Break Down the Title

- A standard workday of a software developer
Break Down the Title

● A standard workday of a software developer
Break Down the Title

● A standard workday of a software developer
Break Down the Title

- A standard workday of a software developer
Break Down the Title

- A standard workday of a software developer

 What could go wrong?
 What is currently holding us back?
Problem Introduction and Motivation
Break Down the Title

- A standard workday of a software developer

- 62% have mental complaints
- 31% have mental ill-health
- <1% sought for professional help

Leads to impairment in academic functioning and relationship!
How can we be more effective and efficient in programming? What are the cognitive processes of programming? What affects our decisions in programming?
Break Down the Title

• How can we be **more effective and efficient** in programming? What are the **cognitive processes** of programming? What affects our **decisions** in programming?
 • Traditional research solutions: self-reporting
Break Down the Title

- How can we be more effective and efficient in programming? What are the cognitive processes of programming? What affects our decisions in programming?
 - Traditional research solutions: self-reporting
 - Unreliable

Problem Introduction and Motivation

Evidence of self-report bias in assessing adherence to guidelines

Faking It: Social Desirability Response Bias in Self-report Research

Philip M. Podsakoff
Dennis W. Organ
Indiana University

Self-reports figure prominently in organizational and behavioral research, but there are several problems associated with them. This article identifies six categories of self-reports and associated problems as common method variance, the consistency of social desirability, and post hoc remedies and dual methods for dealing with artifical bias are presented. Recommendations for future research are also offered.

Understanding Self-Report Bias in Organizational Behavior Research

Stewart I. Donaldson
Claremont Graduate University

Elisa J. Grant-Vallone
California State University, San Marcos

Australian Journal of Advanced Nursing

Volume 25 Issue 4 (June/Aug 2008)

van de Mortel, Thea F¹

Abstract: Objective: The tendency for interviewees to fudge answers or mislead in order to please respondents is called socially desirable response bias. This paper highlights the impact of this bias on quantitative questionnaire research, with a focus on the validity and reliability of self-report behaviors in organizational behavior research. The authors discuss the impact of this bias on existing research and recommend future research that used questionnaire-based research.
How can we be more effective and efficient in programming? What are the cognitive processes of programming? What affects our decisions in programming?

- Traditional research solutions: Unreliable self-reporting
- Observed potential bias of non-functional factors
Break Down the Title

- How can we be more effective and efficient in programming? What are the cognitive processes of programming? What affects our decisions in programming?
 - Traditional research solutions: Unreliable self-reporting
 - Observed potential bias of non-functional factors

Lack a foundational understanding

Problem Introduction and Motivation
Desired properties for this proposal

- Bring all the concerns together:
Desired properties for this proposal

● Bring all the concerns together:
 ● **Objective** measures
 ○ Not just self-reporting
Desired properties for this proposal

● Bring all the concerns together:
 ● **Objective** measures
 ○ Not just self-reporting
 ● **Foundational understanding** of software activities
 ○ What are the cognitive processes of programming?
Desired properties for this proposal

- Bring all the concerns together:
 - **Objective** measures
 - Not just self-reporting
 - **Foundational understanding** of software activities
 - What are the cognitive processes of programming?
 - **Higher-level** programming tasks
 - Data structures; code writing; code reviews
Desired properties for this proposal

- Bring all the concerns together:
 - **Objective** measures
 - Not just self-reporting
 - **Foundational understanding** of software activities
 - What are the cognitive processes of programming?
 - **Higher-level** programming tasks
 - Data structures; code writing; code reviews
 - **Generalizability** across different user groups
 - How is productivity mitigated by group difference
Insights

- It is now **possible** to conduct studies that acquire **objective data** to understand the underlying **cognitive processes** of certain tasks
 - Mobile crowdsensing (MCS); medical imaging; eye tracking
Insights

• It is now **possible** to conduct studies that acquire **objective data** to understand the underlying **cognitive processes** of certain tasks
 • Mobile crowdsensing (MCS); medical imaging; eye tracking
• We can adapt **scientific approaches and concepts** from **other domains** to assist our investigation and understanding of certain tasks
 • Social anxiety; spatial ability; creative writing
Insights

- It is now **possible** to conduct studies that acquire **objective data** to understand the underlying **cognitive processes** of certain tasks
 - Mobile crowdsensing (MCS); medical imaging; eye tracking
- We can adapt **scientific approaches and concepts** from **other domains** to assist our investigation and understanding of certain tasks
 - Social anxiety; spatial ability; creative writing
- It is now **possible** to study historically-subjective factors by designing rigorous **controlled experiments**
 - Contrast-based experiments
It is possible to meaningfully and objectively measure user cognition to understand the mental status, role of spatial ability, fundamental processes and stereotypical associations in certain software engineering activities by combining mobile crowdsensing (MCS), medical imaging, and eye tracking.
Proposal Overview: Four Components
Proposal Overview: Four Components

Monitoring mental health using mobile crowdsensing
Proposal Overview: Four Components

- Monitoring mental health using mobile crowdsensing
- Understanding the neural representation of data structures
Proposal Overview: Four Components

- Monitoring mental health using mobile crowdsensing
- Understanding the neural representation of data structures
- Comparing prose writing and code writing
Proposal Overview: Four Components

- Monitoring mental health using mobile crowdsensing
- Understanding the neural representations of data structures
- Comparing prose writing and code writing
- Understanding bias in code reviews
Can we monitor humans’ mental health status objectively via their everyday behaviors in a natural setting?
Monitoring Mental Health Using Mobile Crowdsensing

- **Sensus**: Cross-platform, general MCS mobile application for human-subject studies
- **A MCS-based framework**: understanding the relationship between human behaviors and mental health status
Sensus: Cross-Platform, General MCS
Sensus: Cross-Platform, General MCS

1. Target **heterogeneous** mobile infrastructures
Sensus: Cross-Platform, General MCS

1. Target heterogeneous mobile infrastructures
2. Support a wide range of MCS-based human studies
Sensus: Cross-Platform, General MCS

1. Target **heterogeneous** mobile infrastructures
2. Support a **wide range** of MCS-based human studies
3. **Eliminate** the need for **programming background**
Sensus: Cross-Platform, General MCS

1. Target **heterogeneous** mobile infrastructures
2. Support a **wide range** of MCS-based human studies
3. **Eliminate** the need for **programming background**
4. Rely on **readily-available** mobile devices and cloud storage

Component 1: Monitoring Mental Health
Architecture of Sensus: High-Level Design

- High-level design of Sensus
 - Cloud storage
 - Amazon AWS S3
Architecture of Sensus: High-Level Design

- High-level design of Sensus
 - Cloud storage
 - Amazon AWS S3
 - Users
 - Researchers (study designers)
 - Participants

Component 1: Monitoring Mental Health
Architecture of *Sensus*: High-Level Design

- High-level design of *Sensus*
 - Cloud storage
 - Amazon AWS S3
 - Users
 - Researchers (study designers)
 - Participants

Component 1: Monitoring Mental Health
Architecture of Sensus: High-Level Design

- High-level design of **Sensus**
 - Cloud storage
 - Amazon AWS S3
 - Users
 - Researchers (study designers)
 - Participants
 - Protocols
 - Sensing plans
 - Probes
 - Surveys
 - Customized scheduling
 - JSON file

Component 1: Monitoring Mental Health
Sensus: An Example Case

- A Sensus protocol example (iOS)

Component 1: Monitoring Mental Health
Sensus: Metrics

- **Sensus** can be used in real-world scalable human-subjects studies
 - Release **Sensus**
 - Conduct real-world studies using **Sensus**
- **Sensus** is easy for researchers without engineering background to use
 - Interview researchers who used **Sensus** but without engineering backgrounds
Sensus: Preliminary Results

- Apple App Store
- Google Play Store: 500+
- > 200 subjects in research studies

Sensus development website: https://predictive-technology-laboratory.github.io/sensus/index.html

Sensus: Preliminary Results

- Apple App Store
- Google Play Store: 500+
- > 200 subjects in research studies
- Feedback from the Psychologists (2 studies)
 - Easy to use, intuitive experience

Component 1: Monitoring Mental Health
Sensus: Preliminary Results

- Apple App Store
- Google Play Store: 500+
- > 200 subjects in research studies
- Feedback from the Psychologists (2 studies)
 - Easy to use, experience is intuitive
 - Does not require extra engineering knowledge as long as you know how to use a smartphone

*Sensus development website: https://predictive-technology-laboratory.github.io/sensus/index.html
Sensus: Preliminary Results

- Apple App Store
- Google Play Store: **500+**
- > **200** subjects in research studies
- Feedback from the Psychologists (2 studies)
 - Easy to use, intuitive experience
 - Does **not require extra** engineering knowledge as long as you know how to use a smartphone
 - Able to get the data they want and obtain **meaningful** results

Sensus development website: https://predictive-technology-laboratory.github.io/sensus/index.html

Sensus: Preliminary Results

- Apple App Store
- Google Play Store: 500+
- > 200 subjects in research studies
- Feedback from the Psychologists (2 studies)
 - Easy to use, intuitive experience
 - Does not require extra engineering knowledge as long as you know how to use a smartphone
 - Able to get the data they want and obtain meaningful results
 - A desktop or web-based protocol design tool would be useful

Monitoring Mental Health Using Mobile Crowdsensing

- Recall: Can we monitor humans’ mental health status objectively via their everyday behaviors in a natural setting?
- We already have an MCS mobile application: **Sensus**
Monitoring Mental Health Using Mobile Crowdsensing

- **Sensus**: Cross-platform, general MCS mobile application for human-subjects studies
- **A MCS-based framework**: understanding the relationship between human behaviors and mental health status
A MCS-based Framework: Understanding Behaviors and Mental Health Status

- Fine-grained human behaviors vs. Mental health status
 - Objective measures from Sensus
 - GPS: mobility patterns with semantics
 - Accelerometer (3-axis): micro-level motions
 - Smartphone metadata: call and text logs

Component 1: Monitoring Mental Health
A MCS-based Framework: Understanding Behaviors and Mental Health Status

- Fine-grained human behaviors vs. Mental health status
 - Objective measures from *Sensus*
 - **GPS**: mobility patterns with semantics
 - **Accelerometer (3-axis)**: micro-level motions
 - **Smartphone metadata**: call and text logs
 - **Social anxiety levels**: SIAS score (0-80)

Component 1: Monitoring Mental Health
A MCS-based Framework: Understanding Behaviors and Mental Health Status

- Semantics of locations
 - \((42.2930177, -83.718566) \Rightarrow \text{School}\)
 - Point of Interest (POI) information obtained from Foursquare
 - Clustering spatially and temporally
 - Categories of location semantics

\[
\{(\text{Education.})
\text{Bob and Betty Beyster Building.}
\text{Department of Computer Science}
\text{and Engineering.}
\text{University of Michigan.}\}
\]
A MCS-based Framework: Understanding Behaviors and Mental Health Status

- Semantics of locations
- Micro-level behaviors (behavioral dynamics)
 - Linear dynamic system (LDS)

Motion stimuli caused by social anxiety

Observer system

Control System

Component 1: Monitoring Mental Health
A MCS-based Framework: Understanding Behaviors and Mental Health Status

- Semantics of locations
- Micro-level behaviors (behavioral dynamics)
 - Linear dynamic system (LDS)

Motion Stimuli

System State

Smartphone Accelerometer Data

Component 1: Monitoring Mental Health

\[
\begin{align*}
\left\| u(\cdot) \right\|_{1,t} & \leq k \\
|u(t)| & \leq 1 \quad \forall t \\
\Sigma_t \left\| CA^t B \right\|_1 & \leq \mu \\
x(t + 1) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + N
\end{align*}
\]
A MCS-based Framework: Understanding Behaviors and Mental Health Status

- Semantics of locations
- Micro-level behaviors (behavioral dynamics)
 - Linear dynamic system (LDS)

Component 1: Monitoring Mental Health

\[
\begin{align*}
\| u(t) \|_{1} & \leq k \\
|u(t)| & \leq 1 \quad \forall t \\
\Sigma_{t} \| CA^{t}B \|_{1} & \leq \mu \\
x(t + 1) & = Ax(t) + Bu(t) \\
y(t) & = Cx(t) + N
\end{align*}
\]
A MCS-based Framework: Understanding Behaviors and Mental Health Status

- Semantics of locations
- Micro-level behaviors (behavioral dynamics)
 - Linear dynamic system (LDS)

Component 1: Monitoring Mental Health

\[
\begin{align*}
\| u(\bullet) \|_{10} & \leq k \\
|u(t)| & \leq 1 \quad \forall t \\
\Sigma_t \| CA^t B \|_1 & \leq \mu \\
x(t + 1) & = Ax(t) + Bu(t) \\
y(t) & = Cx(t) + N
\end{align*}
\]
A MCS-based Framework: Understanding Behaviors and Mental Health Status

- Semantics of locations
- Micro-level behaviors (behavioral dynamics)
 - Linear dynamic system (LDS)

Component 1: Monitoring Mental Health

Smartphone Accelerometer Data

Motion Stimuli

System State

\[
\begin{align*}
Y_{(3 \times T)} & \rightarrow U_{(1 \times T)} \\
& \text{Dimension Reduction}
\end{align*}
\]
A MCS-based Framework: Understanding Behaviors and Mental Health Status

- The architecture of the MCS-based framework
A MCS-based Framework: Understanding Behaviors and Mental Health Status

- Feature extraction

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Proportion</td>
<td>The proportions of phone calls at different locations</td>
</tr>
<tr>
<td>Text Proportion</td>
<td>The proportions of text messages at different locations</td>
</tr>
<tr>
<td>FAC<sub>1</sub></td>
<td>The average of the mean values of all distance matrices (DM(i)) belonging to a subject</td>
</tr>
<tr>
<td>FAC<sub>2</sub></td>
<td>The average of the standard deviations of all distance matrices (DM(i)) belonging to a subject</td>
</tr>
<tr>
<td>MC</td>
<td>The metric for a phone call event</td>
</tr>
<tr>
<td>MT</td>
<td>The metric for a text message event</td>
</tr>
</tbody>
</table>

Component 1: Monitoring Mental Health
A MCS-based Framework: Metrics

- In real-world human-subjects studies, we can objectively measure humans’ behaviors in a natural setting
- From the objectively collected data, we can extract meaningful features
- We can find features that have a significant correlation with mental health status (p<0.05)
A MCS-based Framework: Preliminary Results

- Human study of 52 participants
 - **Sensus**
 - Duration: 14 days
 - SIAS: mean = 35.02, std = 12.10
- Correlations between behavioral dynamics and social anxiety levels under different social contexts

<table>
<thead>
<tr>
<th>Matrix feature</th>
<th>Call (MC)</th>
<th>Text (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pearson r</td>
<td>p-value</td>
</tr>
<tr>
<td>FAC(_1)</td>
<td>0.2867</td>
<td>0.0457</td>
</tr>
<tr>
<td>FAC(_2)</td>
<td>0.3041</td>
<td>0.0336</td>
</tr>
</tbody>
</table>

Component 1: Monitoring Mental Health
A MCS-based Framework: Preliminary Results

- Correlations between behavioral dynamics and social anxiety levels under different social contexts

<table>
<thead>
<tr>
<th>Location</th>
<th>Call Proportion</th>
<th>Text Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pearson r</td>
<td>p-value</td>
</tr>
<tr>
<td>Work</td>
<td>-0.1806</td>
<td>0.2142</td>
</tr>
<tr>
<td>Home</td>
<td>0.3983</td>
<td>0.0045</td>
</tr>
<tr>
<td>Food & leisure</td>
<td>-0.2342</td>
<td>0.1053</td>
</tr>
<tr>
<td>Personal life</td>
<td>0.1234</td>
<td>0.3982</td>
</tr>
<tr>
<td>Transition</td>
<td>-0.0715</td>
<td>0.6141</td>
</tr>
</tbody>
</table>

Recall: Can we monitor humans’ mental health status objectively via their everyday behaviors in a natural setting?

Yes, we can.
Proposal Overview: Four Components

- Monitoring mental health using mobile crowdsensing
- Understanding the neural representations of data structures
- Comparing prose writing and code writing
- Understanding bias in code reviews
How do human brains represent data structures? Is it more like text or more like 3D objects?
How do human brains represent data structures? Is it more like text or more like 3D objects?
Understanding the Neural Representations of Data Structure Manipulations

- Spatial ability: Mental rotations
 - The determination of spatial relationships between objects and the mental manipulation of spatially presented information
 - Measured by mental rotation tasks: 3D objects
 - Related to success in STEM
Understanding the Neural Representations of Data Structure Manipulations

- **fMRI vs. fNIRS**
 - Measure brain activities by calculating the blood-oxygen level dependent (BOLD) signal

- **Functional Magnetic Resonance Imaging**
 - Magnets
 - Strong penetration power
 - Lying down in a magnetic tube: *cannot move*

- **Functional Near-Infrared Spectroscopy**
 - Light
 - Weak penetration power
 - Wearing a specially-designed cap: *more freedom of movement*
Experimental design: 2 tasks
- Data structure manipulations
 - List/Array operations
 - Tree operations
- Mental rotations: 3D objects

What is the minimum number of swaps required to make the given array sorted?

<table>
<thead>
<tr>
<th>Indices</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>nums</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

A. 1 B. 2

Which of the candidate insertion sequences will produce the given BST?

A. 5, 3, 8 B. 8, 3, 5
Understanding the Neural Representations of Data Structure Manipulations

- Experimental design: 2 tasks
 - Data structure manipulations
 - List/Array operations
 - Tree operations
 - Mental rotations: 3D objects

What is the minimum number of swaps required to make the given array sorted?

<table>
<thead>
<tr>
<th>Indices</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>nums</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

A. 1 B. 2

Which object is the same as the original object, aside from its orientation?

Which of the candidate insertion sequences will produce the given BST?

A. 5, 3, 8 B. 8, 3, 5

Component 2: Neural Representations of Data Structures
Understanding the Neural Representations of Data Structure Manipulations

- Data analysis: we need to be careful
- Spurious correlations due to multiple comparison

Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction
Craig M. Bennett¹, Abigail A. Baird², Michael B. Miller³, and George L. Wolfor³

INTRODUCTION
With the extreme dimensionality of functional neuroimaging data comes extreme risk for false positives. Across the 10,000 voxels in a typical fMRI volume the probability of a false positive is almost certain. Correction for multiple comparisons should be completed with these datasets, but is often ignored by investigators. To illustrate the magnitude of the problem we carried out a real experiment that demonstrates the danger of not correcting for chance properly.

METHODS
Subject: One mature Atlantic Salmon (Salmo salar) participated in the fMRI study. The salmon was approximately 18 inches long, weighed 3.8 lbs, and was not alive at
Understanding the Neural Representations of Data Structure Manipulations

- Data analysis: we need to be careful
- fMRI and fNIRS use the same high-level 3-step analysis approach
 - False discovery rate correction for multiple comparisons (FDR)
Understanding the Neural Representations of Data Structure Manipulations

- Data analysis: we need to be careful
- fMRI and fNIRS use the same high-level 3-step analysis approach
 - False discovery rate correction for multiple comparisons (FDR)

Preprocessing
Understanding the Neural Representations of Data Structure Manipulations

- Data analysis: we need to be careful
- fMRI and fNIRS use the same high-level 3-step analysis approach
 - False discovery rate correction for multiple comparisons (FDR)
Understanding the Neural Representations of Data Structure Manipulations

- Data analysis: we need to be careful
- fMRI and fNIRS use the same high-level 3-step analysis approach
 - False discovery rate correction for multiple comparisons (FDR)

Component 2: Neural Representations of Data Structures

Preprocessing ➔ First-level Analysis ➔ Contrast & Group-level analysis
Following the best practices in medical imaging, we can find significant relationship between data structure manipulations and spatial ability ($p<0.01$).

We can find significant relationships regarding the difficulty levels of tasks.
Neural Representations of Data Structures: Preliminary Results

- Experiment setup and data
 - 76 participants: 70 valid
 - fMRI: 30
 - fNIRS: 40
 - Two hours for each participant: 90 stimuli, qualitative post-survey

De-identified data is public: https://web.eecs.umich.edu/weimerw/fmri.html
Data structure manipulations involve spatial ability

- fMRI: more similarities than differences ($p<0.01$)
- fNIRS: activation in the same brain regions ($p<0.01$)

Mental Rotation vs. Tree
The brain works even **harder** for **more difficult** data structure tasks

- Difficulty measurement
 - Mental rotations: angle of rotation
 - Data structure: size

Component 2: Neural Representations of Data Structures
The brain works even harder for more difficult data structure tasks

- Difficulty measurement
 - Mental rotations: angle of rotation
 - Data structure: size
- **fMRI**: the rate of extra work in your brain is higher for data structure tasks than it is for mental rotation tasks
- **fNIRS**: no significant findings for the effect of task difficulty
How Do **Self-reporting** and Neuroimaging Compare?

- Self-reporting may **not be reliable**
- Medical imaging found mental rotation and data structure tasks are very similar
- 70% of human participants believe there is no connection!
Recall: How do human brains represent data structures? Is it more like text or more like 3D objects?

Data structure manipulations and mental rotations (spatial ability) involve very similar brain regions.
Proposal Overview: Four Components

- Monitoring mental health using mobile crowdsensing
- Understanding the neural representations of data structures
- Comparing prose writing and code writing
- Understanding bias in code reviews
Are code writing and prose writing similar neural activities? Do I have to be good at English writing to become a good software developer?
Comparing Code Writing and Prose Writing

- fMRI: penetration power
- Challenges
 - fMRI-safe bespoke keyboard
 - QWERTY keyboard
 - Allow typing and editing
- Design writing stimuli
 - Prose writing
 - Code writing
Comparing Code Writing and Prose Writing

- fMRI: penetration power
- Challenge: fMRI-safe bespoke keyboard
 - QWERTY keyboard
 - Allow typing and editing
Comparing Code Writing and Prose Writing

- **Challenge: Stimuli design**
 - Two categories of tasks for code writing and prose writing
 - Fill in the blank (FITB)

```
 /*Complete the sentence
 * such that the sentence
 * makes sense*/
 Brian was so fond of his dog that their brief ______ left him not just saddened, but in a state of sorrow.
```

Prose - FITB

```
 /*Complete the definition of
 * the function such that it
 * receives an integer parameter
 * and returns the absolute
 * value of the parameter.*/
 int absoluteValue(int num1) {
   /* YOUR CODE HERE */
   return absoluteValue;
 }
```

Code - FITB
Comparing Code Writing and Prose Writing

- **Challenge: Stimuli design**
 - Two categories of tasks for **code writing** and **prose writing**
 - Fill in the blank (FITB)
 - Long response (LR)

What would happen if everyone lived in space? (e.g., What type of houses would they live in? What type of clothing would they wear?)

Implement a function `is_sorted` that accepts a vector of integer values and returns true if it is non-decreasing, and false otherwise.
Comparing Code Writing and Prose Writing

● Experimental design: 2 categories of tasks for code writing and prose writing
 ● Code writing tasks: Turing’s Craft
 ● Prose writing tasks: SAT
Code Writing vs. Prose Writing: Metrics

- We can have a bespoke QWERTY keyboard that can safely work in fMRI machine
- We can find significant relationship between code writing and prose writing ($p<0.01$)
 - General relationship
 - Relationship between different types of tasks (i.e., FITB and LR)
Code Writing vs. Prose Writing: Preliminary Results

- IRB approved
- Bespoke keyboard
 - Finished deployment and passed safety tests
- Data collection is done
 - 30 participants
 - Two hours for each participant: 52 stimuli
 - For both code writing and prose writing:
 - FITB: 17
 - LR: 9
Proposal Overview: Four Components

- Monitoring mental health using mobile crowdsensing
- Understanding the neural representations of data structures
- Comparing prose writing and code writing
- Understanding bias in code reviews
Understanding Bias in Code Reviews

- Code reviews
 - The systematic inspection, analysis, evaluation, and revision of code.
 - The latent defect discovery rate of formal code review can be 60%-65%.

Delete the equal mark in case the array is like \{x,x,x,...(n),y,y,y,...(n+1)\}
Understanding Bias in Code Reviews

- **Code reviews**
 - The systematic inspection, analysis, evaluation, and revision of code.
 - The latent defect discovery rate of formal code review can be 60%-65%.
Understanding Bias in Code Reviews

- **Code reviews**
 - The systematic inspection, analysis, evaluation, and revision of code.
 - The latent defect discovery rate of formal code review can be 60%-65%.

- **Bias in code reviews**
 - Code source
 - Gender
Understanding Bias in Code Reviews

- **Code reviews**
 - The systematic inspection, analysis, evaluation, and revision of code.
 - The latent defect discovery rate of formal code review can be 60%-65%.

- **Bias in code reviews**
 - Code source
 - Gender
 - Automated software repair tools
Understanding Bias in Code Reviews

- How does author information affect software developers’ decision making in code reviews?
- Do software developers have gender bias in code reviews?
- Do software developers have bias against machine-generated code patches?
Understanding Bias in Code Reviews

- Neural activities in code reviews: fMRI
- Visual focus in code reviews: eye tracking
 - Fixations and saccades
 - Attention over different Area of Interests (AOI)
 - Comment
 - Code changes
 - Author information
Understanding Bias in Code Reviews

● Stimuli design
 ● Pull requests from real world open source C and C++ projects (e.g., GitHub)
 ● **Relabel** the author information
 ○ Pictures from **Chicago Face Database**
 ● Controlling age, race, attractiveness and facial expressions
 ○ Avatar picture to represent automated software repair tools
Understanding Bias in Code Reviews

- **Stimuli design**
 - Pull requests from real world open source projects (C and C++) (e.g., GitHub)
 - **Relabel** the author information
 - Pictures from **Chicago Face Database**
 - Controlling age, race, attractiveness and facial expressions
 - Avatar picture to represent automated software repair tools
 - We will not tell the participants about the relabeling and the purpose of investigating the author bias in code reviews.
 - Avoid social desirability bias
Understanding Bias in Code Reviews

- Stimuli design
 - Simulating a real-world code review interface

Delete the equal mark in case the array is like \{x,x,x...(n),y,y,y...(n+1)\}

Commit message

Component 4: Bias in Code Reviews
Understanding Bias in Code Reviews

- Stimuli design
 - Simulating a real-world code review interface

Delete the equal mark in case the array is like
\{x,x,x\ldots(n),y,y,y\ldots(n+1)}

Code changes

Component 4: Bias in Code Reviews
Understanding Bias in Code Reviews

- Stimuli design
 - Simulating a real-world code review interface

```
Delete the equal mark in case the array is like {x,x,x...(n),y,y,y...(n+1)}
```

```
2 algorithms/cpp/majorityElement/majorityElement.cpp
32 32 @ @ int majorityElement(vector<int> &num) {
33 33     cnt++;
34 34 }else{
36 36     if (cnt >= num.size()/2) return majority;
37 37     if (cnt > num.size()/2) return majority;
38 38 }
39 39     return majority;
```
Bias in Code Reviews: Metrics

- We are able to involve author deception in the stimuli design (IRB permission)
- We are able to recruit approximately gender-balanced group of participants
- We are able to obtain significant relationship between the brain activities of code reviews with different author information ($p<0.01$)
- We are able to observe significant similarities or differences of the visual focus and strategies for code reviews with different author information ($p<0.01$)
Stimuli design is done
- Two sets of stimuli: 60 stimuli each
 - Randomly assign author pictures into three groups
 - 20 men
 - 20 women
 - 20 machine
 - Relabel each set with different code-author combinations
 - Control code quality

IRB approved
- The fMRI lab has a built-in eye tracker
- fMRI lab pilot grant to support this study
Ph.D. Timeline

- SENSUS Mobile APP [UbiComp’16]
- Monitoring Social Anxiety [UbiComp’16]
- Clinical Models Using Mobile Sensing [J. MIR’17]
- Behavioral Dynamics [J. Information Fusion’19]
- Spatial Ability in Programming [ICSE’19]
- Code Writing vs. Prose Writing
- Bias in Code Reviews
- Capstone journal article
Publications: Supporting this Proposal

1. **Distilling Neural Representations of Data Structure Manipulation using fMRI and fNIRS.** Yu Huang, Xinyu Liu, Ryan Krueger, Tyler Santander, Xiaosu Hu, Kevin Leach, Westley Weimer. *41st ACM/IEEE International Conference on Software Engineering (ICSE 2019)*. *Distinguished Paper Award*

Publications: Others

14. **A 145 mV to 1.2 V Single Ended Level Converter Circuit for Ultra-Low Power Low Voltage ICs.** Yu Huang, Aatmesh Shrivastava, and Benton H Calhoun. *In SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2015 IEEE, pages 1–3*.
Publications: Others

Broader Impact

- All the medical imaging and behavioral data will be de-identified and released publicly
- **Sensus** has been released and can be used in a wide range of human-subject studies
- Our research findings can help psychologists monitor mental health status and help computer science educators develop efficient training strategies
- Our studies provide guidelines for future study design and implementation in the community
Proposal Summary: Four Components

- Monitoring mental health using mobile crowdsensing
 - Sensus: Cross-platform, general MCS mobile application for human-subject studies
- Understanding human behaviors and mental health status via MCS
- Understanding the neural representation of data structures
- Comparing prose writing and code writing
- Understanding bias in code reviews
A fundamental understanding of computational activities is essential to improving productivity and efficiency in software engineering.

- Self-reporting
- Pedagogy
- Technology transfer
- Programming expertise
Architecture of Sensus: Mobile Runtime

- The Sensus Mobile runtime
 - Control the underlying device (probes) according to the study protocol
 - Administers researcher-designed surveys
 - Anonymizes data to varying degrees

Component 1: Monitoring Mental Health
Sensus: An Example Case

1. Researchers use Sensus to configure a protocol (protocol editor)

Component 1: Monitoring Mental Health
Sensus: An Example Case

1. Researchers use Sensus to configure a protocol (protocol editor)

Component 1: Monitoring Mental Health
Sensus: An Example Case

2. Participants load the protocol and start the participation (protocol loader)
Neural Representations of Data Structures: Preliminary Results

- Implications: fMRI vs. fNIRS for software engineering

<table>
<thead>
<tr>
<th></th>
<th>fMRI</th>
<th>fNIRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>~2 hours</td>
<td>~2 hours</td>
</tr>
<tr>
<td>Penetration Power</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>Cost</td>
<td>> $20,000 for 36</td>
<td>~$2000 for 40</td>
</tr>
<tr>
<td>Environment</td>
<td>Restricted</td>
<td>Free</td>
</tr>
<tr>
<td>Task Accuracy</td>
<td>Lower (85%, $p < 0.01)</td>
<td>Higher (92%, $p < 0.01)</td>
</tr>
<tr>
<td>Effort</td>
<td>Light</td>
<td>Heavy</td>
</tr>
<tr>
<td>Recruitment</td>
<td>Easy</td>
<td>Moderate (hair)</td>
</tr>
</tbody>
</table>