expectations are taken

over (mx,i,my,i,Ti,Si,Xi, εεεi).

Remark 3. Theorem 2 suggests that our estimator enjoys the optimal convergence rate in

varying coefficient models as established in Cai et al. (2000), which is much faster than those

for the competing method of Cao et al. (2015) and Şentürk and Müller (2010). Analogous to

Theorem 1, Γ−20 (t){Γ1(t) +β2
1(t)Γ2(t)} is the asymptotic variance of β̃1(t), obtained by using
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X̃∗i as the predictors in the varying coefficient model (2), and Γ−20 (t)β2
1(t)Γ3(t) is the extra

variation caused by the FPCA errors. We therefore recommend to make inference on βββ(t)

using a bootstrap procedure that accounts for the FPCA estimation error as described in

Remark 2. Also Assumptions (C.4) and (C.7) require undersmoothing in the FPCA proce-

dure; we need hR/h → 0 so that the biases caused by FPCA estimation are asymptotically

negligible compared with the smoothing bias in varying coefficient models.

5. Simulation Studies

We conduct simulations to examine the finite sample performances of the time-invariant

regression model (1) and time-varying coefficient model (2), and compare them with those

of various exiting methods.

5.1 Simulation 1: FCAR for time-invariant coefficient model

Let the time domain be T = [0, 10], Xi(t) be iid copies of a stochastic process described by

model (4) with q = 3 principal components, and ξξξi ∼ Normal{000, diag(4, 2, 1)}. Set n = 200

and generate Yi(t) from Model (1) with β0 = 1 and β1 = 2. Suppose there are m = 5 discrete

observations on Xi(t) and Yi(t), respectively, where {Si1, . . . , Sim} and {Ti1, . . . , Tim} are

generated independently from a uniform distribution on T . Error-contaminated discrete

observations Wi are generated from Model (3) with Uij ∼ Normal(0, 1). We consider two

settings for the mean and eigenfunctions of Xi(t):

Setting I : µ(t) = t+ sin(t), ψk(t) = (1/
√

5) sin(πkt/10), t ∈ T , k = 1, 2, 3;

Setting II : µ(t) = sin(t), ψ1(t) =
√

10, ψ2(t) =
√

5 sin(2πt/10), ψ3(t) =
√

5 cos(2πt/10).

We generate residual εi(t) from a zero-mean Gaussian process with covariance function

Ω(s, t) = Cov{εi(s), εi(t)}, and consider two different covariance structures: 1) independent

(IE) with Ω(s, t) = 1.5I(s = t) and 2) dependent (DE) with Ω(s, t) = 2−|t−s|/5. As an ideal
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case, we also consider a measurement-error free (MEF) scenario under the DE structure,

where Xij’s in (3) are correctly observed and the covariate measurement error Uij = 0.

For each setting and each error correlation structure, we simulate 200 data sets and apply

the proposed FCAR method to each simulated data set. Specifically, FPCA is performed

using the fdapace package of R with its built-in bandwidth selector and q is selected by

the marginal likelihood AIC. In Table 1, we summarize the performance of β̂1 under both

settings and all three measurement error structures (IE, DE and MEF). The criteria include

the bias, standard deviation, mean of the naive standard error pretending the calibrated

values are the true covariates, coverage rate of a 95% confidence interval using the naive SE,

mean of the bootstrap standard error, and coverage rate of a 95% confidence interval using

the bootstrap SE. The results on β̂0 are similar but less interesting and hence relegated to

Appendix C. It appears that the bias of our estimator is much smaller than the standard

deviation, corroborating Theorem 1 that β̂1 is asymptotically unbiased. The results also

support Remark 2 that the naive standard error estimator underestimates the standard

error and results in confidence intervals with lower than nominal coverage rates. In contrast,

bootstrap standard errors capture the extra variations caused by calibrating the covariate

value and FPCA estimation errors, and as a result the confidence intervals based on bootstrap

standard errors yield coverage rates close to the nominal ones. As noted in Remark 2, we

perform FPCA to each bootstrap sample, and Table 1 is based on 500 bootstrap samples.

[Table 1 about here.]

Table 2 compares the proposed FCAR method with the kernel weighted (KW) method (Cao

et al., 2015) on biases, Monte Carlo standard deviations, and the average estimated standard

errors. For the KW method, we use the function asynchTI from the R package AsynchLong

(Cao et al., 2015), which provides a built-in standard error estimator. For FCAR method, the

standard error refers to the boostrap standard error in Table 1. It is noteworthy that, under
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the IE and DE covariance structures, the magnitude of the KW biases still dominates that of

the standard errors, yielding confidence intervals with a coverage rate close to 0. In contrast,

the proposed FCAR estimator incurs negligible biases and produces confidence intervals

with a coverage rate close to the nominal level. The coverage rate of the KW confidence

intervals improves much under the ideal MEF (no measurement errors) scenario, but is still

lower than that of the FCAR confidence intervals. For the coefficient estimation, FCAR and

KW are on par in computational intensity, taking 16.08 and 14.76 seconds respectively; the

calculation of standard errors for FCAR takes 1.96 minutes in 10-cores parallel for each data

set on average, a bit more than 0.13 seconds taken by KW. This is reasonable, as FCAR

needs a bootstrap procedure to compute standard errors, while KW does not. Including an

additional setting of mi = 15 per subject under the DE structure, we investigate the impact

of the sparsity level and find that the performance is fairly robust; see Appendix C.

[Table 2 about here.]

5.2 Simulation 2: FCAR for time-varying coefficient model

We simulate data from the time-varying coefficients regression model (2). As in Simulation 1,

we set the time domain to be T = [0, 10] and simulate n = 200 subjects with mi = 5 repeated

measures on Xi(t) and Yi(t) allowing the measuring time points to be asynchronous between

X and Y . We simulate X(t) using the Karhunen-Loève expansion (4), with mean function

µ(t) = t + sin(t), q = 3, ξξξi ∼ Normal{000, diag(4, 2, 1)} and ψk(t) = (1/
√

5) sin(πkt/10),

k = 1, 2, 3. We simulate discrete observations Wij from (3) where Uij are iid standard normal,

and simulate Yij from (2), where the measurement error εi(t) is generated from a mean

zero Gaussian process with covariance Cov{εi(s), εi(t)} = 2−|t−s|/5. For each subject, the

observation time points {Sij} and {Tij} are uniformly distributed on T and independent

from each other. We consider the following two settings for the time-varying coefficients:

Setting I : β0(t) = 0.2t+ 0.5, β1(t) = sin(πt/10);
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Setting II : β0(t) = t1/2, β1(t) = sin(πt/5).

We perform functional calibration using the fdapace package with AIC as the principal

component selection criterion. To fit a time-varying coefficients model after the functional

calibration, we used the tvLM function in the R package tvReg which implements the kernel

smoothing method in Hoover et al. (1998) and its built-in cross-validation procedure to

choose the bandwidth. As a comparison, we consider the following estimators, i.e., the Oracle

estimator with the known synchronized true values of X, the KW estimator (Cao et al.,

2015), and the functional varying coefficients model (FVCM) (Şentürk et al., 2013). The

Oracle estimator is implemented by using the tvReg package, and the KW method for time-

varying coefficient model is implemented by using the authors’s own asynchTD function in

the AsynchLong package. The FVCM method requires estimation of the covariance function

of X(t) and the cross-covariance function between X(·) and Y (·), which are calculated using

the fdapace package. Bandwidths for all methods are selected using the built-in options of

the packages mentioned above: generalized cross-validation of fdapace, cross-validation of

tvReg and adaptive selection procedure of AsynchLong.

We repeat the simulation 200 times for both settings and apply the proposed and compet-

ing methods to each data set. Following Şentürk and Müller (2010), we compare different

methods using two evaluation criteria: the mean absolute deviation error (MADE) and the

weighted average squared error (WASE)

MADE =
1

2|T |

1∑
r=0

∫
T |β̂r(t)− βr(t)|dt

range(βr)
, WASE =

1

2|T |

1∑
r=0

∫
T {β̂r(t)− βr(t)}

2dt

range2(βr)
,

where range(βr) is the range of function βr(t), r = 0, 1.

[Table 3 about here.]

As summarized in Table 3, the proposed FCAR method yields MADE and WASE that are

close to the Oracle estimator. The FVCM and KW methods equipped with built-in tuning

parameter selectors perform worse than FCAR, likely because both of them, by evoking
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bivariate kernel smoothing while estimating univariate coefficient functions in Model (2), are

numerically unstable. Both FVCM and KW present large mean WASEs (Fig 2), which are

further magnified by the square operator.

MADE and WASE are overall numerical summaries combining β̂0(·) and β̂1(·); we also

provide graphical summaries of β̂0(·) and β̂1(·) separately. Figure 2 summarizes β̂1(t) under

Setting I by all 4 methods mentioned above; a similar graph (Figure C.1) under Setting II is

provided in the online Appendix. The proposed FCAR estimator for β1(t) has negligible

biases and overall performance comparable to the Oracle estimator. In contrast, with slower

convergence rates and numerical instability of bivariate kernel smoothing, the KW and

FVCM estimators for β1(t) are highly variable and affected by the boundary effect. Graphical

summaries of β̂0(t) allude to the same message. We therefore relegate the graphs on β̂0(t)

under these two settings to Figures C.2 and C.3 in Appendix C. In both settings, the

estimation of time-varying coefficient functions by FCAR takes an average of 0.45 minutes.

Additionally, a typical execution of the bootstrap procedure, utilizing a parallel 10-core

system, takes an additional 8.47 minutes. In comparison, the KW method takes an average

of 5.18 minutes for estimation and inference. The FVCM, on the other hand, has an average

estimation time of 1.93 minutes and also uses a bootstrap procedure for inference, similar to

the one utilized in our approach.

As KW and FVCM are visually sensitive to the boundary effects, we furnish summary

tables and plots with the 95% truncated domains in Appendix C for a more fair comparison.

In addition, we consider the case of MEF with an added sparsity level of mi = 15, which

again demonstrates the fine performance of the proposed FCAR estimator; see Appendix C.

[Figure 2 about here.]
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6. Real Data Analysis

We apply the proposed FCAR method to the SWAN data described in Section 1. The study

admitted 3,302 premenopausal or early perimenopausal women between 1996 and 1997,

with the baseline age ranging from 42 to 53. These women were scheduled to have annual

followups up to 10 years, although various hormonal, physical and cardiovascular biomarkers

were measured according different schedules as illustrated in Figure 1 until the study ended in

2008. One of the most important biomarkers in menopausal studies is the follicle-stimulating

hormone (FSH) level, the outcome variable of our primary interest.

As declining follicular reserve is the immediate cause of the perimenopausal and menopausal

transitions (Richardson et al., 1987), an increase in the serum FSH level was one of the major

endocrine changes associated with menopausal transitions (Burger et al., 1995). FSH levels

rise progressively before the final menses and will continue for 2–4 years, before remaining

elevated postmenopause (Burger et al., 1999). Changes in FSH levels have been linked to

or are precursors of various medical conditions. For example, abnormal variations of FSH

levels are related to the depressive symptoms during the menopausal transition (Bromberger

et al., 2010), and may also increase women’s risk of developing cardiovascular disease after

menopause (El Khoudary et al., 2016).

Therefore, studying the dynamic relationship between FSH and other physiological mea-

surements is of great importance to understand women’s reproductive life and their midlife

health (Bromberger et al., 2010). Following Wang et al. (2020), we study the association

between FSH and triglycerides (TG) adjusting for age, income level and body mass index

(BMI). FSH was measured every year for the SWAN participants following the hormone

measurement schedule in Figure 1, whereas TG and BMI were following the cardiovascular

and physical measurement schedules in Figure 1. Of note, TG was not collected in year

2 or beyond year 8, and 47.5% of BMI measurements were asynchronous with FSH. We
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also included the baseline age and income as time-invariant covariates, where the income

was dichotomized (1 if annual income is more than $50k and 0 otherwise). After removing

subjects with missing incomes, there are 1,634 high income subjects and 1,578 low income

subjects in the data. We focus our analysis on the first 8 years of the study, when FSH, TG

and BMI are all available. An added rationale behind this truncation is that all participants

experienced the entire menopausal transition by year 8, becoming postmenopausal or late

perimenopausal afterwards (Bromberger et al., 2010).

Existing works, such as Wang et al. (2020), assume the association between FSH and the

covariates are time-invariant and ignore asynchronous issue in this data set, which may mask

some intriguing time-varying associations. Instead, we apply the time-varying coefficients

model to model the dynamic relationship between FSH and other time varying or invariant

covariates. Among the competing methods described in Section 5.2, the kernel weighted

estimator (KW) requires that all time-varying covariates are measured at the same time

points, which is not applicable in our data since TG and BMI are measured on different

time as well; the functional varying coefficient model (FVCM) of Şentürk and Müller (2010)

was proposed for univariate time-varying covariates and is not readily applicable to multiple

time-varying covariates in this data set.

To accommodate two time-varying covariates in our data, we slightly extend the proposed

FPCA to a multivariate setting as described in Appendix B and implement it by using

the fdapace package in R, where a built-in generalized cross-validation (GCV) procedure

is used to select the bandwidths for mean and cross-covariance estimations. We then use

the conditional AIC described in (11) to select the number of principal components for

TG and BMI separately. To implement the undersmoothing scheme described in condition

(C.7), we multiply the GCV selected bandwidths by a factor of n−1/10, refit FPCA using
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the undersmoothing bandwidths, and use the FPCA calibrated values for the subsequent

analyses.

We regress FSH against the calibrated TG and BMI values and adjust for time-invariant

covariates age and income, using a multivariate time-varying coefficient model

Yi(t) = β0(t) + βββT
z (t)Zi + βββT

x (t)Xi(t) + εi(t).

Fig 3 shows the estimated coefficient functions for TG, BMI, age and income using FCAR,

respectively, where the 95% pointwise confidence intervals are obtained using bootstrap.

As commented in Remarks 2 and 3, we resample the subjects, perform FPCA using the

same bandwidth as in real data to every bootstrap sample in order to properly take into

account the FPCA estimation errors. The pointwise confidence intervals in Fig 3 are based

on a normal approximation suggested by Theorem 2, where the pointwise standard error is

estimated based on 200 bootstrap replicates.

The estimated time varying coefficients reveal that FSH is negatively associated with TG,

which is consistent with the SWAN data analysis conducted in El Khoudary et al. (2016)

using time-invariant regression models. Wang et al. (2020) studied the association between

FSH and TG among postmenopausal and perimenopausal women separately using indepen-

dent studies. The comparison between their results suggests a stronger negative association

between FSH and TG among postmenopausal women than perimenopausal women, which

supports our findings in Figure 3(a) that the negative association between FSH and TG

becomes stronger through the menopausal transition. Similarly, Figure 3(b) suggests that

FSH is negatively associated with BMI. This is consistent with previous findings in the

SWAN literature (Randolph Jr et al., 2004), which suggested that the negative association

between FSH and BMI becomes stronger throughout the menopausal transition. This time-

varying effect of BMI on FSH is not only confirmed by our study, but can be visualized as

a continuous curve in Figure 3(b).
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Time-invariant variables, such as age and income, are confounders, whose effects need to

be adjusted for in the model. The effect of baseline age represents a cohort effect, reflecting

different baseline FSH levels in different age cohorts. The positive association between age

and FSH seen in Figure 3(c) is consistent with the literature that FSH is elevated as women

age through the menopause transition (Burger et al., 1999). Also we find that lower income

women are more likely to present higher FSH, agreeing to the literature that links low

socioeconomic status to high FSH (Wise et al., 2002), possibly because of poor health

awareness (Burger et al., 1995), risk behaviors (Haddad et al., 2008), and inadequate access

to health care (Barut et al., 2016).

[Figure 3 about here.]

7. Conclusions

We have proposed a new functional calibration method, termed Functional Calibration for

Asynchronous Regression (FCAR), for learning sparse asynchronous longitudinal data. The

key idea behind the approach is to calibrate the missing synchronized covariates by the

functional principal component analysis (FPCA) approach, which can be easily implemented

using existing software. More broadly, our method is applicable to asynchronous longitudinal

regression with time-invariant or time-varying coefficients, and addresses a serious limitation

of the existing literature. Indeed, our FCAR estimator in a time-invariant regression model

enjoys nice asymptotic properties, such as root-n consistency and asymptotic normality.

By implementing an undersmoothing scheme in our functional calibration method, the

FPCA estimation errors cause a negligible bias to the estimated model, but will inflate the

asymptotic variance of the final estimator. Based on these theoretical findings, we recommend

to use bootstrap standard error that takes into account FPCA errors, rather than using

naive standard errors. Our theoretical analysis as well as our empirical studies show that our
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proposed method outperforms the existing methods, including the kernel weighted estimator

of Cao et al. (2015) and the FVCM method of Şentürk and Müller (2010).

As a reviewer pointed out, the methods of Cao et al. (2015) and Şentürk et al. (2013) can

handle generalized outcomes, whereas our investigation has been confined to Gaussian type

responses. This extension requires substantial theoretical work and we defer it to future work.

As demonstrated in Appendix B and our real data analysis, the proposed FCAR method can

be easily implemented for multiple asynchronous time-varying covariates, when the number

of time-varying covariates is not too high. When the number is high, the computational load

of multivariate FPCA (mFPCA) can rapidly escalate, leading to an unmanageable number

of cross-covariance functions to estimate and causing the mFPCA estimators to become

unreliable. In these situations, choosing the pertinent time-varying covariates presents a

formidable challenge of ‘model selection with error-in-variable,’ as the calibrated covariate

values are subject to estimation errors, which are not independent and possess complex

structures. These difficulties deserve further exploration.
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Şentürk, D., Dalrymple, L. S., Mohammed, S. M., Kaysen, G. A., and Nguyen, D. V. (2013).

Modeling time-varying effects with generalized and unsynchronized longitudinal data.

Statistics in Medicine 32, 2971–2987.
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Figure 1: (a) Observation days for a randomly selected subset of SWAN participants. Each
column corresponds to one woman, with points in different colors and shapes representing
variables types: hormone, physical and cardiovascular measures. (b) Longitudinal trajectories
of follicle-stimulating hormone (FSH), body mass index (BMI), and triglycerides (TG) from
a randomly selected SWAN participant (ID = 13959).
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Figure 2: Summary of β̂1(t) under Simulation 2, Setting I using various methods. In each

panel, black: median of β̂1(t); red: true β1(t); dashed blue: 0.975 and 0.025 quantiles.
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Figure 3: SWAN data analysis using FCAR: time-varying coefficient model on FSH against
TG, BMI, age and income. In each panel, the solid curve is the estimated coefficient function
and the dashed curves are 95% point-wise confidence intervals obtained using bootstrap.
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Setting I Setting II
Error type IE DE MEF IE DE MEF

Bias 0.007 0.004 -0.002 -0.008 -0.013 0.025
SD 0.028 0.029 0.017 0.127 0.122 0.060

Naive SE 0.019 0.017 0.012 0.064 0.058 0.034
Naive CP 0.830 0.770 0.820 0.670 0.640 0.725

Bootstrap SE 0.030 0.030 0.019 0.117 0.119 0.064
Bootstrap CP 0.955 0.950 0.965 0.925 0.930 0.940

Table 1: Simulation 1: performance of β̂1 under the proposed FCAR method under Settings
1 and 2. SD: standard deviation; Naive SE: mean of the naive standard error; Naive CP:
coverage rate of a 95% confidence interval using the naive SE; Bootstrap SE: mean of the
bootstrap standard error; Bootstrap CP: coverage rate of a 95% confidence interval using
the bootstrap SE; IE: independent errors; DE: dependent errors; MEF: model-error free with
dependent errors.



30 Biometrics, October 2022

IE DE MEF
FCAR KW FCAR KW FCAR KW

Setting I Bias 0.007 -0.225 0.004 -0.213 -0.002 -0.024
SD 0.028 0.067 0.029 0.067 0.017 0.045
SE 0.030 0.049 0.030 0.051 0.019 0.032
CP 0.955 0.060 0.950 0.065 0.965 0.830

Setting II Bias -0.008 -0.978 -0.013 -0.978 0.025 -0.060
SD 0.127 0.097 0.122 0.092 0.060 0.108
SE 0.117 0.076 0.119 0.077 0.064 0.069
CP 0.925 0.000 0.930 0.000 0.940 0.735

Table 2: Simulation 1: comparison of β̂1 using the proposed FCAR method with the kernel
weighted (KW) method of (Cao et al., 2015) on bias, standard deviation (SD), mean of
standard error (SE) and coverage rate of a 95% confidence interval using standard error
(CP) under two settings and three error structures (IE: independent residuals; DE: dependent
residuals; MEF: measurement error free with dependent residuals)
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Method Criterion Mean(SD) Median 25% 75%

Setting I FCAR MADE 0.319(0.151) 0.302 0.207 0.388
FVCM 1.494(2.521) 0.948 0.756 1.418

KW 1.452(3.533) 1.026 0.868 1.297
Oracle 0.209(0.091) 0.192 0.142 0.269

FCAR WASE 0.345(0.395) 0.224 0.103 0.402
FVCM 461.495(5235.731) 3.433 1.576 9.553

KW 1057.299(14234.414) 3.830 1.716 15.221
Oracle 0.216(0.242) 0.111 0.058 0.294

Setting II FCAR MADE 0.263(0.104) 0.246 0.186 0.321
FVCM 0.944(1.551) 0.616 0.440 0.913

KW 1.153(1.669) 0.720 0.605 1.115
Oracle 0.180(0.062) 0.172 0.137 0.220

FCAR WASE 0.316(0.351) 0.200 0.093 0.394
FVCM 299.501(3746.442) 1.464 0.613 5.921

KW 204.128(1538.798) 2.709 1.196 15.833
Oracle 0.287(0.347) 0.183 0.088 0.330

Table 3: Simulation 2: MADE and WASE of various methods. SD: standard deviation); 25%:
25% quantile; 75%: 75% quantile.
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