Online Supplement For Asynchronous and Error-prone Longitudinal Data Analysis via Functional Calibration

Xinyue Chang¹, Yehua Li² and Yi Li³

¹Department of Statistics, Iowa State University, Ames, IA 50011, U.S.A.

²Department of Statistics, University of California, Riverside, CA 92521, U.S.A.

³Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, U.S.A.

Appendix A: Technical Proofs

A.1 Preliminaries

Recall that we use the subscript * to denote the covariates and eigenfunctions evaluated on the same time points as the response, and $\mathbf{X}_{*i} = \{X_i(T_{i1}), \ldots, X_i(T_{im_{y,i}})\}^{\mathrm{T}}, \mathbf{\Psi}_i = (\boldsymbol{\psi}_{i1}, \ldots, \boldsymbol{\psi}_{iq}) \text{ and } \mathbf{\Psi}_{*i} = (\boldsymbol{\psi}_{*i1}, \ldots, \boldsymbol{\psi}_{*iq}), \text{ where } \boldsymbol{\psi}_{ik} = \{\psi_k(S_{i1}), \ldots, \psi_k(S_{im_{x,i}})\}^{\mathrm{T}} \text{ and } \boldsymbol{\psi}_{*ik} = \{\psi_k(T_{i1}), \ldots, \psi_k(T_{im_{y,i}})\}^{\mathrm{T}}.$

Put $\mathbf{X}_* = (\mathbf{X}_{*1}^{\mathrm{T}}, \dots, \mathbf{X}_{*n}^{\mathrm{T}})^{\mathrm{T}}$, $\mathbf{\Lambda} = \operatorname{diag}(\omega_1, \dots, \omega_K)$, and the FPCA score vectors as $\boldsymbol{\xi}_i = (\xi_{i1}, \dots, \xi_{iq})^{\mathrm{T}}$. and the observed covariance matrix is $\boldsymbol{\Sigma}_i = \boldsymbol{\Psi}_i \mathbf{\Lambda} \boldsymbol{\Psi}_i^{\mathrm{T}} + \sigma_u^2 \mathbf{I}$. Specifically, the conditional mean and estimator for \mathbf{X}_{*i} are

$$\widetilde{\mathbf{X}}_{*i} = \Psi_{*i} \widetilde{\boldsymbol{\xi}}_i = \Psi_{*i} \Lambda \Psi_i^{\mathrm{T}} \left(\Psi_i \Lambda \Psi_i^{\mathrm{T}} + \sigma_u^2 \mathbf{I} \right)^{-1} \mathbf{W}_i$$
(A.1)

$$\widehat{\mathbf{X}}_{*i} = \widehat{\mathbf{\Psi}}_{*i} \widehat{\boldsymbol{\xi}}_i = \widehat{\mathbf{\Psi}}_{*i} \widehat{\mathbf{\Lambda}} \widehat{\mathbf{\Psi}}_i^{\mathrm{T}} \left(\widehat{\mathbf{\Psi}}_i \widehat{\mathbf{\Lambda}} \widehat{\mathbf{\Psi}}_i^{\mathrm{T}} + \widehat{\sigma}_u^2 \mathbf{I} \right)^{-1} \mathbf{W}_i.$$
(A.2)

Define $\delta_{n1}(h) = \{h^{-1}\log n/n\}^{1/2}, \ \delta_{n2}(h) = \{h^{-2}\log n/n\}^{1/2}, \ \text{and} \ \zeta_n(h) = \sqrt{n}h^2 + h^{1/2} + h^{-1/2}\delta_{n2}(h).$

LEMMA 1: Under assumptions described in Section 4.1, for $t \in \mathcal{T}$,

$$\widehat{\psi}_{k}(t) - \psi_{k}(t) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{M_{x,i}} \sum_{j \neq j'} u_{i,jj'}^{*} \mathcal{G}_{k}\left(S_{ij}, S_{ij'}, t\right)$$

Biometrics, 000 0000

$$+ \omega_k^{-1} \frac{1}{n} \sum_{i=1}^n \frac{1}{M_{x,i}} \sum_{j \neq j'} u_{i,jj'}^* \frac{K_{h_R}(S_{ij'} - t) \psi_k(S_{ij})}{f_S(S_{ij}) f_S(t)}$$

$$+ O_p[h_R^2 + (nh_R)^{-1/2} \{h_R + \delta_{n2}(h_R)\}],$$

$$\widehat{\omega}_k - \omega_k = \frac{1}{n} \sum_{i=1}^n \frac{1}{M_{x,i}} \sum_{j' \neq j} u_{i,jj'}^* \frac{\psi_k(S_{ij})\psi_k(S_{ij'})}{f_S(S_{ij}) f_S(S_{ij'})} + O_p[h_R^2 + n^{-1/2} \{h_R + \delta_{n2}(h_R)\}],$$

$$k = 1, \dots, q, \text{ where } u_{i,jj'}^* = W_{ij}W_{ij'} - R(S_{ij}, S_{ij'}), M_{x,i} = m_{x,i}(m_{x,i} - 1),$$

$$\mathcal{G}_k(s_1, s_2, s_3) = \sum_{\substack{k'=1\\k'\neq k}}^q \frac{\omega_{k'}\psi_{k'}(s_3)}{(\omega_k - \omega_{k'})\omega_k} \times \left\{ \frac{\psi_k(s_1)\psi_{k'}(s_2)}{f_S(s_1)f_S(s_2)} \right\} - \omega_k^{-1}\psi_k(s_3) \left\{ \frac{\psi_k(s_1)\psi_k(s_2)}{f_S(s_1)f_S(s_2)} \right\}.$$

Proof. The asymptotic expansion for $\widehat{\psi}_k(t) - \psi_k(t)$ is a direct result of Lemma S.3.1 in Li et al. (2013) by letting $\mu(t) = 0$, and the asymptotic expansion for $\widehat{\omega}_k - \omega_k$ is on page 3349 in Li and Hsing (2010).

A.2 The Proof for Theorem 1

Assuming both X(t) and Y(t) have been centered so that $\beta_0 = 0$, we have

$$\sqrt{n}(\widehat{\beta}_1 - \beta_1) = \left\{ \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^{m_{y,i}} \widehat{X}_i^2(T_{ij}) \right\}^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \sum_{j=1}^{m_{y,i}} \widehat{X}_i(T_{ij}) [\{X_i(T_{ij}) - \widehat{X}_i(T_{ij})\}\beta_1 + \epsilon_i(T_{ij})] \right).$$

By (14), the denominator of the expression above is

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \widehat{X}_{i}^{2}(T_{ij}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \{\widehat{X}_{i}^{2}(T_{ij}) - \widetilde{X}_{i}^{2}(T_{ij})\} + \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \widetilde{X}_{i}^{2}(T_{ij}) \\
= \frac{1}{n} \sum_{i=1}^{n} \widetilde{X}_{*i}^{T} \widetilde{X}_{*i} + o_{p}(1) \\
\xrightarrow{p} \gamma_{x}, \qquad (A.3)$$

where $\gamma_x = \mathcal{E}(\widetilde{\mathbf{X}}_{*i}^{\mathrm{T}}\widetilde{\mathbf{X}}_{*i})$ as defined in (15). Define

$$\Delta_{n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \widehat{X}_{i}(T_{ij}) [\{X_{i}(T_{ij}) - \widehat{X}_{i}(T_{ij})\}\beta_{1} + \epsilon_{i}(T_{ij})] - \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \widetilde{X}_{i}(T_{ij}) [\{X_{i}(T_{ij}) - \widetilde{X}_{i}(T_{ij})\}\beta_{1} + \epsilon_{i}(T_{ij})] = \frac{1}{\sqrt{n}} \widehat{\mathbf{X}}_{*}^{\mathrm{T}} \{\left(\mathbf{X}_{*} - \widehat{\mathbf{X}}_{*}\right)\beta_{1} + \epsilon\} - \frac{1}{\sqrt{n}} \widetilde{\mathbf{X}}_{*}^{\mathrm{T}} \{\left(\mathbf{X}_{*} - \widetilde{\mathbf{X}}_{*}\right)\beta_{1} + \epsilon\} = \mathcal{R}_{1,n} + \mathcal{R}_{2,n} + \mathcal{R}_{3,n} + \mathcal{R}_{4,n},$$
(A.4)

where

$$\begin{aligned} \mathcal{R}_{1,n} &= -\beta_1 \frac{1}{\sqrt{n}} \sum_{i=1}^n (\widehat{\mathbf{X}}_{*i} - \widetilde{\mathbf{X}}_{*i})^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i}, \\ \mathcal{R}_{2,n} &= \beta_1 \frac{1}{\sqrt{n}} \sum_{i=1}^n (\widehat{\mathbf{X}}_{*i} - \widetilde{\mathbf{X}}_{*i})^{\mathrm{T}} (\mathbf{X}_{*i} - \widetilde{\mathbf{X}}_{*i}), \\ \mathcal{R}_{3,n} &= \frac{1}{\sqrt{n}} \sum_{i=1}^n (\widehat{\mathbf{X}}_{*i} - \widetilde{\mathbf{X}}_{*i})^{\mathrm{T}} \boldsymbol{\epsilon}_i, \\ \mathcal{R}_{4,n} &= -\beta_1 \frac{1}{\sqrt{n}} \sum_{i=1}^n (\widehat{\mathbf{X}}_{*i} - \widetilde{\mathbf{X}}_{*i})^{\mathrm{T}} (\widehat{\mathbf{X}}_{*i} - \widetilde{\mathbf{X}}_{*i}) \end{aligned}$$

Lemma 2 shows that $\mathcal{R}_{1,n} = O_p(1)$ and provides its asymptotic expansion. Following similar derivations, $\mathcal{R}_{2,n}$ has a similar decomposition as (A.6) except that $\widetilde{\mathbf{X}}_{*i}$ is replaced by $\mathbf{X}_{*i} - \widetilde{\mathbf{X}}_{*i}$. By lengthy derivations similar to Lemma 2 and using the fact $\mathbf{E}\{(\mathbf{X}_{*i} - \widetilde{\mathbf{X}}_{*i})\mathbf{W}_i^T |$ $\mathbf{T}_i, \mathbf{S}_i\} = \mathbf{0}$, we can show $\mathcal{R}_{2,n} = o_p(1)$. By (14) and the fact that $\boldsymbol{\epsilon}_i$ is uncorrelated with \mathbf{W}_i , we have $R_{3,n} = o_p(1)$. In addition, $\mathcal{R}_{4,n} = O[\sqrt{n} \times \{h_R^4 + \log n/(nh_R) + h_V^4 + (\log n)^2/(nh_V)^2\}] = o(1)$ a.s. under Assumption (C.4). Combining arguments above,

$$\begin{split} \sqrt{n}(\widehat{\beta}_{1} - \beta_{1}) &= \frac{1}{\gamma_{x}\sqrt{n}} \sum_{i=1}^{n} \left(\sum_{j=1}^{m_{y,i}} \widetilde{X}_{i}(T_{ij}) [\{X_{i}(T_{ij}) - \widetilde{X}_{i}(T_{ij})\}\beta_{1} + \epsilon_{i}(T_{ij})] \\ &+ \frac{\beta_{1}}{M_{x,i}} \sum_{j \neq j'} u_{i,jj'}^{*} \mathcal{A}(S_{ij}, S_{i'j'}) \right) + o_{p}(1) \\ &:= \frac{1}{\gamma_{x}\sqrt{n}} \sum_{i=1}^{n} \left(\mathcal{E}_{i1} + \beta_{1}\mathcal{E}_{i2} + \beta_{1}\mathcal{E}_{i3} \right) + o_{p}(1), \end{split}$$

where $\mathcal{E}_{i1} = \sum_{j=1}^{m_{y,i}} \widetilde{X}_i(T_{ij}) \epsilon_i(T_{ij}), \ \mathcal{E}_{i2} = \sum_{j=1}^{m_{y,i}} \widetilde{X}_i(T_{ij}) \{X_i(T_{ij}) - \widetilde{X}_i(T_{ij})\}, \text{ and } \mathcal{E}_{i3} = \frac{1}{M_{x,i}}$ $\sum_{j \neq j'} u_{i,jj'}^* \mathcal{A}(S_{ij}, S_{i'j'}).$ We can verify $\mathbb{E}\{(\mathbf{X}_{*i} - \widetilde{\mathbf{X}}_{*i})\mathbf{W}_i^{\mathrm{T}} \mid \mathbf{T}_i, \mathbf{S}_i\} = \mathbf{0},$ which means $\mathbb{E}(\mathcal{E}_{i2}) = \operatorname{tr}[\mathbb{E}\{(\mathbf{X}_{*i} - \widetilde{\mathbf{X}}_{*i})\mathbf{W}_i^{\mathrm{T}} \mathbf{\Sigma}_i^{-1} \mathbf{\Psi}_i \mathbf{\Lambda} \mathbf{\Psi}_{*i}^{\mathrm{T}}\}] = 0.$ With that, it follows that $(\mathcal{E}_{i1}, \mathcal{E}_{i2}, \mathcal{E}_{i3})$ are zero-mean and independent across i, and that \mathcal{E}_{i1} is uncorrelated with $(\mathcal{E}_{i2}, \mathcal{E}_{i3})$ because ϵ is independent of X and W. We have

$$\gamma_{1} = \operatorname{Var}(\mathcal{E}_{i1}) = \operatorname{E}\left\{\operatorname{tr}(\boldsymbol{\Psi}_{*i}\boldsymbol{\Lambda}\boldsymbol{\Psi}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\boldsymbol{\Lambda}\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\boldsymbol{\Omega}_{i})\right\},\$$
$$\gamma_{2} = \operatorname{Var}(\mathcal{E}_{i2} + \mathcal{E}_{i3}) = \operatorname{Var}\left[\sum_{j=1}^{m_{y,i}} \widetilde{X}_{i}(T_{ij})\{X_{i}(T_{ij}) - \widetilde{X}_{i}(T_{ij})\} + \frac{1}{M_{x,i}}\sum_{j\neq j'} u_{i,jj'}^{*}\mathcal{A}(S_{ij}, S_{i'j'})\right],\$$

where $\mathbf{\Omega}_i = \mathrm{E}(\boldsymbol{\epsilon}_i \boldsymbol{\epsilon}_i^T)$, then by the central limit theory

$$\sqrt{n}(\widehat{\beta}_1 - \beta_1) \xrightarrow{d} \operatorname{Normal}\{0, (\gamma_1 + \beta_1^2 \gamma_2) / \gamma_x^2\}.$$

LEMMA 2: Under assumptions described in Section 4.1,

$$\mathcal{R}_{1,n} = \beta_1 \frac{1}{\sqrt{n}} \left\{ \sum_{i=1}^n \frac{1}{M_{x,i}} \sum_{j \neq j'} u_{i,jj'}^* \mathcal{A}(S_{ij}, S_{ij'}) \right\} \{ 1 + o_p(1) \},$$
(A.5)

where $\mathcal{A}(s_1, s_2) = -\sum_{k=1}^{4} \mathcal{A}_k(s_1, s_2)$, $\mathcal{A}_k(s_1, s_2)$, k = 1, ..., 4, are defined in (A.8), (A.10), (A.12) and (A.14), respectively.

Proof. We can rewrite $\mathcal{R}_{1,n} = -\beta_1(\mathcal{R}_{11,n} + \mathcal{R}_{12,n} + \mathcal{R}_{13,n} + \mathcal{R}_{14,n})$, where

$$\mathcal{R}_{11,n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\{ \left(\widehat{\Psi}_{*i} - \Psi_{*i} \right) \Lambda \Psi_{i}^{\mathrm{T}} \Sigma_{i}^{-1} \mathbf{W}_{i} \right\}^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i},$$

$$\mathcal{R}_{12,n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\{ \widehat{\Psi}_{*i} \left(\widehat{\Lambda} - \Lambda \right) \Psi_{i}^{\mathrm{T}} \Sigma_{i}^{-1} \mathbf{W}_{i} \right\}^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i},$$

$$\mathcal{R}_{13,n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\{ \widehat{\Psi}_{*i} \widehat{\Lambda} \left(\widehat{\Psi}_{i}^{\mathrm{T}} - \Psi_{i}^{\mathrm{T}} \right) \Sigma_{i}^{-1} \mathbf{W}_{i} \right\}^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i},$$

$$\mathcal{R}_{11,n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\{ \widehat{\Psi}_{*i} \widehat{\Lambda} \widehat{\Psi}_{i}^{\mathrm{T}} \left(\widehat{\Sigma}_{i}^{-1} - \Sigma_{i}^{-1} \right) \mathbf{W}_{i} \right\}^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i}.$$
(A.6)

Given a time vector $\mathbf{V} = (V_1, \ldots, V_m)^T$, define

$$\mathbf{A}_{1}(s_{1}, s_{2}, \mathbf{V}) = \mathcal{G}(s_{1}, s_{2}, \mathbf{V}) + \left\{\frac{K_{h_{R}}(s_{2} - V_{1})}{f_{S}(V_{1})}, \dots, \frac{K_{h_{R}}(s_{2} - V_{m})}{f_{S}(V_{m})}\right\}^{\mathrm{T}} \mathbf{A}_{1}^{*}(s_{1})$$
(A.7)

where $\mathcal{G}(s_1, s_2, \mathbf{V}) = \{\mathcal{G}_1(s_1, s_2, \mathbf{V}), \dots, \mathcal{G}_q(s_1, s_2, \mathbf{V})\}, \ \mathcal{G}_k(s_1, s_2, \mathbf{V}) = \{\mathcal{G}_k(s_1, s_2, V_1), \dots, \mathcal{G}_k(s_1, s_2, V_m)\}^T, \ \mathcal{G}_k(s_1, s_2, V) \text{ defined in Lemma 1, and}$

$$\mathbf{A}_{1}^{*}(s_{1}) = \left\{ \frac{\psi_{1}(s_{1})}{f_{S}(s_{1})\omega_{1}}, \dots, \frac{\psi_{q}(s_{1})}{f_{S}(s_{1})\omega_{q}} \right\}$$

In addition, define

$$\mathcal{A}_{1}(s_{1},s_{2}) = \operatorname{tr}\left(\operatorname{E}\left(\boldsymbol{\Lambda}\boldsymbol{\Psi}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\boldsymbol{\Lambda}\right)\left[\operatorname{E}\left\{\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\mathcal{G}(s_{1},s_{2},\mathbf{T}_{i})\right\} + \operatorname{E}(m_{y,i})\boldsymbol{\psi}(s_{2})\boldsymbol{A}_{1}^{*}(s_{1})\right]\right).$$
 (A.8)

By Lemma 1,

$$\mathcal{R}_{11,n} = rac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \mathbf{\Psi}_{i} \mathbf{\Lambda} \left(\widehat{\mathbf{\Psi}}_{*i} - \mathbf{\Psi}_{*i}
ight)^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i}$$

$$= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \Psi_{i} \mathbf{\Lambda} \left\{ \frac{1}{n} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \mathbf{A}_{1} (S_{i'l}, S_{i'l'}, \mathbf{T}_{i})^{\mathrm{T}} \right\} \widetilde{\mathbf{X}}_{*i} + O_{p} \{\zeta_{n}(h_{R})\}$$

$$= \frac{1}{\sqrt{n}} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \frac{1}{n} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \Psi_{i} \mathbf{\Lambda} \mathbf{A}_{1} (S_{i'l}, S_{i'l'}, \mathbf{T}_{i})^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i} + O_{p} \{\zeta_{n}(h_{R})\}$$

$$= \left[\frac{1}{\sqrt{n}} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \mathrm{E} \left\{ \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \Psi_{i} \mathbf{\Lambda} \mathbf{A}_{1} (s_{1}, s_{2}, \mathbf{T}_{i})^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i} \right\} |_{s_{1}=S_{i'l}, s_{2}=S_{i'l'}} \right]$$

$$\times \{1 + o_{p}(1)\} + O_{p} \{\zeta_{n}(h_{R})\},$$

$$= \left\{ \frac{1}{\sqrt{n}} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \mathcal{A}_{1} (S_{i'l}, S_{i'l'}) \right\} \{1 + o_{p}(1)\} + O_{p} \{\zeta_{n}(h_{R})\},$$
(A.9)

and $\zeta_n(h_R) = o(1)$ by (C.4).

Put

$$\mathbf{A}_{2}(s_{1},s_{2}) = \operatorname{diag}\left\{\frac{\psi_{1}(s_{1})\psi_{1}(s_{2})}{f_{S}(s_{1})f_{S}(s_{2})}, \dots, \frac{\psi_{q}(s_{1})\psi_{q}(s_{2})}{f_{S}(s_{1})f_{S}(s_{2})}\right\},$$
(A.10)
$$\mathcal{A}_{2}(s_{1},s_{2}) = \operatorname{E}\left\{\mathbf{W}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\mathbf{A}_{2}(s_{1},s_{2})\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\widetilde{\mathbf{X}}_{*i}\right\} = \operatorname{tr}\left\{\mathbf{A}_{2}(s_{1},s_{2})\operatorname{E}\left(\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\boldsymbol{\Psi}_{*i}\boldsymbol{\Lambda}\boldsymbol{\Psi}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\right)\right\},$$

then by Lemma 1 and Condition (C.4),

$$\mathcal{R}_{12,n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\{ \widehat{\Psi}_{*i} \left(\widehat{\Lambda} - \Lambda \right) \Psi_{i}^{\mathrm{T}} \Sigma_{i}^{-1} W_{i} \right\}^{\mathrm{T}} \widetilde{X}_{*i} \\
= \left\{ \frac{1}{\sqrt{n}} \sum_{i=1}^{n} W_{i}^{\mathrm{T}} \Sigma_{i}^{-1} \Psi_{i} \frac{1}{n} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i,ll'}^{*} \mathbf{A}_{2}(S_{i'l}, S_{i'l'}) \Psi_{*i}^{\mathrm{T}} \widetilde{X}_{*i} \right\} \{1 + o_{p}(1)\} \\
= \left\{ \frac{1}{\sqrt{n}} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l' \neq l} u_{i',ll'}^{*} \frac{1}{n} \sum_{i=1}^{n} W_{i}^{\mathrm{T}} \Sigma_{i}^{-1} \Psi_{i} \mathbf{A}_{2}(S_{i'l}, S_{i'l'}) \Psi_{*i}^{\mathrm{T}} \widetilde{X}_{*i} \right\} \{1 + o_{p}(1)\} \\
= \left\{ \frac{1}{\sqrt{n}} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l' \neq l} u_{i',ll'}^{*} \mathcal{A}_{2}(S_{i'l}, S_{i'l'}) \right\} \{1 + o_{p}(1)\}. \quad (A.11)$$

Next, define

$$\mathcal{A}_{3}(s_{1}, s_{2}) = \operatorname{tr} \left[\operatorname{E} \left\{ \mathbf{\Lambda} \mathcal{G}(s_{1}, s_{2}, \mathbf{S}_{i})^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \mathbf{\Psi}_{i} \mathbf{\Lambda} \right\} \operatorname{E} \left(\mathbf{\Psi}_{*i}^{\mathrm{T}} \mathbf{\Psi}_{*i} \right) \right]$$

$$+ \operatorname{tr} \left[f_{S}^{-1}(s_{1}) \boldsymbol{\psi}(s_{1}) \operatorname{E} \left\{ \sum_{j=1}^{m_{x,i}} \operatorname{E} \left(\mathbf{e}_{j}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \mathbf{\Psi}_{i} \mid S_{ij} = s_{2}, m_{x,i} \right) \right\} \mathbf{\Lambda} \operatorname{E} \left(\mathbf{\Psi}_{*i}^{\mathrm{T}} \mathbf{\Psi}_{*i} \right) \right].$$
(A.12)

where $\mathcal{G}(s_1, s_2, \mathbf{T}_i)$ is defined in (A.7), and \mathbf{e}_j is a directional vector of length $m_{x,i}$ with all elements being zero, except that the *j*th is 1. Following similar derivations as in (A.9), we

have

$$\mathcal{R}_{13,n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \Sigma_{i}^{-1} \left(\widehat{\Psi}_{i} - \Psi_{i} \right) \widehat{\Lambda} \widehat{\Psi}_{*i}^{\mathrm{T}} \widetilde{X}_{*i} \\
= \left\{ \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \Sigma_{i}^{-1} \frac{1}{n} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \mathbf{A}_{1}(S_{i'l}, S_{i'l'}, \mathbf{S}_{i}) \mathbf{\Lambda} \Psi_{*i}^{\mathrm{T}} \widetilde{X}_{*i} \right\} \{1 + o_{p}(1)\} \\
= \left\{ \frac{1}{\sqrt{n}} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \frac{1}{n} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \Sigma_{i}^{-1} \mathbf{A}_{1}(S_{i'l}, S_{i'l'}, \mathbf{S}_{i}) \mathbf{\Lambda} \Psi_{*i}^{\mathrm{T}} \widetilde{X}_{*i} \right\} \{1 + o_{p}(1)\} \} \\
= \left\{ \frac{1}{\sqrt{n}} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \mathbf{E} \left\{ \mathbf{W}_{i}^{\mathrm{T}} \Sigma_{i}^{-1} \mathbf{A}_{1}(s_{1}, s_{2}, \mathbf{S}_{i}) \mathbf{\Lambda} \Psi_{*i}^{\mathrm{T}} \widetilde{X}_{*i} \right\} |_{s_{1}=S_{i'l}, s_{2}=S_{i'l'}} \right\} \\
= \left\{ \frac{1}{\sqrt{n}} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \mathcal{A}_{3}(S_{i'l}, S_{i'l'}) \right\} \{1 + o_{p}(1)\} \}. \tag{A.13}$$

The last equation above follows because

$$E\left\{\mathbf{W}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\mathbf{A}_{1}(s_{1}, s_{2}, \mathbf{S}_{i})\mathbf{\Lambda}\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\widetilde{\mathbf{X}}_{*i}\right\}$$

$$= \operatorname{tr}\left[E\left\{\mathbf{\Lambda}\mathbf{A}_{1}(s_{1}, s_{2}, \mathbf{S}_{i})^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\mathbf{\Lambda}\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\boldsymbol{\Psi}_{*i}\right\}\right]$$

$$= \operatorname{tr}\left[E\left\{\mathbf{\Lambda}\mathcal{G}(s_{1}, s_{2}, \mathbf{S}_{i})^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\mathbf{\Lambda}\right\}E\left(\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\boldsymbol{\Psi}_{*i}\right)\right]$$

$$+ \operatorname{tr}\left[f_{S}^{-1}(s_{1})\boldsymbol{\psi}(s_{1})^{\mathrm{T}}E\left\{\sum_{j=1}^{m_{x,i}}E\left(\mathbf{e}_{j}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\mid S_{ij}=s_{2}, m_{x,i}\right)\right\}\mathbf{\Lambda}E\left(\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\boldsymbol{\Psi}_{*i}\right)\right] + O(h_{R}^{2}).$$

For the last term (A.6),

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n} \left\{ \widehat{\Psi}_{*i}\widehat{\Lambda}\widehat{\Psi}_{i}^{\mathrm{T}}\left(\widehat{\Sigma}_{i}^{-1}-\Sigma_{i}^{-1}\right)\mathbf{W}_{i} \right\}^{\mathrm{T}}\widetilde{\mathbf{X}}_{*i} = \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\mathbf{W}_{i}^{\mathrm{T}}\left(\widehat{\Sigma}_{i}^{-1}-\Sigma_{i}^{-1}\right)\widehat{\Psi}_{i}\widehat{\Lambda}\widehat{\Psi}_{*i}^{\mathrm{T}}\widetilde{\mathbf{X}}_{*i}.$$

Finally, define

$$\mathcal{A}_{4}(s_{1}, s_{2}) = -2\mathrm{tr}\left[\mathrm{E}\left\{\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\boldsymbol{\Lambda}\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\boldsymbol{\Psi}_{*i}\boldsymbol{\Lambda}\boldsymbol{\Psi}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\boldsymbol{\Lambda}\mathcal{G}(s_{1}, s_{2}, \mathbf{S}_{i})^{\mathrm{T}}\right\}\right] -2\mathrm{E}\left[\sum_{j=1}^{m_{x,i}}\mathrm{E}\left\{\mathbf{e}_{j}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}^{\mathrm{T}}\boldsymbol{\Lambda}\mathrm{E}\left(\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\boldsymbol{\Psi}_{*i}\right)\boldsymbol{\Lambda}\boldsymbol{\Psi}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\mid S_{ij}=s_{2}, m_{x,i}\right\}\right]\frac{\boldsymbol{\psi}(s_{1})}{f_{S}(s_{1})} -\mathrm{tr}\left[\mathrm{E}\left\{\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\boldsymbol{\Lambda}\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\boldsymbol{\Psi}_{*i}\boldsymbol{\Lambda}\boldsymbol{\Psi}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\boldsymbol{\Lambda}_{2}(s_{1}, s_{2})\boldsymbol{\Psi}_{i}^{\mathrm{T}}\right\}\right].$$
(A.14)

By matrix taylor expansion, $\widehat{\Sigma}_{i}^{-1} = \Sigma_{i}^{-1} - \Sigma_{i}^{-1} \left(\widehat{\Sigma}_{i} - \Sigma_{i}\right) \Sigma_{i}^{-1} \{1 + o_{p}(1)\}$. Thus, by Lemma 1 and using similar calculations as for $\mathcal{R}_{11,n}$, we have

$$\mathcal{R}_{14,n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\{ \widehat{\boldsymbol{\Psi}}_{*i} \widehat{\boldsymbol{\Lambda}} \widehat{\boldsymbol{\Psi}}_{i}^{\mathrm{T}} \left(\widehat{\boldsymbol{\Sigma}}_{i}^{-1} - \boldsymbol{\Sigma}_{i}^{-1} \right) \mathbf{W}_{i} \right\}^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i}$$

$$= \left\{ \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \left(\mathbf{\Sigma}_{i} - \widehat{\mathbf{\Sigma}}_{i} \right) \mathbf{\Sigma}_{i}^{-1} \mathbf{\Psi}_{i} \mathbf{\Lambda} \mathbf{\Psi}_{*i}^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i} \right\} \{1 + o_{p}(1)\}$$

$$= \left\{ \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \left(\mathbf{\Psi}_{i} \mathbf{\Lambda} \mathbf{\Psi}_{i}^{\mathrm{T}} - \widehat{\mathbf{\Psi}}_{i} \widehat{\mathbf{\Lambda}} \widehat{\mathbf{\Psi}}_{i}^{\mathrm{T}} \right) \mathbf{\Sigma}_{i}^{-1} \mathbf{\Psi}_{i} \mathbf{\Lambda} \mathbf{\Psi}_{*i}^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i} \right\} \{1 + o_{p}(1)\}$$

$$+ \left(\sigma_{u}^{2} - \widehat{\sigma}_{u}^{2}\right) \left\{ \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-2} \mathbf{\Psi}_{i} \mathbf{\Lambda} \mathbf{\Psi}_{*i}^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i} \right\} \{1 + o_{p}(1)\}$$

$$= -\left[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \left\{ (\widehat{\mathbf{\Psi}}_{i} - \mathbf{\Psi}_{i}) \mathbf{\Lambda} \mathbf{\Psi}_{i}^{\mathrm{T}} + \mathbf{\Psi}_{i} (\widehat{\mathbf{\Lambda}} - \mathbf{\Lambda}) \mathbf{\Psi}_{i}^{\mathrm{T}} + \mathbf{\Psi}_{i} \mathbf{\Lambda} (\widehat{\mathbf{\Psi}}_{i} - \mathbf{\Psi}_{i})^{\mathrm{T}} \right\}$$

$$\times \mathbf{\Sigma}_{i}^{-1} \mathbf{\Psi}_{i} \mathbf{\Lambda} \mathbf{\Psi}_{*i}^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i} \right] \{1 + o_{p}(1)\} + o_{p}(1)$$

$$= -\left[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \frac{1}{n} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}}} \sum_{l \neq l'} u_{i',ll'}^{*} \left\{ \mathbf{A}_{1}(S_{i'l}, S_{i'l'}, \mathbf{S}_{i}) \mathbf{\Lambda} \mathbf{\Psi}_{i}^{\mathrm{T}} + \mathbf{\Psi}_{i} \mathbf{A}_{2}(S_{i'l}, S_{i'l'}) \mathbf{\Psi}_{i}^{\mathrm{T}} \right\}$$

$$+ \mathbf{\Psi}_{i} \mathbf{\Lambda} \mathbf{A}_{1}(S_{i'l}, S_{i'l'}, \mathbf{S}_{i})^{\mathrm{T}} \right\} \mathbf{\Sigma}_{i}^{-1} \mathbf{\Psi}_{i} \mathbf{\Lambda} \mathbf{\Psi}_{*i}^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i} \right] \{1 + o_{p}(1)\} + o_{p}(1)$$

$$= \left\{ \frac{1}{\sqrt{n}} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}}} \sum_{l' \neq l} u_{i',ll'}^{*} \mathcal{A}_{4}(S_{i'l}, S_{i'l'}) \right\} \{1 + o_{p}(1)\} + o_{p}(1), \qquad (A.15)$$

where the last equation is due to that

$$- \mathbb{E} \left[\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\Sigma}_{i}^{-1} \left\{ \mathbf{A}_{1}(s_{1}, s_{2}, \mathbf{S}_{i}) \boldsymbol{\Lambda} \boldsymbol{\Psi}_{i}^{\mathrm{T}} + \boldsymbol{\Psi}_{i} \mathbf{A}_{2}(s_{1}, s_{2}) \boldsymbol{\Psi}_{i}^{\mathrm{T}} + \boldsymbol{\Psi}_{i} \boldsymbol{\Lambda} \mathbf{A}_{1}(s_{1}, s_{2}, \mathbf{S}_{i})^{\mathrm{T}} \right\} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\Psi}_{i} \boldsymbol{\Lambda} \boldsymbol{\Psi}_{*i}^{\mathrm{T}} \widetilde{\mathbf{X}}_{*i} \right]$$
$$= \mathcal{A}_{4}(s_{1}, s_{2}) + O(h_{R}^{2}).$$

The asymptotic expansion of \mathcal{R}_{1n} provided in the lemma is proven by combining (A.9), (A.11), (A.13) and (A.15).

A.3 The Proof for Theorem 2

Under the simplified setting X_i are mean zero random process, by simple algebra we have

$$\widehat{\beta}_1(t) = \frac{S_2(t)R_0(t) - S_1(t)R_1(t)}{S_2(t)S_0(t) - S_1^2(t)},$$

where

$$S_r(t) = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^{m_{y,i}} \widehat{X}_i^2(T_{ij}) K_h(T_{ij} - t) \{ (T_{ij} - t)/h \}^r, \quad r = 0, 1, 2,$$

$$R_r(t) = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^{m_{y,i}} \widehat{X}_i(T_{ij}) Y_{ij} K_h(T_{ij} - t) \{ (T_{ij} - t)/h \}^r, \quad r = 0, 1.$$

Denote $R_r^*(t) = R_r(t) - S_r(t)\beta_1(t) - S_{r+1}(t)h\beta_1'(t), r = 0, 1$, then

$$\widehat{\beta}_1(t) - \beta_1(t) = \frac{S_2(t)R_0^*(t) - S_1(t)R_1^*(t)}{S_2(t)S_0(t) - S_1^2(t)}.$$

By (14) and using the general result from Lemma 2 in Li and Hsing (2010),

$$S_{0}(t) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \widetilde{X}_{i}^{2}(T_{ij}) K_{h}(T_{ij} - t) + O\{h_{R}^{2} + h_{V}^{2} + \sqrt{\log n/(nh_{R})} + \log n/(nh_{V})\}$$

$$= \bar{m}_{y} f_{T}(t) \Gamma_{x}(t) + O_{p} \{h^{2} + \sqrt{\log n/(nh)} + h_{R}^{2} + h_{V}^{2} + \sqrt{\log n/(nh_{R})} + \log n/(nh_{V})\},$$

where $\Gamma_x(t) = \operatorname{Var}\{\widetilde{X}_i(t)\} = \boldsymbol{\psi}^{\mathrm{T}}(t) \mathbf{\Lambda} \mathbb{E}(\boldsymbol{\Psi}_i^{\mathrm{T}} \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\Psi}_i) \mathbf{\Lambda} \boldsymbol{\psi}(t)$ as defined in the theorem. Similarly, $S_1(t) = \{\Gamma'_x(t) f_T(t) + \Gamma_x(t) f'_T(t)\} \bar{m}_y \sigma_K^2 h + O_p \{h^3 + \sqrt{\log n/(nh)} + h_R^2 + h_V^2 + \sqrt{\log n/(nh_R)} + \log n/(nh_V)\}$ and $S_2(t) = \bar{m}_y \Gamma_x(t) f_T(t) \sigma_K^2 + O_p \{h^2 + \sqrt{\log n/(nh)} + h_R^2 + h_V^2 + \sqrt{\log n/(nh_R)} + \log n/(nh_V)\}.$

Next, we decompose R^{\ast}_{r} as

$$R_{r}^{*}(t) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \widehat{X}_{i}(T_{ij}) \left\{ Y_{ij} - \widehat{X}_{i}(T_{ij})\beta_{1}(t) - \widehat{X}_{i}(T_{ij})(T_{ij} - t)\beta_{1}'(t) \right\} \times K_{h}(T_{ij} - t) \{ (T_{ij} - t)/h \}^{r}$$

$$= \sum_{k=1}^{6} R_{r,k}^{*}(t), \qquad (A.16)$$

where

$$\begin{aligned} R_{r,1}^{*}(t) &= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \widehat{X}_{i}^{2}(T_{ij}) \{\beta_{1}(T_{ij}) - \beta_{1}(t) - (T_{ij} - t)\beta_{1}'(t)\} K_{h}(T_{ij} - t) \{(T_{ij} - t)/h\}^{r}, \\ R_{r,2}^{*}(t) &= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \widetilde{X}_{i}(T_{ij}) \{\beta_{1}(T_{ij}) X_{i}(T_{ij}) - \beta_{1}(T_{ij}) \widetilde{X}_{i}(T_{ij}) + \epsilon_{i}(T_{ij})\} K_{h}(T_{ij} - t) \{(T_{ij} - t)/h\}^{r}, \\ R_{r,3}^{*}(t) &= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \{\widetilde{X}_{i}(T_{ij}) - \widehat{X}_{i}(T_{ij})\} \widetilde{X}_{i}(T_{ij}) \beta_{1}(T_{ij}) K_{h}(T_{ij} - t) \{(T_{ij} - t)/h\}^{r}, \\ R_{r,4}^{*}(t) &= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \{\widehat{X}_{i}(T_{ij}) - \widetilde{X}_{i}(T_{ij})\} \epsilon_{i}(T_{ij}) K_{h}(T_{ij} - t) \{(T_{ij} - t)/h\}^{r}, \\ R_{r,5}^{*}(t) &= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \{\widehat{X}_{i}(T_{ij}) - \widetilde{X}_{i}(T_{ij})\} \{X_{i}(T_{ij}) - \widetilde{X}_{i}(T_{ij})\} \beta_{1}(T_{ij}) K_{h}(T_{ij} - t) \{(T_{ij} - t)/h\}^{r}, \end{aligned}$$

$$R_{r,6}^{*}(t) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \{\widehat{X}_{i}(T_{ij}) - \widetilde{X}_{i}(T_{ij})\} \{\widetilde{X}_{i}(T_{ij}) - \widehat{X}_{i}(T_{ij})\} \beta_{1}(T_{ij}) K_{h}(T_{ij} - t) \{(T_{ij} - t)/h\}^{r}$$

By (14) and previous results for $S_r(t)$, using some straightforward calculations and the fact that $K_h(T_{ij} - t) = 0$ if $|T_{ij} - t| > h$,

$$\begin{aligned} R_{0,1}^{*}(t) &= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \widehat{X}_{i}^{2}(T_{ij}) \{\beta_{1}(T_{ij}) - \beta_{1}(t) - (T_{ij} - t)\beta_{1}'(t)\} K_{h}(T_{ij} - t) \\ &= \frac{1}{2} \beta_{1}^{(2)}(t) h^{2} \left[\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m_{y,i}} \widehat{X}_{i}^{2}(T_{ij}) K_{h}(T_{ij} - t) \{(T_{ij} - t)/h\}^{2} \right] \{1 + O(h)\} \\ &= \frac{1}{2} \beta_{1}^{(2)}(t) h^{2} \bar{m}_{y} f_{T}(t) \Gamma_{x}(t) \sigma_{K}^{2} [1 + O_{p} \{h + \sqrt{\log n/(nh)} + h_{R}^{2} + h_{V}^{2} + \sqrt{\log n/(nh_{R})} + \log n/(nh_{V})\}]. \end{aligned}$$

By similar calculations, $R_{1,1}^*(t) = O_p[h^3 + h^2\sqrt{\log n/(nh)} + h^2\{h_R^2 + h_V^2 + \sqrt{\log n/(nh_R)} + \log n/(nh_V)\}]$ is of order $o_p\{(nh)^{-1/2}\}$ by conditions (C.4) and (C.7). In addition, it follows that $R_{r,4}^*(t)$ and $R_{r,5}^*(t)$ are both of order $O_p([h_R^2 + h_V^2 + \{\log n/(nh_R)\}^{1/2} + \log n/(nh_V)] \times \{\log n/(nh)\}^{1/2})$, which is $o_p\{(nh)^{-1/2}\}$, and $R_{r,6}^*(t) = h_R^4 + h_V^4 + \log n/(nh_R) + (\log n)^2/(nh_V)^2] = o_p\{(nh)^{-1/2}\}$ under Condition (C.4), for both r = 0, 1.

Define

$$\begin{aligned} \mathbf{K}_{r,*i}(t) &= \operatorname{diag} \left[K_h(T_{i1} - t) \{ (T_{i1} - t)/h \}^r, \dots, K_h(T_{im_{y,i}} - t) \{ (T_{im_{y,i}} - t)/h \}^r \right], \\ \mathbf{K}_i^{\dagger}(s, \mathbf{T}_i) &= \left\{ \frac{K_{h_R}(s - T_{i1})}{f_S(T_{i1})}, \dots, \frac{K_{h_R}(s - T_{im_{y,i}})}{f_S(T_{im_{y,i}})} \right\}^{\mathrm{T}}, \\ \boldsymbol{\beta}_{*i} &= \operatorname{diag} \left\{ \beta_1(T_{i1}), \dots, \beta_1(T_{im_{y,i}}) \right\}, \end{aligned}$$

then we have

$$R_{r,3}^*(t) = -\sum_{k=1}^4 R_{r,3k}^*(t)$$
(A.17)

where

$$\begin{aligned} R_{r,31}^{*}(t) &= \frac{1}{n} \sum_{i=1}^{n} \left\{ \left(\widehat{\Psi}_{*i} - \Psi_{*i} \right) \Lambda \Psi_{i}^{\mathrm{T}} \Sigma_{i}^{-1} \mathbf{W}_{i} \right\}^{\mathrm{T}} \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i}, \\ R_{r,32}^{*}(t) &= \frac{1}{n} \sum_{i=1}^{n} \left\{ \widehat{\Psi}_{*i} \left(\widehat{\Lambda} - \Lambda \right) \Psi_{i}^{\mathrm{T}} \Sigma_{i}^{-1} \mathbf{W}_{i} \right\}^{\mathrm{T}} \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i}, \end{aligned}$$

Biometrics, 000 0000

$$R_{r,33}^{*}(t) = \frac{1}{n} \sum_{i=1}^{n} \left\{ \widehat{\Psi}_{*i} \widehat{\Lambda} \left(\widehat{\Psi}_{i}^{\mathrm{T}} - \Psi_{i}^{\mathrm{T}} \right) \Sigma_{i}^{-1} \mathbf{W}_{i} \right\}^{\mathrm{T}} \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i},$$

$$R_{r,34}^{*}(t) = \frac{1}{n} \sum_{i=1}^{n} \left\{ \widehat{\Psi}_{*i} \widehat{\Lambda} \widehat{\Psi}_{i}^{\mathrm{T}} \left(\widehat{\Sigma}_{i}^{-1} - \Sigma_{i}^{-1} \right) \mathbf{W}_{i} \right\}^{\mathrm{T}} \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i}.$$

Let $\mathbf{A}_1(s_1, s_2, \mathbf{T}_i)$ be defined as (A.7), using derivations similar to (A.9), by (C.4) we have

$$\begin{aligned} R_{r,31}^{*}(t) &= \left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \Psi_{i} \mathbf{\Lambda} \left\{ \frac{1}{n} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \mathbf{A}_{1}(S_{i'l}, S_{i'l'}, \mathbf{T}_{i})^{\mathrm{T}} \right\} \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i} \right] \\ &= \left[\frac{1}{n} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \Psi_{i} \mathbf{\Lambda} \mathbf{A}_{1}(S_{i'l}, S_{i'l'}, \mathbf{T}_{i})^{\mathrm{T}} \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i} \right\} \right] \\ &= \left[\frac{1}{n} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \Psi_{i} f_{S}^{-1}(S_{i'l}) \psi(S_{i'l}) \mathbf{K}_{i}^{\dagger}(S_{i'l'}, \mathbf{T}_{i})^{\mathrm{T}} \right. \\ & \left. \left. \left\{ \frac{1}{n} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \Psi_{i} f_{S}^{-1}(S_{i'l}) \psi(S_{i'l}) \mathbf{K}_{i}^{\dagger}(S_{i'l'}, \mathbf{T}_{i})^{\mathrm{T}} \right. \\ & \left. \left. \left\{ \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i} \right\} + O_{p}(n^{-1/2}) \right\} \right] \times \{1 + o_{p}(1)\}. \end{aligned}$$

Define

$$\mathcal{Q}(s,t) = \boldsymbol{\psi}^{\mathrm{T}}(t) \boldsymbol{\Lambda} \mathrm{E}(\boldsymbol{\Psi}_{i}^{\mathrm{T}} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\Psi}_{i}) \boldsymbol{\psi}(s) f_{T}(t) / \{f_{S}(s) f_{S}(t)\},$$
(A.18)

then

$$\begin{split} & \mathrm{E}\left\{\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\Psi}_{i} f_{S}^{-1}(s_{1}) \boldsymbol{\psi}(s_{1}) \mathbf{K}_{i}^{\dagger}(s_{2}, \mathbf{T}_{i})^{\mathrm{T}} \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i}\right\} \\ &= \mathrm{tr}\left[\mathrm{E}\left\{\mathbf{\Psi}_{*i} \boldsymbol{\Lambda} \boldsymbol{\Psi}_{i}^{\mathrm{T}} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\Psi}_{i} f_{S}^{-1}(s_{1}) \boldsymbol{\psi}(s_{1}) \mathbf{K}_{i}^{\dagger}(s_{2}, \mathbf{T}_{i})^{\mathrm{T}} \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i}\right\}\right] \\ &= \mathrm{E}\left[\sum_{j=1}^{m_{y,i}} \boldsymbol{\psi}^{\mathrm{T}}(T_{ij}) \boldsymbol{\Lambda} \boldsymbol{\Psi}_{i}^{\mathrm{T}} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\Psi}_{i} \boldsymbol{\psi}(s_{1}) \frac{K_{h_{R}}(s_{2} - T_{ij})}{f_{S}(s_{1}) f_{S}(T_{ij})} \beta_{1}(T_{ij}) K_{h}(T_{ij} - t) \{(T_{ij} - t)/h\}^{r}\right] \\ &= \bar{m}_{y} \int_{\mathcal{T}} \mathcal{Q}(s_{1}, x) K_{h_{R}}(s_{2} - x) \beta_{1}(x) K_{h}(x - t) \{(x - t)/h\}^{r} dx, \\ &= \bar{m}_{y} \int_{\mathcal{T}} \mathcal{Q}(s_{1}, uh_{R} + s_{2}) K(u) \beta_{1}(uh_{R} + s_{2}) K_{h}(uh_{R} + s_{2} - t) \{(uh_{R} + s_{2} - t)/h\}^{r} du \{1 + o(1)\} \\ &= \bar{m}_{y} \mathcal{Q}(s_{1}, s_{2}) \beta_{1}(s_{2}) K_{h}(s_{2} - t) \left\{\frac{s_{2} - t}{h}\right\}^{r} \{1 + o(1)\}, \end{split}$$

where the last equation is due to assumption $h_R/h = o(1)$ in Condition (C.7). Define

$$\mathcal{A}_{1}^{\dagger}(s_{1}, s_{2}) = \bar{m}_{y} \mathcal{Q}(s_{1}, s_{2}) \beta_{1}(s_{2}), \qquad (A.19)$$

then

$$R_{r,31}^{*}(t) = \left\{ \frac{1}{n} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i',ll'}^{*} \mathcal{A}_{1}^{\dagger}(S_{i'l}, S_{i'l'}) K_{h}(S_{i'l'} - t) \left(\frac{S_{i'l'} - t}{h}\right)^{r} \right\} \{1 + o_{p}(1)\}$$

$$= O_{p}\{(nh)^{-1/2}\}$$
(A.20)

for both r = 0 and 1. Next, similar to (A.11),

$$\begin{aligned} R_{r,32}^{*}(t) &= \left[\frac{1}{n} \sum_{i=1}^{n} \left\{ \Psi_{*i} \left(\widehat{\mathbf{\Lambda}} - \mathbf{\Lambda} \right) \Psi_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \mathbf{W}_{i} \right\}^{\mathrm{T}} \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i} \right] \{1 + o_{p}(1)\} \\ &= \left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \Psi_{i} \left\{ \frac{1}{n} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l \neq l'} u_{i,ll'}^{*} \mathbf{A}_{2}(S_{i'l}, S_{i'l'}) \right\} \Psi_{*i}^{\mathrm{T}} \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i} \right] \\ &\times \{1 + o_{p}(1)\} \\ &= \left[\frac{1}{n} \sum_{i'=1}^{n} \frac{1}{M_{x,i'}} \sum_{l' \neq l} u_{i',ll'}^{*} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{W}_{i}^{\mathrm{T}} \mathbf{\Sigma}_{i}^{-1} \Psi_{i} \mathbf{A}_{2}(S_{i'l}, S_{i'l'}) \Psi_{*i}^{\mathrm{T}} \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i} \right\} \right] \\ &\times \{1 + o_{p}(1)\}. \end{aligned}$$

Define

$$\mathcal{A}_{2}^{\dagger}(s_{1}, s_{2}, t) = \bar{m}_{y} f_{T}(t) \beta_{1}(t) \boldsymbol{\psi}^{\mathrm{T}}(t) \mathbf{\Lambda} \mathrm{E} \left(\boldsymbol{\Psi}_{i}^{\mathrm{T}} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\Psi}_{i} \right) \mathbf{A}_{2}(s_{1}, s_{2}) \boldsymbol{\psi}(t), \qquad (A.21)$$

then it follows that

$$E\left\{\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\Psi}_{i} \mathbf{A}_{2}(s_{1}, s_{2}) \boldsymbol{\Psi}_{*i}^{\mathrm{T}} \mathbf{K}_{0,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i}\right\}$$

$$= \operatorname{tr}\left\{\mathbf{\Lambda} E\left(\boldsymbol{\Psi}_{i}^{\mathrm{T}} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\Psi}_{i}\right) \mathbf{A}_{2}(s_{1}, s_{2}) E\left(\boldsymbol{\Psi}_{*i}^{\mathrm{T}} \mathbf{K}_{0,*i}(t) \boldsymbol{\beta}_{*i} \boldsymbol{\Psi}_{*i}\right)\right\}$$

$$= \mathcal{A}_{2}^{\dagger}(s_{1}, s_{2}, t) + O(h^{2}),$$

and therefore

$$R_{0,32}^{*}(t) = \left[\frac{1}{n}\sum_{i'=1}^{n}\frac{1}{M_{x,i'}}\sum_{l'\neq l}u_{i',ll'}^{*}\mathcal{A}_{2}^{\dagger}(S_{i'l},S_{i'l'},t)\right]\{1+o_{p}(1)\} = O_{p}(n^{-1/2}).$$
(A.22)

Using similar derivations we can prove that $R_{1,32}^{*}(t) = O_p[\{h + (nh)^{-1/2}\}n^{-1/2}].$

Next, similarly

$$\begin{aligned} R_{r,33}^{*}(t) &= \left[\frac{1}{n}\sum_{i=1}^{n}\left\{\boldsymbol{\Psi}_{*i}\boldsymbol{\Lambda}\left(\widehat{\boldsymbol{\Psi}}_{i}-\boldsymbol{\Psi}\right)^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{W}_{i}\right\}^{\mathrm{T}}\boldsymbol{\mathrm{K}}_{r,*i}(t)\boldsymbol{\beta}_{*i}\widetilde{\boldsymbol{\mathrm{X}}}_{*i}\right]\left\{1+o_{p}(1)\right\} \\ &= \left[\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{\mathrm{W}}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\left\{\frac{1}{n}\sum_{i'=1}^{n}\frac{1}{M_{x,i'}}\sum_{l\neq l'}u_{i,ll'}^{*}\boldsymbol{\mathrm{A}}_{1}(S_{i'l},S_{i'l'},\boldsymbol{\mathrm{S}}_{i})\right\}\boldsymbol{\Lambda}\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\boldsymbol{\mathrm{K}}_{r,*i}(t)\boldsymbol{\beta}_{*i}\widetilde{\boldsymbol{\mathrm{X}}}_{*i}\right]\end{aligned}$$

$$\times \{1 + o_p(1)\}$$

$$= \left[\frac{1}{n}\sum_{i'=1}^n \frac{1}{M_{x,i'}}\sum_{l\neq l'} u_{i',ll'}^* \left\{\frac{1}{n}\sum_{i=1}^n \mathbf{W}_i^{\mathrm{T}} \boldsymbol{\Sigma}_i^{-1} f_S^{-1}(S_{i'l}) \mathbf{K}_i^{\dagger}(S_{i'l'}, \mathbf{S}_i) \boldsymbol{\psi}(S_{i'l})^{\mathrm{T}} \boldsymbol{\Psi}_{*i}^{\mathrm{T}} \right.$$

$$\times \mathbf{K}_{r,*i}(t) \boldsymbol{\beta}_{*i} \widetilde{\mathbf{X}}_{*i} \left\} + O_p(n^{-1/2}) \right] \times \{1 + o_p(1)\}.$$

Denote by $\sigma_i^{(j,j')}$ the (j,j')-th entry of Σ_i^{-1} , and define

$$\mathcal{A}_{3}^{\dagger}(s_{1}, s_{2}, t) = \frac{\bar{m}_{y} \beta_{1}(t) f_{T}(t)}{f_{S}(s_{1})} \boldsymbol{\psi}(s_{1})^{\mathrm{T}} \boldsymbol{\psi}(t) \sum_{k=1}^{q} \omega_{k} \psi_{k}(t) \\ \times \mathrm{E} \bigg[\sum_{j=1}^{m_{x,i}} \sum_{j'=1}^{m_{x,i}} \mathrm{E} \bigg\{ \psi_{k}(S_{ij}) \sigma_{i}^{(j,j')} \mid S_{ij'} = s_{2} \bigg\} \bigg], \quad (A.23)$$

then

$$\begin{split} & \operatorname{E}\{\mathbf{W}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}f_{S}^{-1}(s_{1})\mathbf{K}_{i}^{\dagger}(s_{2},\mathbf{S}_{i})\boldsymbol{\psi}(s_{1})^{\mathrm{T}}\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\mathbf{K}_{0,*i}(t)\boldsymbol{\beta}_{*i}\widetilde{\mathbf{X}}_{*i}\} \\ &= f_{S}^{-1}(s_{1})\operatorname{tr}\left[\operatorname{E}\left\{\boldsymbol{\Lambda}\boldsymbol{\Psi}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\mathbf{K}_{i}^{\dagger}(s_{2},\mathbf{S}_{i})\boldsymbol{\psi}(s_{1})^{\mathrm{T}}\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\mathbf{K}_{0,*i}(t)\boldsymbol{\beta}_{*i}\boldsymbol{\Psi}_{*i}\right\}\right] \\ &= \bar{m}_{y}\beta_{1}(t)f_{T}(t)f_{S}^{-1}(s_{1})\operatorname{tr}\left[\operatorname{E}\left\{\boldsymbol{\Lambda}\boldsymbol{\Psi}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\mathbf{K}_{i}^{\dagger}(s_{2},\mathbf{S}_{i})\boldsymbol{\psi}(s_{1})^{\mathrm{T}}\boldsymbol{\psi}(t)\boldsymbol{\psi}^{\mathrm{T}}(t)\right\}\right] + O(h^{2}) \\ &= \bar{m}_{y}\boldsymbol{\psi}(s_{1})^{\mathrm{T}}\boldsymbol{\psi}(t)\beta_{1}(t)f_{T}(t)f_{S}^{-1}(s_{1})\operatorname{E}\left\{\boldsymbol{\psi}^{\mathrm{T}}(t)\boldsymbol{\Lambda}\boldsymbol{\Psi}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\mathbf{K}_{i}^{\dagger}(s_{2},\mathbf{S}_{i})\right\} + O(h^{2}) \\ &= \mathcal{A}_{3}^{\dagger}(s_{1},s_{2},t) + O(h_{R}^{2}) + O(h^{2}). \end{split}$$

Therefore

$$R_{0,33}^{*}(t) = \left[\frac{1}{n}\sum_{i'=1}^{n}\frac{1}{M_{x,i'}}\sum_{l'\neq l}u_{i',ll'}^{*}\mathcal{A}_{3}^{\dagger}(S_{i'l},S_{i'l'},t)\right]\{1+o_{p}(1)\} = O_{p}(n^{-1/2}), \qquad (A.24)$$

and following the same line of derivation we can show $R_{1,33}^*(t) = O_p[\{h + (nh_R^2)^{-1/2}\}n^{-1/2}].$

Using similar but lengthier derivations,

$$R_{r,34}^{*}(t) = \left[\frac{1}{n}\sum_{i=1}^{n}\left\{\boldsymbol{\Psi}_{*i}\boldsymbol{\Lambda}\boldsymbol{\Psi}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}(\boldsymbol{\Sigma}_{i}-\widehat{\boldsymbol{\Sigma}}_{i})\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{W}_{i}\right\}^{\mathrm{T}}\boldsymbol{K}_{r,*i}(t)\boldsymbol{\beta}_{*i}\widetilde{\boldsymbol{X}}_{*i}\right]\left\{1+o_{p}(1)\right\}$$
$$= -\left\{\frac{1}{n}\sum_{i=1}^{n}\left[\boldsymbol{W}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{i}^{-1}\left\{(\widehat{\boldsymbol{\Psi}}_{i}-\boldsymbol{\Psi}_{i})\boldsymbol{\Lambda}\boldsymbol{\Psi}_{i}^{\mathrm{T}}+\boldsymbol{\Psi}_{i}(\widehat{\boldsymbol{\Lambda}}-\boldsymbol{\Lambda})\boldsymbol{\Psi}_{i}^{\mathrm{T}}+\boldsymbol{\Psi}_{i}\boldsymbol{\Lambda}(\widehat{\boldsymbol{\Psi}}_{i}-\boldsymbol{\Psi}_{i})^{\mathrm{T}}\right\}\right.$$
$$\times\boldsymbol{\Sigma}_{i}^{-1}\boldsymbol{\Psi}_{i}\boldsymbol{\Lambda}\boldsymbol{\Psi}_{*i}^{\mathrm{T}}\boldsymbol{K}_{r,*i}(t)\boldsymbol{\beta}_{*i}\widetilde{\boldsymbol{X}}_{*i}\right]\right\}\left\{1+o_{p}(1)\right\}$$
$$\left(\begin{array}{c}O_{p}(n^{-1/2}), & \text{if } r=0,\end{array}\right)$$

$$= \begin{cases} O_p(n^{-1/2}), & \text{if } r = 0, \\ O_p[\{h + (nh_R^2)^{-1/2}\}n^{-1/2}], & \text{if } r = 1. \end{cases}$$
(A.25)

Combining (A.20), (A.22), (A.24) and (A.25), we obtain that

$$R_{0,3}^{*}(t) = -\left\{\frac{1}{n}\sum_{i'=1}^{n}\frac{1}{M_{x,i'}}\sum_{l\neq l'}u_{i',ll'}^{*}\mathcal{A}_{1}^{\dagger}(S_{i'l},S_{i'l'})K_{h}(S_{i'l'}-t)\right\}\{1+o_{p}(1)\},\qquad(A.26)$$

and $R_{1,3}^*(t) = O_p\{(nh)^{-1/2}\}$. Combining the derivations above, we have

$$\widehat{\beta}_{1}(t) - \beta_{1}(t) = R_{0}^{*}(t)/S_{0}(t) \times \{1 + O_{p}(h^{2})\} + O_{p}\{h \times (nh)^{-1/2}\}$$

$$= \frac{1}{2}\beta_{1}^{(2)}(t)\sigma_{K}^{2}h^{2} + \frac{1}{n\bar{m}_{y}f_{T}(t)\Gamma_{x}(t)}\sum_{i=1}^{n}(\mathcal{Z}_{i1} + \mathcal{Z}_{i2} + \mathcal{Z}_{i3}) + o_{p}\{(nh)^{-1/2}\},$$
(A.27)

where

$$\begin{aligned} \mathcal{Z}_{i1} &= \sum_{j=1}^{m_{y,i}} \widetilde{X}_i(T_{ij}) \epsilon_i(T_{ij}) K_h(T_{ij} - t), \\ \mathcal{Z}_{i2} &= \sum_{j=1}^{m_{y,i}} \widetilde{X}_i(T_{ij}) \beta_1(T_{ij}) \{ X_i(T_{ij}) - \widetilde{X}_i(T_{ij}) \} K_h(T_{ij} - t), \\ \mathcal{Z}_{i3} &= -\frac{\bar{m}_y}{M_{x,i}} \sum_{l \neq l'} u_{i,ll'}^* \mathcal{Q}(S_{il}, S_{il'}) \beta_1(S_{il'}) K_h(S_{il'} - t). \end{aligned}$$

As \mathcal{Z}_{i1} , \mathcal{Z}_{i1} and \mathcal{Z}_{i1} are independent, zero-mean variables, straightforward calculations show

$$\begin{split} \mathbf{E}(\mathcal{Z}_{i1}^{2}) &= h^{-1}\bar{m}_{y}\Gamma_{x}(t)\Omega(t,t)f_{T}(t)\nu_{0} + o(h^{-1}) := h^{-1}\Gamma_{1}(t) + o(h^{-1}), \\ \mathbf{E}(\mathcal{Z}_{i2}^{2}) &= h^{-1}\beta_{1}^{2}(t)\bar{m}_{y}\mathbf{E}[\widetilde{X}^{2}(t)\{X(t) - \widetilde{X}(t)\}^{2}]\nu_{0} + o(h^{-1}) := h^{-1}\beta_{1}^{2}(t)\Gamma_{2}(t) + o(h^{-1}), \\ \mathbf{E}(\mathcal{Z}_{i3}^{2}) &= h^{-1}\beta_{1}^{2}(t)\bar{m}_{y}^{2}f_{S}(t)\nu_{0}\left[\mathbf{E}(M_{x,i}^{-1})\int\Pi(t,s_{2},s_{2})\mathcal{Q}^{2}(s_{2},t)f_{S}(s_{2})ds_{2}\right. \\ &\qquad + \mathbf{E}\{M_{x,i}^{-1}(m_{x,i}-2)\}\int\Pi(t,s_{2},s_{3})\mathcal{Q}(s_{2},t)\mathcal{Q}(s_{3},t)f_{S}(s_{2})f_{S}(s_{3})ds_{2}ds_{3}\right] \\ &\qquad + o(h^{-1}). \\ &\qquad := h^{-1}\beta_{1}^{2}(t)\Gamma_{3}(t) + o(h^{-1}), \end{split}$$

where $\Pi(s_1, s_2, s_3) = E\{X^2(s_1)X(s_2)X(s_3)\} + R(s_2, s_3)\sigma_u^2 - R(s_1, s_2)R(s_1, s_3) + I(s_2 = s_3)\{R(s_1, s_1)\sigma_u^2 + \sigma_u^4\}$. Since $\epsilon_i(\cdot)$ is independent of $X_i(\cdot)$ and \mathbf{W}_i , it follows that $E(\mathcal{Z}_{i1}\mathcal{Z}_{i2}) = 0$, and $E(\mathcal{Z}_{i1}\mathcal{Z}_{i3}) = 0$. We can also show $E(\mathcal{Z}_{i2}\mathcal{Z}_{i3}) = O(1) = o_p(h^{-1})$. Therefore, we conclude $\mathcal{Z}_{i1}, \mathcal{Z}_{i1}$ and \mathcal{Z}_{i1} are asymptotically independent. The theorem is proven by applying the central limit theorem to (A.27).

Appendix B: An Extension to Multiple Asynchronous Time-Varying Covariates

B.1 Multiple Asynchronous Covariates

The functional calibration method can be easily extended to accommodate multiple timevarying covariates, which are asynchronous with the response. Our strategy is to apply the multivariate functional principal component analysis (Chiou et al., 2014) to reconstruct the trajectory for each time-varying covariate, then apply time-varying and time-invariant regression analysis using the imputed covariate values that are synchronized with the response.

Suppose there are p_x asynchronous time-varying covariates $\mathbf{X}_i(t) = (X_{i1}, X_{i2}, \dots, X_{ip_x})^{\mathrm{T}}(t)$. The time-invariant and time-varying regression models (1) and (2) can be generalized to

$$Y_i(t) = \beta_0 + \boldsymbol{\beta}_z^{\mathrm{T}} \mathbf{Z}_i + \boldsymbol{\beta}_x^{\mathrm{T}} \mathbf{X}_i(t) + \epsilon_i(t), \qquad (B.1)$$

$$Y_i(t) = \beta_0(t) + \boldsymbol{\beta}_z^{\mathrm{T}}(t) \mathbf{Z}_i + \boldsymbol{\beta}_x^{\mathrm{T}}(t) \mathbf{X}_i(t) + \epsilon_i(t), \qquad (B.2)$$

where \mathbf{Z}_i is a p_z -dim time-invariant covariate. Consider $\mathbf{X}_i(t)$ as independent realizations of a multivariate stochastic process with the mean and (cross-)covariance functions as

$$\mu_{v}(t) = \mathbb{E}\{X_{iv}(t)\}, \quad R_{v}(s,t) = \operatorname{Cov}\{X_{iv}(s), X_{iv}(t)\}, \quad s,t, \in \mathcal{T}, \quad v = 1, \dots, p_{x}\}$$
$$R_{vv'}(s,t) = \operatorname{Cov}\{X_{iv}(s), X_{iv'}(t)\}, \quad v \neq v'.$$

The discrete, error-prone observations on the time-varying covariates are

$$W_{iv,j} = X_{iv}(S_{iv,j}) + U_{iv,j}, \quad i = 1, \dots, n, \quad j = 1, \dots, m_{x,iv},$$
 (B.3)

where $U_{iv,j}$ are zero mean measurement errors independent of $\mathbf{X}_i(t)$ with variance σ_{uv}^2 . On the other hand, the response $Y_i(t)$ are observed on $\mathbf{T}_i = (T_{i1}, \ldots, T_{im_{y,i}})^{\mathrm{T}}$. Under the asynchronous longitudinal design, the observation time points from different variables, \mathbf{T}_i and $\mathbf{S}_{iv} = (S_{iv,1}, \ldots, S_{iv,m_{x,iv}})^{\mathrm{T}}$, $v = 1, \ldots, p_x$, can be different from each other.

B.2 Multivariate Functional Calibration

We consider each asynchronous, time-varying covariate as a stochastic process with a Karhunen– Loève expansion,

$$X_{iv}(t) = \mu_v(t) + \sum_{k=1}^{q_v} \xi_{iv,k} \psi_{vk}(t), \quad t \in \mathcal{T},$$
(B.4)

for $v = 1, ..., p_x$, i = 1, ..., n, where the $\xi_{iv,k}$ are the principal component scores with mean zero and variance ω_{vk} , $\psi_{vk}(t)$ are orthonormal functions in the sense $\int_{\mathcal{T}} \psi_{vk}(t) \psi_{vk'}(t) dt = 1$ if k = k' and 0 otherwise. Since different components of $\mathbf{X}_i(t)$ can be correlated, these correlations are modeled by cross-covariates between the principal component scores, $\omega_{vv',kk'} =$ $\operatorname{Cov}(\xi_{iv,k}, \xi_{iv',k'}) = \iint R_{vv'}(s,t)\psi_{vk}(s)\psi_{v'k'}(t)dsdt, v, v' = 1, ..., p_x, k \leq q_v$ and $k' \leq q_{v'}$. As discussed in Happ and Greven (2018), the univariate Karhunen–Loève representation used in (B.4) is equivalent to the multivariate representation in Chiou et al. (2014).

As in Section 3.1, we obtain mean, covariance and eigenfunction estimates for each timevarying variable, namely $\hat{\mu}_v$, \hat{R}_v , $\hat{\psi}_{vk}$ for $v = 1, \ldots, p_x$, $k = 1, \ldots, q_v$. We then estimate the cross covariance function $R_{vv'}(s,t)$ by $\hat{R}_{vv'}(s,t) = \hat{a}_0$ where $(\hat{a}_0, \hat{a}_1, \hat{a}_2)$ minimizes

$$\frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{m_{x,iv}m_{x,iv'}} \sum_{j=1}^{m_{x,iv}} \sum_{l=1}^{m_{x,iv'}} \{L_{iv,j}L_{iv',l} - a_0 - a_1(S_{iv,j} - s) - a_2(S_{iv',l} - t)\}^2 \times K_{h_{vv'}}(S_{iv,j} - s)K_{h_{vv'}}(S_{iv',l} - t) \right],$$

where $L_{iv,j} = W_{iv,j} - \hat{\mu}_v(S_{iv,j})$. We then estimate cross covariance of the FPC scores by

$$\widehat{\omega}_{vv',kk'} = \int \int \widehat{R}_{vv'}(s,t) \widehat{\psi}_{vk}(s) \widehat{\psi}_{v'k'}(t) ds dt,$$

which is implemented by numerical integration. We follow the multivariate PACE method of Chiou et al. (2014) to estimate the FPCA scores. Let $\boldsymbol{\mu}_{iv} = \{\mu_{iv}(S_{iv,1}), \dots, \mu_{iv}(S_{iv,m_{x,iv}})\}^{\mathrm{T}},$ $\mathbf{W}_{iv} = (W_{iv,1}, \dots, W_{iv,m_{x,iv}})^{\mathrm{T}}$ for $v = 1, \dots, p_x$. Let $\boldsymbol{\omega}_{vv'k} = (\omega_{vv',k1}, \cdots, \omega_{vv',kq_{v'}})$, note $\omega_{vv,kk'} = 0$ if $k \neq k'$. Define Ω_v as the matrix containing all eigenvalues related to v,

$$\Omega_{v} = \begin{vmatrix} \boldsymbol{\omega}_{v11} & \boldsymbol{\omega}_{v21} & \dots & \boldsymbol{\omega}_{vp_{x}1} \\ \boldsymbol{\omega}_{v12} & \boldsymbol{\omega}_{v22} & \dots & \boldsymbol{\omega}_{vp_{x}2} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\omega}_{v1q_{v}} & \boldsymbol{\omega}_{v2q_{v}} & \dots & \boldsymbol{\omega}_{vp_{x}q_{v}} \end{vmatrix}$$

Put $\Psi_{iv} = (\Psi_{iv1}, \dots, \Psi_{ivq_v})$, where $\Psi_{ivk} = \{\psi_{vk}(S_{iv,1}), \dots, \psi_{vk}(S_{iv,m_{x,iv}})\}^{\mathrm{T}}$ for $k = 1, \dots, q_v$, and define $\Psi_i = \mathrm{diag}(\Psi_{i1}, \dots, \Psi_{ip_x})$ as a diagonal block matrix containing eigenfunctions evaluated at \mathbf{S}_i . Similar to the univariate case (5), the BLUP for $\boldsymbol{\xi}_{iv}$ is

$$\widetilde{\boldsymbol{\xi}}_{iv} = (\widetilde{\xi}_{iv1}, \cdots, \widetilde{\xi}_{ivK})^{\mathrm{T}} = \Omega_v \boldsymbol{\Psi}_i^{\mathrm{T}} \boldsymbol{\Sigma}_i^{-1} (\mathbf{W}_i - \boldsymbol{\mu}_i),$$

where $\boldsymbol{\mu}_i = (\boldsymbol{\mu}_{i1}^{\mathrm{T}}, \cdots, \boldsymbol{\mu}_{ip_x}^{\mathrm{T}})^{\mathrm{T}}$, $\mathbf{W}_i = (\mathbf{W}_{i1}^{\mathrm{T}}, \ldots, \mathbf{W}_{ip_x}^{\mathrm{T}})^{\mathrm{T}}$, and $\boldsymbol{\Sigma}_i = (\boldsymbol{\Sigma}_{i,vv'})_{v,v'=1}^{p_x}$ with $\boldsymbol{\Sigma}_{i,vv'} = \operatorname{Cov}(\mathbf{W}_{iv}, \mathbf{W}_{iv'})$. Substituting all unknown functions and parameters with their FPCA estimators, the empirical FPC score estimators are given by

$$\widehat{\boldsymbol{\xi}}_{iv} = \widehat{\Omega}_v \widehat{\boldsymbol{\Psi}}_i^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}_i^{-1} (\mathbf{W}_i - \widehat{\boldsymbol{\mu}}_i), \qquad (B.5)$$

and we can predict the trajectories of the time-varying covariate processes by

$$\widehat{X}_{iv}(t) = \widehat{\mu}_v(t) + \sum_{k=1}^{q_v} \widehat{\xi}_{iv,k} \widehat{\psi}_{vk}(t), \quad t \in \mathcal{T}.$$

We then calibrate the covariate values synchronized with the response, $\widehat{\mathbf{X}}_{*ij} = \{\widehat{X}_{i1}(T_{ij}), \ldots, \widehat{X}_{ip_x}(T_{ij})\}^{\mathrm{T}}$, and use them to fit regression models (B.1) and (B.2). Denote $\boldsymbol{\beta} = (\beta_0, \boldsymbol{\beta}_z^{\mathrm{T}}, \boldsymbol{\beta}_x^{\mathrm{T}})^{\mathrm{T}}$, $\mathbb{X}_{ij} = (1, \mathbf{Z}_i^{\mathrm{T}}, \widehat{\mathbf{X}}_{*ij}^{\mathrm{T}})^{\mathrm{T}}$ and $\mathbb{X}_i = (\mathbb{X}_{i1}, \ldots, \mathbb{X}_{im_{y,i}})^{\mathrm{T}}$, then Model (B.1) can be fitted by a least square estimator similar as (12). For Model (B.2), denote $\boldsymbol{\beta}(t) = (\beta_0, \boldsymbol{\beta}_z^{\mathrm{T}}, \boldsymbol{\beta}_x^{\mathrm{T}})^{\mathrm{T}}(t)$. For any fixed t, denote by $\mathbf{b}_0 = \boldsymbol{\beta}(t)$ and $\mathbf{b}_1 = \boldsymbol{\beta}'(t)$. Then $\boldsymbol{\beta}(t)$ can be estimated by solving a kernel weighted local least square as (13).

Appendix C: Additional Tables and Graphs

[Table C.1 about here.]

[Table C.2 about here.] [Table C.3 about here.] [Table C.4 about here.] [Figure C.1 about here.] [Figure C.2 about here.] [Figure C.3 about here.] [Table C.5 about here.] [Figure C.4 about here.] [Figure C.5 about here.] [Table C.6 about here.] [Figure C.6 about here.] [Figure C.7 about here.] [Table C.7 about here.] [Figure C.8 about here.] [Figure C.9 about here.]

References

- Cao, H., Zeng, D., and Fine, J. P. (2015). Regression analysis of sparse asynchronous longitudinal data. *Journal of the Royal Statistical Society, Series B* 77, 755–776.
- Chiou, J.-M., Chen, Y.-T., and Yang, Y.-F. (2014). Multivariate functional principal component analysis: a normalization approach. *Statistica Sinica* **24**, 1571–1596.

Happ, C. and Greven, S. (2018). Multivariate functional principal component analysis for

data observed on different (dimensional) domains. Journal of the American Statistical Association 113, 649–659.

- Li, Y. and Hsing, T. (2010). Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. Annals of Statistics 38, 3321–3351.
- Li, Y., Wang, N., and Carroll, R. J. (2013). Selecting the number of principal components in functional data. *Journal of the American Statistical Association* 108, 1284–1294.

Figure C.1: Summary of $\hat{\beta}_1(t)$ under Simulation 2, Setting II using various methods. In each panel, black: median of $\hat{\beta}_1(t)$; red: true $\beta_1(t)$; dashed blue: 0.975 and 0.025 quantiles.

Figure C.2: Summary of $\hat{\beta}_0(t)$ under Setting I of Simulation 2 using various methods. In each panel, black: median of $\hat{\beta}_0(t)$; red: true $\beta_0(t)$; dashed blue: 0.975 and 0.025 quantiles.

Figure C.3: Summary of $\hat{\beta}_0(t)$ under Setting II of Simulation 2 using various methods. In each panel, black: median of $\hat{\beta}_0(t)$; red: true $\beta_0(t)$; dashed blue: 0.975 and 0.025 quantiles.

Figure C.4: Summary of $\hat{\beta}_1(t)$ under Setting I of Simulation 2 with being reported at 95% time domain. In each panel, black: median of $\hat{\beta}_1(t)$; red: true $\beta_1(t)$; dashed blue: 0.975 and 0.025 quantiles.

Figure C.5: Summary of $\hat{\beta}_1(t)$ under Setting II of Simulation 2 with being reported at 95% time domain. In each panel, black: median of $\hat{\beta}_1(t)$; red: true $\beta_1(t)$; dashed blue: 0.975 and 0.025 quantiles.

Figure C.6: Summary of $\hat{\beta}_1(t)$ under Setting I of Simulation 2 with MEF and being reported at 95% time domain. In each panel, black: median of $\hat{\beta}_1(t)$; red: true $\beta_1(t)$; dashed blue: 0.975 and 0.025 quantiles.

Figure C.7: Summary of $\hat{\beta}_1(t)$ under Setting II of Simulation 2 with MEF and being reported at 95% time domain. In each panel, black: median of $\hat{\beta}_1(t)$; red: true $\beta_1(t)$; dashed blue: 0.975 and 0.025 quantiles.

Figure C.8: Summary of $\hat{\beta}_1(t)$ under Setting I of Simulation 2 with $m_i = 15$ and being reported at 95% time domain. In each panel, black: median of $\hat{\beta}_1(t)$; red: true $\beta_1(t)$; dashed blue: 0.975 and 0.025 quantiles.

Figure C.9: Summary of $\hat{\beta}_1(t)$ under Setting II of Simulation 2 with $m_i = 15$ and being reported at 95% time domain. In each panel, black: median of $\hat{\beta}_1(t)$; red: true $\beta_1(t)$; dashed blue: 0.975 and 0.025 quantiles.

	Ş	Setting 1	[Setting I			
Error type	IE	DE	MEF	IE	DE	MEF	
Bias	-0.010	0.003	0.015	0.007	0.008	0.002	
SD	0.165	0.189	0.114	0.086	0.093	0.067	
Naive SE	0.112	0.103	0.071	0.057	0.052	0.035	
Naive CP	0.825	0.740	0.765	0.800	0.725	0.720	
Bootstrap SE	0.180	0.187	0.118	0.089	0.100	0.068	
Bootstrap CP	0.965	0.935	0.955	0.950	0.950	0.940	

Table C.1: Simulation 1: the performance of $\hat{\beta}_0$ obtained by the proposed FCAR method under Settings 1 and 2 with different error structures. SD: standard deviation; Naive SE: mean of the naive standard error; Naive CP: coverage rate of a 95% confidence interval using the naive SE; Bootstrap SE: mean of the bootstrap standard error; Bootstrap CP: coverage rate of a 95% confidence interval using the bootstrap SE. IE: independent errors; DE: dependent errors; MEF: measurement-error free with dependent errors.

		Setting I				Setting II			
Error type	IE	DE	MEF	Dense	IE	DE	MEF	Dense	
Bias	0.007	0.004	-0.002	0.002	-0.008	-0.013	0.025	0.003	
SD	0.028	0.029	0.017	0.019	0.127	0.122	0.060	0.068	
Naive SE	0.019	0.017	0.012	0.008	0.064	0.058	0.034	0.024	
Naive CP	0.830	0.770	0.820	0.585	0.670	0.640	0.725	0.485	
Bootstrap SE	0.030	0.030	0.019	0.018	0.117	0.119	0.064	0.062	
Bootstrap CP	0.955	0.950	0.965	0.955	0.925	0.930	0.940	0.960	

Table C.2: Simulation 1: the performance of $\hat{\beta}_1$ obtained by the proposed FCAR method under Settings 1 and 2 with different measurement error scenarios. SD: standard deviation; Naive SE: mean of the naive standard error; Naive CP: coverage rate of a 95% confidence interval using the naive SE; Bootstrap SE: mean of the bootstrap standard error; Bootstrap CP: coverage rate of a 95% confidence interval using the bootstrap SE. IE: independent errors; DE: dependent errors; MEF: measurement-error free with dependent errors; Dense: 15 observations per subject.

		IE		D	DE		ΣF
		FCAR	KW	FCAR	KW	FCAR	KW
Setting I	Bias	-0.010	1.163	0.003	1.092	0.015	0.123
	SD	0.165	0.400	0.189	0.418	0.114	0.267
	SE	0.180	0.300	0.187	0.315	0.118	0.195
	CP	0.965	0.115	0.935	0.125	0.955	0.815
Setting ${\rm I\!I}$	Bias	0.007	0.166	0.008	0.162	0.002	0.009
	SD	0.086	0.126	0.093	0.117	0.067	0.091
	SE	0.089	0.121	0.100	0.126	0.068	0.084
	CP	0.950	0.705	0.950	0.730	0.940	0.915

Table C.3: Simulation 1: comparisons of $\hat{\beta}_0$ using the proposed FCAR method with the kernel weighted (KW) method of (Cao et al., 2015) in bias, standard deviation (SD), mean of standard error (SE) and coverage rate of a 95% confidence interval using standard error (CP) under two settings and three error structures (IE: independent errors; DE: dependent errors; MEF: measurement-error free with dependent errors).

		IE		DE		MEF		Dense	
		FCAR	KW	FCAR	KW	FCAR	KW	FCAR	KW
Setting I	Bias	0.007	-0.225	0.004	-0.213	-0.002	-0.024	0.002	-0.209
	SD	0.028	0.067	0.029	0.067	0.017	0.045	0.019	0.032
	SE	0.030	0.049	0.030	0.051	0.019	0.032	0.018	0.023
	CP	0.955	0.060	0.950	0.065	0.965	0.830	0.955	0.000
Setting ${\rm I\!I}$	Bias	-0.008	-0.978	-0.013	-0.978	0.025	-0.060	0.003	-0.954
	SD	0.127	0.097	0.122	0.092	0.060	0.108	0.068	0.055
	SE	0.117	0.076	0.119	0.077	0.064	0.069	0.062	0.043
	CP	0.925	0.000	0.930	0.000	0.940	0.735	0.960	0.000

Table C.4: Simulation 1: comparisons of $\hat{\beta}_1$ using the proposed FCAR method with the kernel weighted (KW) method in bias, standard deviation (SD), mean of standard error (SE) and coverage rate of a 95% confidence interval using standard error (CP) under two settings and three error structures (IE: independent errors; DE: dependent errors; MEF: measurement-error free with dependent errors; Dense: 15 observations per subject).

Method	Criterion	Mean(SD)	Median	25%	75%
FCAR	MADE	0.278(0.136)	0.249	0.183	0.342
FVCM		0.980(1.241)	0.769	0.582	1.040
KW		1.358(3.510)	0.965	0.815	1.154
Oracle		0.166(0.073)	0.155	0.108	0.204
FCAR	WASE	0.249(0.275)	0.166	0.082	0.329
FVCM		200.092(2589.147)	1.535	0.831	3.253
KW		1044.667(14234.328)	3.349	1.551	10.016
Oracle		0.114(0.129)	0.061	0.034	0.145
FCAR	MADE	0.220(0.087)	0.205	0.155	0.265
FVCM		0.540(0.410)	0.441	0.338	0.610
KW		1.013(1.609)	0.657	0.556	0.931
Oracle		0.123(0.04)	0.118	0.093	0.147
FCAR	WASE	0.191(0.199)	0.131	0.066	0.230
FVCM		10.103(94.566)	0.692	0.303	1.475
KW		181.166(1533.938)	2.123	1.004	11.570
Oracle		0.076(0.071)	0.058	0.027	0.097
	Method FCAR FVCM KW Oracle FCAR FVCM KW Oracle FCAR FVCM KW Oracle FCAR FVCM KW Oracle	MethodCriterionFCARMADEFVCMKWOracleFCARWASEFVCMOracleFCARMADEFVCMKWOracleFCARMADEFVCMKWFCARMADEFVCMKWFCARWASEFVCMKWFCARWASEFVCMKW <td>Method Criterion Mean(SD) FCAR MADE 0.278(0.136) FVCM 0.980(1.241) KW 0.1358(3.510) Oracle 0.166(0.073) FCAR WASE 0.249(0.275) FVCM 200.092(2589.147) KW 200.092(2589.147) KW 1044.667(14234.328) Oracle 0.114(0.129) FCAR MADE 0.220(0.087) FVCM 0.540(0.410) KW 0.540(0.410) KW 0.103(1.609) Oracle 0.123(0.04) FCAR WASE 0.191(0.199) FVCM 10.103(94.566) KW 181.166(1533.938) Oracle 0.076(0.071)</td> <td>MethodCriterionMean(SD)MedianFCARMADE0.278(0.136)0.249FVCM0.980(1.241)0.769KW1.358(3.510)0.965Oracle0.166(0.073)0.155FCARWASE0.249(0.275)0.166FVCM200.092(2589.147)1.535KW1044.667(14234.328)3.349Oracle0.114(0.129)0.061FCARMADE0.220(0.087)0.205FVCM0.0.540(0.410)0.441KW1.013(1.609)0.657Oracle0.123(0.04)0.118FCARWASE0.191(0.199)0.131FVCM10.103(94.566)0.692KW181.166(1533.938)2.123Oracle0.076(0.071)0.058</td> <td>Method Criterion Mean(SD) Median 25% FCAR MADE 0.278(0.136) 0.249 0.183 FVCM 0 0.980(1.241) 0.769 0.582 KW 1.358(3.510) 0.965 0.815 Oracle 0.166(0.073) 0.155 0.108 FCAR WASE 0.249(0.275) 0.166 0.082 FVCM 200.092(2589.147) 1.535 0.831 KW 1044.667(14234.328) 3.349 1.551 Oracle 0.104 0.0141 0.034 FCAR MADE 0.220(0.087) 0.205 0.155 FVCM 0.540(0.410) 0.441 0.338 KW 1.013(1.609) 0.657 0.556 Oracle 0.191(0.199) 0.131 0.066 FVCM 0.191(0.199) 0.131 0.066 FVCM 10.103(94.566) 0.692 0.303 KW 181.166(1533.938) 2.123 1.004 Oracle 0.076(0</td>	Method Criterion Mean(SD) FCAR MADE 0.278(0.136) FVCM 0.980(1.241) KW 0.1358(3.510) Oracle 0.166(0.073) FCAR WASE 0.249(0.275) FVCM 200.092(2589.147) KW 200.092(2589.147) KW 1044.667(14234.328) Oracle 0.114(0.129) FCAR MADE 0.220(0.087) FVCM 0.540(0.410) KW 0.540(0.410) KW 0.103(1.609) Oracle 0.123(0.04) FCAR WASE 0.191(0.199) FVCM 10.103(94.566) KW 181.166(1533.938) Oracle 0.076(0.071)	MethodCriterionMean(SD)MedianFCARMADE0.278(0.136)0.249FVCM0.980(1.241)0.769KW1.358(3.510)0.965Oracle0.166(0.073)0.155FCARWASE0.249(0.275)0.166FVCM200.092(2589.147)1.535KW1044.667(14234.328)3.349Oracle0.114(0.129)0.061FCARMADE0.220(0.087)0.205FVCM0.0.540(0.410)0.441KW1.013(1.609)0.657Oracle0.123(0.04)0.118FCARWASE0.191(0.199)0.131FVCM10.103(94.566)0.692KW181.166(1533.938)2.123Oracle0.076(0.071)0.058	Method Criterion Mean(SD) Median 25% FCAR MADE 0.278(0.136) 0.249 0.183 FVCM 0 0.980(1.241) 0.769 0.582 KW 1.358(3.510) 0.965 0.815 Oracle 0.166(0.073) 0.155 0.108 FCAR WASE 0.249(0.275) 0.166 0.082 FVCM 200.092(2589.147) 1.535 0.831 KW 1044.667(14234.328) 3.349 1.551 Oracle 0.104 0.0141 0.034 FCAR MADE 0.220(0.087) 0.205 0.155 FVCM 0.540(0.410) 0.441 0.338 KW 1.013(1.609) 0.657 0.556 Oracle 0.191(0.199) 0.131 0.066 FVCM 0.191(0.199) 0.131 0.066 FVCM 10.103(94.566) 0.692 0.303 KW 181.166(1533.938) 2.123 1.004 Oracle 0.076(0

Table C.5: Simulation 2 reported at 95% time domain: MADE and WASE of various methods. SD: standard deviation; 25%: 25% quantile; 75%: 75% quantile.

	Method	Criterion	Mean(SD)	Median	25%	75%
Setting I	FCAR	MADE	0.186(0.071)	0.176	0.131	0.218
	FVCM		0.416(0.136)	0.382	0.314	0.510
	KW		1.867(3.668)	1.011	0.755	1.596
	Oracle		0.168(0.067)	0.160	0.124	0.198
	FCAR	WASE	0.113(0.103)	0.078	0.042	0.144
	FVCM		0.638(0.547)	0.466	0.267	0.819
	KW		995.093(6506.490)	8.830	2.527	42.406
	Oracle		0.103(0.102)	0.069	0.034	0.129
Setting ${\rm I\!I}$	FCAR	MADE	0.135(0.041)	0.133	0.106	0.158
	FVCM		0.252(0.080)	0.237	0.192	0.304
	KW		1.658(3.983)	0.726	0.511	1.240
	Oracle		0.120(0.036)	0.118	0.095	0.142
	FCAR	WASE	0.075(0.060)	0.054	0.034	0.103
	FVCM		0.253(0.245)	0.169	0.109	0.298
	KW		1438.554(11407.122)	5.614	1.491	31.745
	Oracle		0.067(0.063)	0.050	0.027	0.082

Table C.6: Simulation 2 and measurement-error free (MEF) scenario reported at 95% time domain: MADE and WASE of various methods. SD: standard deviation; 25%: 25% quantile; 75%: 75% quantile.

	Method	Criterion	Mean(SD)	Median	25%	75%
Setting I	FCAR	MADE	0.196(0.083)	0.181	0.138	0.239
	FVCM		0.438(0.138)	0.409	0.342	0.514
	KW		0.881(0.602)	0.738	0.686	0.815
	Oracle		0.156(0.062)	0.145	0.112	0.195
	FCAR	WASE	0.139(0.145)	0.091	0.052	0.173
	FVCM		1.176(2.651)	0.569	0.346	1.072
	KW		26.846(148.108)	1.035	0.832	1.687
	Oracle		0.099(0.108)	0.063	0.031	0.123
Setting ${\rm I\!I}$	FCAR	MADE	0.131(0.041)	0.123	0.101	0.151
	FVCM		0.289(0.071)	0.276	0.245	0.318
	KW		0.916(2.815)	0.496	0.455	0.564
	Oracle		0.105(0.034)	0.099	0.082	0.123
	FCAR	WASE	0.065(0.058)	0.045	0.030	0.079
	FVCM		0.478(0.865)	0.299	0.197	0.516
	KW		1271.494(15648.487)	0.638	0.460	1.358
	Oracle		0.052(0.057)	0.037	0.020	0.059

Table C.7: Simulation 2 and $m_i = 15$ reported in a 95% time domain: MADE and WASE of various methods. SD: standard deviation; 25%: 25% quantile; 75%: 75% quantile.