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Abstract

We develop a mixed proportional hazard model in discrete time when there is cross-sectional

duration dependence from social interactions. We model the cross-sectional dependence using

the weighted lagged choices of neighbors based on a proper spatial weight matrix, and non-

parametrically specify the baseline hazard and the distribution of unobserved heterogeneity.

We use EM algorithm to estimate the duration model and derive the observed information

matrix for statistical inference. Using the U.S. state-level panel data, we analyze that the

state legislation decision on the mandatory motorcycle-helmet-use law is significantly affected

by neighboring states’ choices, whereas the fatality rate from motorcycle-related accidents is

not so.
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1 Introduction

The main purpose of this paper is to understand the decision making mechanism of state leg-

islations and, in particular, to find an evidence that coverage of the motorcycle-helmet-use law

(MHU law, hereafter) in a state is spatially dependent on neighboring states’ status or decisions.

To analyze such a social interaction aspect in state legislation decision making, we specify

a discrete choice model with social interactions as Brock and Durlauf (2001a, 2001b), which

incorporates the social interaction term in the random utility maximization problem. Individual

expectation to others’ decision is the key component deriving the social interactions. In this

particular example, however, each decision making can be only realized at certain times, such as

only when there is a legislate meeting (i.e., timing friction in decision realization). By introducing

such timing friction in the discrete choice model, similarly as the job searching model of Lancaster

(1979), we derive a hazard model with duration dependence. In particular, we introduce a

grouped mixed proportional hazard (MPH) model (e.g., Kalbfleisch and Prentice, 1973; Prentice

and Gloeckler, 1978) with social interactions, where the hazard rate is a function of other

states’ discrete choices (e.g., Carruthers, Guinnane and Lee, 2010). The baseline hazard and the

distribution of the unobserved heterogeneity are specified nonparametrically (e.g., Prentice and

Gloeckler, 1978; Heckman and Singer, 1984; Meyer, 1990, 1995). The EM-algorithm is used to

facilitate the estimation of the MPH model with social interactions (e.g., Lee, 2007).

Estimation results using U.S. state-level panel data from 1975 to 2006 show statistically sig-

nificant interactions with neighboring states’ decisions on the MHU law, whereas safety concern

is found not to be important when the policy makers make decisions. Though this analysis does

not give an answer to an issue whether introducing the mandatory MHU law is beneficial or

not, it explains a behavioral aspect of the legislative decision making procedure in the context of

social interactions and empirically shows how the proximity between agents affects the decision

making.

The remainder of the paper is organized as follows. Section 2 describes the main model,

discrete choice with social interactions and timing friction in decision realization. Section 3

develops a mixed proportional hazard model with grouped data, that includes both the interac-
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tion term and the unobserved heterogeneity, and provides econometric foundation of the choice

model. Section 4 introduces the EM algorithm as an estimation method. Section 5 delineates

the data and discusses the estimated results. Section 6 concludes the paper with some remarks.

Technical details are provided in the Appendix.

2 Discrete Choice with Social Interactions

2.1 Random utility maximization

We consider individuals  = 1 · · ·   who can switch their choices over time  = 1 · · ·   . The
binary choice is denoted by an indicator variable (), which has support {−1 1}. The observed
characteristics of each individual , possibly time-varying, are denoted as a ×1 vector (). The
unobservable independent random private utility (or a random shock) is denoted by ( ()),

which depends on the realized individual’s choice and is independent of () for all  and .

Similarly as Brock and Durlauf (2001a, 2001b), we impose social interactions in the individ-

ual decision by assuming that the expected behavior of others influence each individual choice.

Examples are spill-over effects, externalities and peer-effects. More precisely, we assume a twice-

differentiable instantaneous individual utility function given by  (() () 

 (−()) ( ())),

where −() = (1() · · ·  −1() +1() · · ·  ()) denotes the vector of choices other than
that of individual  and  (−()) represents individual’s belief concerning the choices of other

agents. Given that individuals are myopic so that they only make choices by comparing current

utilities without considering future paths of choices, each choice is described by solving

max
()∈{−11}

 (() () 

 (−()) ( ())) (1)

for each . Note that myopic behavior can be understood in the context of repeated search or

infinite discount rate, and it well justifies the proportional hazard specification (e.g., van den

Berg, 2001).
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We assume that the individual utility function can be represented as

 (() () 

 (−()) ( ())) =  (() ()) + ( ()) (2)

+ (() () 

 (−())) ,

where  (() ()) and  (() () 

 (−())) are observable deterministic private and

social utilities, respectively. Without the social utility , (2) corresponds to the standard

random utility function. We further let the deterministic private utility be linear as (e.g., Brock

and Durlauf, 2001b, p.3307)

 (() ()) = ()1(()) + 2(()), (3)

which is without loss of generality since it coincides with the original utility function on the

support of the individual choices {−1 1}. The social utility possesses a generalized quadratic
conformity effect as

 (() () 

 (−())) = −



2
E

hX
 6=()(()− ())

2
i
, (4)

where  is an unknown scalar parameter and E[·] denotes the conditional expectation of 
at  given the values of (() ()). In this specification, () = 2()E[()] =

2()E[()] measures the strategic complementarity between individual choices and

the expected choices of others (e.g., Cooper and John, 1988; Brock and Durlauf, 2001b). The

term () in (4) represents the interaction weight between individuals  and . For each , we

define () = (||() ()||) for   = 1 2     , where () = 0, () = () and

||· ·|| is a proxy of economic distance between  and . More precisely, ||· ·|| is a distance function
of a pair of characteristics () and (), and (·) is a nonnegative and strictly increasing
function with(0) = 0. Note that () are typically assumed to be fixed and deterministic for

the identification purposes (e.g., Manski, 1993). We implicitly assume that there is no individual

without a neighbor; the choice of neighborhood is also fixed and not endogenous.

For 2 () = 1 we can rewrite (4) as 
P

 6=()(()E[()]− 1), and obtain the values
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of expectations E[()] by assuming that all individuals have rational expectations for each :

E [()] = E [()|1() · · ·  ();E() for   = 1 · · ·  ] . (5)

The solutions satisfying this self-consistent condition (e.g., Brock and Durlauf, 2001a) close the

model, provided they exist. Uniqueness of the self-consistent equilibrium gives the identification

condition in this framework. More precisely, from the standard random utility maximization,

individual  chooses () over −() at time  if

 (() () 

 (−()) ( ())) ≥  (−() ()  (−()) (−())), (6)

whose probability is given by

P { (() ()  (−()) ( ())) ≥  (−() ()  (−()) (−()))}

= P
n
(−())− ( ()) ≤ 2

h
1(()) + 

X
 6=()E[()]

i
()

o
= 

³
2
h
1(()) + 

X
 6=()E[()]

i
()

´
, (7)

where we assume that (−1)−( 1) is independent and identically distributed (i.i.d.) over 
and  with (·) being the distribution function that is symmetric around zero. Using this result,
the self-consistent solution () = E[()] satisfying (5) can be obtained by solving

() = 
³
1(()) + 

X
 6=()()

´
, (8)

which is assumed to exist uniquely, where () = 2(2)− 1 for some  ∈ R.

Assumption 1 (self-consistent equilibrium) Given (·), 1(()) and 
P

 6=(), there

exists a unique self-consistent expectation () satisfying (8) for each .

Note that the unique existence of the self-consistent equilibrium requires assumptions on the

distribution (·) as well as 1(()) and 
P

 6=(). For example, when  is logistic, (·) =
tanh(·) and thus the existence of self-consistent equilibrium in (8) follows immediately (e.g.,
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Brock and Durlauf, 2001a, Proposition 1). Moreover, provided that 
P

 6=() ≤ 1, which
holds if  ≤ 1 under the row normalization assumption (i.e., P 6=() = 1 for each  and )

in Assumption 6, the equilibrium is unique from the properties of the tanh(·) function. When

P

 6=()  1, on the other hand, the uniqueness can be obtained only when |1(())| is
large enough (e.g., Brock and Durlauf, 2001a, Proposition 2), which is the case of the estimation

result in Section 5.

2.2 Choice with timing frictions

Though we introduce the social interaction term in the choice mechanism, the random utility

analysis in the previous subsection is rather standard since we assume that each individual is

myopic and the utility maximization problem is solved for each . There could be the cases,

however, that the choice is not allowed for some  even though the random utility maximization

tells so. A passage of a law is a good example: Let the agent  be the state legislature and the

passage of a particular law is determined by solving the random utility maximization. For some

cases, even when people want to pass the law soon, the number of legislate meetings is limited

and thus there could be an exogenous timing friction in realizing the choice.

To incorporate such an idea into the framework, we suppose that an alarm clock is assigned to

each individual , where the alarms are independent over time. When the clock rings, the agent

has an opportunity to revise her choice. The choice and the alarm are mutually independent,

and the choice is assumed to be made when the clock rings or right before at − = lim∆→0(−∆)
for ∆  0. More precisely, we let the occurrence of alarm follows the time-dependent (or non-

homogeneous) Poisson process with rate ()  0, so that the expected number of alarms in

the time interval [0 ) is given as
R 
0
() for each . We further impose a common factor

structure on () as

() = 0() (9)

with 0()  0 and   0, where 0() is the common time-dependent rate across individuals

while the time-invariant (unobservable) heterogeneity  allows for variations over .

If individual  followed the decision rule in (6), her revision of the choice is observed in the
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short time period [  + ∆) with ∆  0 if and only if (i) her alarm clock rings at  and (ii)

the utility with the new choice exceeds that with the old one. Apparently, the probability of

the events (i) and (ii) are ()∆ = 0()∆ and (2[1(()) + 
P

 6=()E[()]]()),

respectively from (9) and (7). Since these events are assumed to be mutually independent, the

probability of choice revision in [  +∆) conditional on no revision occurred before  is given

by their product and it yields the hazard function for the choice change of individual :

0()
³
2[1(()) + 

X
 6=()E[()]]()

´
, (10)

which is in the form of the mixed proportional hazard (MPH) model with the baseline hazard

function 0() and the unobservable heterogeneity  (e.g., Lancaster, 1990; van den Berg, 2001).

We remark that knowing the characteristic of the choice-change-allowance process is crucial

to correctly identify the choice behavior. For example, suppose we ignore the choice-change-

allowance process and simply observe the choice behaviors at a fixed frequency. Then for any

two identical consecutive choices of individual , say () = (
0) = 1 for   0, we cannot

tell which scenario results in such observations among the followings: (i) (
0) = 1 because

(
0 1) − (

0−1)  0, where ( ()) =  (1 () 

 (−()) ( ())), and the choice

revision is allowed at 0; (ii) (0) = 1 because the choice revision is not allowed at 0 whether

the sign of (
0 1)−(0−1) is positive or negative. Particularly when (0 1)−(0−1)  0

but the individual cannot change her choice because it is not allowed at 0, it violates the

fundamentals of the standard random utility maximization problem.

3 Grouped MPH Models with Social Interactions

3.1 Semiparametric duration models with grouped data

Though the failure time is continuous, the standard panel data only provide observations on

failure times aggregated up to discrete intervals (i.e., grouped duration data; e.g., Kalbfleisch

and Prentice, 1973; Prentice and Gloeckler, 1978). To handle this discrepancy, we suppose

failure times are grouped into intervals  = [−1 ) for  = 1 2 · · ·   with 0 = 0 and
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 = ∞ without loss of generality, where the length of each interval corresponds to the panel

survey frequency. Survival to time  is the same as surviving until the -th interval  (e.g.,

Sueyoshi, 1995) and the failure time of individual  in  are recorded as   = . Since we

usually deal with equi-spaced panel data, we simply let  =  for all  = 1 · · ·   and consider
 intervals: [0 1) [1 2)     [ − 1  ) ignoring the last interval [∞) that is after the survey
period and thus all durations lasting over  are naturally right censored. We further assume

that covariates are at best recorded up to intervals and the values do not change in each interval

[− 1 ). Following the standard notations of panel data, we simply rewrite (), (), ()

as , , , respectively, in what follows.

In order to make the empirical analysis tractable, we further impose three more assumptions.

First, we specify 1() = 0 for a  × 1 parameter vector  as the standard discrete choice
or the Cox’s (1972) MPH models. Second, the interaction weight  is time invariant so that

it is simply denoted as  . Since the main analysis is based on the geographical proximity as a

measure of the interaction weights, this assumption holds naturally. However, as long as  is

predetermined, time varying weight can be considered. Third, knowing that the renewal of the

choice is not highly frequent in the data set (only 42 revisions are made over 383 time periods),

we assume that the expectation for neighbors’ current choices is equal to the previous choices

(i.e., E[] = −1 for all  6=  and ) similarly as Wallis (1980). Using the grouped duration,

we thus define the hazard rate as



³
|

X
 6=−1 

´
= 0()

³
0 + 

X
 6=−1

´
 (11)

from (10) for all  = 1 · · ·   and  = 1 · · ·   , where () = (2) if the hazard is from the

choice −1 to 1, and () = 1−(2) if it is from 1 to −1.
Heckman and Singer (1984) suggest that the distribution of the unobserved heterogeneity 

be nonparametrically estimated in order to avoid any misspecification problem; as the number

of mass points increases, discrete distributions can approximate any distribution arbitrarily well.

The nonparametric estimator, however, is very sensitive to the assumed shape of the baseline

hazard function 0() (e.g., Trussell and Richards, 1985) especially with single-spell data. For
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a possible solution, Meyer (1990, 1995) proposes to use piecewise constant baseline hazard

functions (e.g., Prentice and Gloeckler, 1978) as well as the Heckman-Singer approach. More

precisely, we let the baseline hazard 0() be piecewise constant:

0() = exp () if  ∈ [−1 ), (12)

where 1 = 1  · · ·   =  (with  ≤  ) is a subsequence of  = 1 · · ·   . Such specification
is useful especially when the hazard rate has much fluctuation or frequent peaks. It extracts

common deterministic time trends from the covariates as the standard time effects in panel

regressions. Note that  satisfies log
R 
−1

0 ()  =  for the continuous time case and the

most flexible case is to let  =  so that  = log
R 
−1 0 ()  for all . For the unobserved

heterogeneity, we assume  to be i.i.d. with a discrete distribution with  supports, whose

density is given as

 () =
X

=1
1 { = } , (13)

where E = 1,
P

=1  = 1, 0    1 and 0    ∞ for all  = 1 2 · · · . 1 {·} is the
binary indicator.

3.2 Regularity conditions

Based on the specification (11), (12) and (13) in the previous section, we consider an MPH

model given by

 (|) = exp()
³
0 + 

X
 6=−1

´
 (14)

for some known function  : R→ R+, where  is i.i.d. with density given in (13) and indepen-

dent of  = (
0

P

 6=−1)0. Carruthers, Guinnane and Lee (2010) use a similar method

with the exponential link function as a particular example of (·). The weighted sum of −1

by the interaction weights  can be interpreted as the average influence of other agents’ past

decisions on  that can be understood as the individual ’s expectation on the others’ behavior

or a learning effect. We first assume the following conditions.
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Assumption 2 (failure time) The failure time    0 is independent across  conditional on

 and  for each ;   is independent of the censoring time  for all .

Assumption 3 (unobserved heterogeneity) The unobserved heterogeneity   0 is i.i.d.

of finite mixture (13) with E = 1;  is independent of  and  for all  and .

Assumption 4 (baseline hazard) The baseline hazard 0() is nonnegative and piecewise

constant given by (12) with  =  for all .

Heckman and Singer (1984) assume that the distribution of the censoring variable  is known

and independent of the covariate  to show the consistency of maximum likelihood estimators

with nonparametric unobserved heterogeneity . In our case, the censoring only occurs at

the fixed time  when the panel survey is over, so those assumptions hold naturally. E is

usually normalized to one so that the expected hazard rate becomes the unconditional hazard

rate with no unobserved heterogeneity: E[(|)|] = (), where () = exp()(
0
 +


P

 6=−1). Surely the finite mean condition of  restricts its tail behavior and it is

necessary for identification (e.g., van den Berg, 2001). The number of support points of 

is assumed to be finite and fixed, though identification can be obtained even with increasing

number of supports (e.g., Kiefer and Wolfowitz, 1956; Heckman and Singer, 1984; Meyer, 1995).

We assume further conditions for identifying 0, , , and the distribution of .

Assumption 5 (covariates) (i)  ∈ Z for an open set Z in R+1 and  = (11 · · ·   )0

is of full column rank. (ii) No element of  is constant and at least one argument of  is

defined on the continuum. (iii) The regression function  is nonlinear and differentiable on Z.

Ignoring the social interaction term, Assumptions 3, 4, and 5 yield identifiably of our model (14)

up to a constant multiplication as Elbers and Ridder (1982). In particular, Assumption 3 is the

same as Assumption 1 of Elbers-Ridder; Assumption 4 satisfies Assumption 2 of Elbers-Ridder

because
R 
0
0() =

P
=1 exp() is an increasing function of  ≥ 0; Assumption 5 and the

form of the proportional hazard function satisfy Assumption 3 of Elbers-Ridder. Adding the

social interaction term
P

 6=−1 in  does not change the identification result as long as
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 is of full column rank and  is nonlinear in  (e.g., Brock and Durlauf, 2001b). Note that

the duration model we consider here does not depend on the durations of others directly; instead

the durations are dependent indirectly by including the choice-dependent term 
P

 6=−1

in the hazard rate. The identification in this case, therefore, can be obtained as the standard

MPH models by considering 
P

 6=−1 as another predetermined regressor, which becomes

much simpler than checking the self-consistent condition under duration dependence like Brock

and Durlauf (2001b, Ch.4.2). One remark is that there is no endogeneity issue in this case

because the random private utility  in the previous section is assumed to be exogenous and

each individual makes decisions myopically. That is, the current decision is based on the current

values of observable covariates  only and thus no simultaneity issue arises. The following

condition is on the interaction weight  , where we let  be the ×  matrix whose ( )-th

element is  .

Assumption 6 (interaction weight matrix) (i) The interaction weight matrix  is prede-

termined and correctly specified; (ii) each element of  is nonnegative and all the diagonal

elements are zero; (iii)  is row normalized, i.e.,
P

=1 = 1 for all ; (iv)  is independent

of  for all , and  is not in the range space of  = (11 · · ·   )0.

It is important to assume that the interaction weight matrix  is predetermined and inde-

pendent of . Pre-specifying  outside the model is an easy way to obtain a predetermined

and exogenous  , which prevents any identification problem as pointed by Manski (1993)−the
reflection problem. The independence assumption also guarantees the absence of endogene-

ity problems since all the diagonal elements of  are zero by construction and Assumption 3

holds. Keeping the interaction weight matrix  out of the covariate space prevents any possi-

ble multicollinearity problem between  and
P

 6=−1 in the index structure. The row

normalization condition is standard in spatial econometrics literature (e.g., Anselin and Bera,

1998), which prevents the weighted sum
P

 6=−1 from exploding under the in-filling as-

ymptotics (i.e., increasing the number of observations within a fixed boundary). It controls the

degree of cross sectional dependence so that the standard M-estimator has proper asymptotic

properties (e.g., Kelejian and Prucha, 1999; Lee, 2004).
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4 Estimation via EM Algorithm

4.1 Log-likelihood function

We let  be the binary censoring indicator equal to one if the duration of  is censored in the

-th interval [− 1 ). Apparently,  = 1 implies +1 = 1 for all  and the censoring variable
 corresponds to the smallest  that gives  = 1.

We consider the individual , who drops out of the sample in the -th interval [ − 1 )
either by exiting the initial state ( = 0) or by censoring ( = 1). If the panel is balanced,

 =  for all . If we ignore conditioning on the initial state, the conditional log-likelihood

function on the unobserved  is then given by

log ( |) =

X
=1

 log
¡
1− exp ¡− exp ¡¢ ¡0 + −1

¢

¢¢

(15)

−
X
=1

−1X
=1

exp ()
¡
0 + −1

¢


from (14) similarly as Prentice and Gloeckler (1978) and Meyer (1990, 1995), where  = 1 −
 ,  = (1 2 · · ·   )0 and  = (0 )0. We also denote −1 =

P
 6=−1 with

−1 = (1−1 · · ·  −1)0 for  = 0. Integrating (15) over the distribution of  yields the

unconditional log-likelihood given by

log ( ) =

X
=1

 log ( | = ) . (16)

Note that, however, the ML estimation is not appropriate on the mixture model (16) since the

parameters of the heterogeneity distribution are not guaranteed to lie on the interior of a compact

set (e.g., Heckman and Singer, 1984; Lancaster, 1990, Chapter 8.4; Lee, 2000). Moreover, many

studies report that the ML estimation of mixture models has convergence problem when the

models have both the piecewise constant baseline hazard and the finite mixture unobserved

heterogeneity.

For estimation, we instead use the EM (Expectation-Maximization) algorithm (e.g., Demp-

ster, Laird and Rubin, 1977), which was originally invented to deal with inference in models
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imposing missing data. In our case, the unobserved heterogeneity  is essentially a problem

of missing data. To fix this idea, we consider an alternative expression of the conditional log-

likelihood function (15) for individual  as

log ( | = ) =

X
=1

 log
∗
 (  ) , (17)

where  = 1{ = } for all  = 1 · · ·   and  = 1 · · ·  and

log∗ (  ) =  log
¡
1− exp ¡− exp ¡¢ ¡0 + −1

¢

¢¢

(18)

−
−1X
=1

exp ()
¡
0 + −1

¢
 .

Note that  is unobservable and it can be viewed as missing data satisfying log  () =P
=1  log  for the prior probabilities  ( = 1 2 · · · ) from (13). Hence the uncondi-

tional joint log-likelihood function of both the observed and the unobserved items is defined

as

log (Θ) =

X
=1

{log  () + log ( |)} =
X
=1

X
=1

 {log  + log∗ (  )} , (19)

where Θ = (0 0 1 · · ·   1 · · ·  −1)0 is the complete parameter vector, provided that the
known distribution function (·) is free of additional unknown parameters. Note that  is

automatically determined from the restriction of probabilities,  = 1−
P−1

=1  .

4.2 EM algorithm

The EM algorithm proceeds in two steps. The E-step calculates the conditional expectation of

 given observed data  and  = { = (0−1)0 : 0 ≤  ≤ } and given the likelihood
∗ evaluated at the current parameter estimates. It can be shown that the posterior probability

of  =  is derived as

E
¡
 | 

¢
=


∗
 (  )P

=1 
∗
 (  )

≡  for all  = 1 · · ·   and  = 1 · · · . (20)
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If we let b denote  evaluated at the current parameter estimates, substituting b for  in
(19) gives the outcome of the E-step:

 (Θ) =

X
=1

X
=1

b log  + X
=1

X
=1

b log∗ (  ) . (21)

Then, the M-step consists of maximizing  (Θ) with respect to Θ, which only requires numerical

maximization of log∗ (  ). Maximization with respect to  ’s has an explicit solution asb = −1
P

=1 b from a general result in finite mixture models (e.g., Everitt and Hand, 1981).

We iterate the entire E and M-steps until the estimates converge.

The initial values for the EM algorithm can be chosen from the ML estimates of the dura-

tion model without unobserved heterogeneity  () = exp()(
0
+−1). We then start

the EM algorithm on the duration model with unobserved heterogeneity  (|) = exp( +

)(
0
+−1), where  = exp(), using the first step ML estimates (01 · · ·  0  0 0)

and arbitrary (0 0) as the initial values. Note that the reparametrization  = exp() is

convenient in solving the maximization problem since we do not need to impose restrictions

on the sign of unobserved heterogeneity (i.e., 0    ∞ holds for any ). For the dis-

tribution of , we start with two points of support (1 2) and keep adding more points of

support as long as all the estimates b are distinct. Leaving the mean of  unrestricted, we
omit the first term of baseline hazard (i.e., 1 = 0) so that the parameter to estimate is

Θ = (2 · · ·    0  1 · · ·   1 · · ·  −1)0. The Simulated Annealing (e.g., Goffe et al.,
1994) grid search is helpful to find or confirm the global maximum.

The EM algorithm is known to be robust to the choice of initial values and practically

guarantees convergence to at least a local maximum. One of its disadvantages is that it dose not

provide standard errors as an immediate by-product unlike the Newton-Raphson type methods.

Louis (1982), Meng and Rubin (1991), Guo and Rodriguez (1992) and Oakes (1999) propose a

way to find a positive-definite observed information matrix within the EM algorithm framework,

from which we can obtain the asymptotic variance matrix. More precisely, under the regularity

conditions, Louis (1982) shows that the observed information matrix I (Θ) can be obtained as
I (Θ) = E

³
2

ΘΘ0 log (Θ)
´
− V

¡

Θ
log (Θ)

¢
,where  (Θ) is the complete data likelihood
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function in (19). The expectation E (·) and variance V (·) are taken over the conditional
distribution of  given the observed data { }=1. As noted in Guo and Rodriguez (1992), the
first term of I (Θ) can be interpreted as the conditional expectation of the observed information
when  is observed, whereas the second term represents the missing information associated with

the conditional distribution of  given the observed data. The explicit form of the observed

information matrix I (Θ) in our model is given in the Appendix.

5 The Passage of the Motorcycle-Helmet-Use Law

5.1 Data

Motorcycle-helmet-use (MHU) law The history of each state’s coverage of the MHU

law is obtained from the Insurance Institute for Highway Safety (www.iihs.org/laws/helmet_-

history.html). In our model  = 1means state  chooses the universal MHU law while  = −1
denotes all choices other than the universal law, which includes not only repealing the law but

also passing the partial MHU law. Note that the partial MHU law applies only to young riders

under a certain age (e.g. not older than 17) and adult riders either inexperienced (e.g. instruction

permit holders) or without sufficient medical insurance. So the proportion of riders covered by

the partial law is rather small. Under such definition, we have 15 states with no revision and

33 states with revisions. More precisely, we have 27 states with one revision, 4 states with 2

revisions, and other two states with 3 and 4 revisions, respectively, during the study period.

Among these 42 revisions, 34 cases are from −1 to 1 (i.e., adopt the universal law) whereas 8
cases are from 1 to −1 (i.e., repeal or reduce the universal law). Even though we have the dates
of law changes, we set the unit of time as a month because of the availability of covariates, so

that the entire sample period is 383 months (from February 1975 to December 2006;  = 383)

for 48 states excluding Hawaii and Alaska ( = 48).

Though the study period is long, number of passages is limited and the baseline haz-

ard  does not change frequently. To estimate the piecewise constant baseline hazard (12)

more efficiently, we group the time periods into four such that they reflect the history of

legislating activities regarding to the MHU law during the sample period as follows (source:
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www.iihs.org/research/qanda/helmet_use.html):

• From Feb. 1975 to Dec. 1978 ( 1 ≤  ≤ 47): In 1966, the Highway Safety Act was introduced
by the federal government, which required states to have the mandatory MHU law if they wanted

to receive federal funds for highway maintenance and construction. 47 states had complied by

1975; but in 1975, Congress withdrew it and half of the states had repealed the law within three

years.

• From Jan. 1979 to Dec. 1991 ( 48 ≤  ≤ 203): There were no special activities to remark.
• From Jan. 1992 to Sep. 1995 ( 204 ≤  ≤ 248): In the Intermodal Surface Transportation
Efficiency Act of 1991, signed by President Bush in December 1991, Congress created incentives

for states to enact helmet and safety belt use laws. States with both laws were eligible for special

safety grants, but states that had not enacted them by October 1993 had up to 3 percent of

their federal highway allotment redirected to highway safety programs.

• From Oct. 1995 to Dec. 2006 ( 249 ≤  ≤ 383): Four years after establishing the incentives,
Congress again reversed itself. In the fall of 1995, Congress lifted federal sanctions against states

without MHU laws, paving the way for state legislatures to repeal the MHU laws.

Figure 1 shows the status of choices at four selected time periods,  = 1, 47, 248 and 383. Shaded

states have no requirement or maintain the partial MHU law (i.e.,  = −1).

[Figure 1 is about here]

Note that we define two types of spells and failures: “type −1 spell” (“type 1 spell”) denotes
a spell in which individual  stays with  = −1 ( = 1) throughout. An individual starts

“type −1 spell” if her choice changes from 1 to −1 (i.e., “(1 : −1)-failure”) and starts “type 1
spell” if her choice changes from −1 to 1 (i.e., “(−1 : 1)-failure”). Each spell ends by either a
new choice (i.e., a failure) or censoring then the other type of spell starts. Figure 2-(a) depicts

the Kaplan-Meier estimator for survivor function on both types of failures where the vertical

lines separate the time period as described above. In more details, Figure 2-(b) plots the two

Kaplan-Meier estimators by the type of failures separately. We observe that all the failures in

the first period are in “(1 : −1)-failure”. Big drop at the beginning of the third period accounts
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for a revision from a partial to universal coverage in California. (The records show that only two

states expanded the coverage during the third period: California expanded the law to universal

coverage in January 1992 and Rhode Island expanded coverage to operators 20 years-old and

younger in July 1992. In our definition of revision, however, only California’s revision counts.)

Finally most revisions in the last period are in “(1 : −1)-failure”. It suggests that when the
Federal government lifted the incentive to adopt the universal MHU law, states reacted quickly

to repeal or reduce the law as shown in the first and the last period. States, however, have the

incentive to adopt the universal law voluntarily as shown in the second period group where no

incentive or requirement was given by the Federal government.

[Figure 2 is about here]

Social interactions To analyze the social interaction between neighboring states, we consider

the 48 contiguous states excluding Hawaii and Alaska, where the neighborhood is defined based

on the geographical locations. More precisely, if two states are adjacent or share borders, then

they are defined as neighbors:  =  = 1 if  and  are neighbors to each other,  = 0

otherwise. We naturally assume that the neighborhood is time invariant in this case. We redefine

 by dividing it by the total number of borders shared (i.e., total number of neighbors) of state

, to make it as a well-defined weight as well as row-normalized (i.e.,
P

=1 = 1).

Considering geographical locations as a measure of the social-dependence measure is intu-

itive in this particular example, even after controlling for any geographical, meteorological and

cultural similarities among the states. Motorcyclists frequently traveling between state borders

would like to have a homogenous regulation between them. Insurance companies may present

the data comparing fatality rates across state border to emphasize that introducing the universal

MHU law reduces the probability of mortality. If we regard a state’s decision on the coverage

law as a conclusion of the residents’ consensus, therefore, the geographical proximity would be

a strong factor to measure the social distance in this decision making procedure.

Control variables National Highway Traffic Safety Administration (NHTSA) maintains the

Fatality Analysis Reporting System (FARS), which contains monthly fatality data from 1975
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by the vehicle types. In this study, we count fatalities occurred by motorcycles only excluding

mopeds, mini-bikes and motor scooters, and use the fatality rates per population. Since each

state can only observe the fatality rate up to previous month at each time, we include the

fatality rate lagged by one month. The number of registered motorcycles is provided by the

Federal Highway Administration (FHWA). National Climate Data Center (NCDC) by National

Oceanic and Atmospheric Administration (NOAA) provides the mean number of days in a month

with precipitation 0.01 inch or higher, which could control for seasonality.

Table I: Definitions of Variables and Summary Statistics

Variable Description Mean Std.Dev Min Max

LRoadway Total public road and street mileage -2.750 0.795 -5.271 -1.184

in million miles in log scale

Elevdiff Difference between highest and lowest 0.525 0.042 0.003 0.148

elevation in ft divided by 100,000

LPrecip Mean number of days in a month -0.133 0.367 -1.984 0.514

with precipitation .01 inches or higher

divided by 10 then logarithms taken

Population Total population divided by a million 4.967 5.209 0.334 34.55

Registered Number of registered motorcycles 1.011 1.074 0.012 7.457

divided by 100,000

FatalRate Number of fatalities in the previous 0.232 0.430 0 2.995

month divided by Population

NbhdAvg Average decisions of neighbors 0.333 0.662 -1 1

in the previous month

Table II: Correlation between Variables

LRoadway ElevDiff LPrecip Population Registered FatalRate NbhdAvg

LRoadway 1

ElevDiff 0.094 1

LPrecip -0.188 -0.455 1

Population 0.499 0.038 -0.084 1

Registered 0.493 0.084 -0.147 0.844 1

FatalRate -0.319 0.031 0.001 -0.311 -0.262 1

NbhdAvg -0.103 -0.219 0.193 0.202 0.033 -0.224 1

17



Tables I and II summarize the variables used in the estimation and their descriptive statistics.

LRoadway, ElevDiff and LPrecip represent the possibility of accident occurrences; ElevDiff and

LPrecip represent the driving condition in each state. States have more incentive to adopt the

universal MHU law for higher values of LRoadway, ElevDiff or LPrecip, and we expect the

coefficients for these three covariates to be positive. Population and Registered represent the

pressure of two conflicting opinions. Although they are naturally highly correlated, their effects

on the choices of states are in the opposite direction. That is, as population grows, more car

drivers are expected and so is higher pressure to introduce or maintain the universal MHU

law. On the other hand, as the number of registered motorcycles rises, motorcyclists’ opinion

becomes more substantive. With regard to the state’s decisions on the MHU law, the coefficient

of Population is thus expected to be positive while that of Registered be negative.

The covariates FatalRate and NbhdAvg are of the particular interest. The fatality rate is

expected to have a high positive impact on the hazard rate for “(−1 : 1)-failure.” That is, if a
state’s safety concern is sufficiently substantial, it tends to have the universal MHU law when

the previous fatality rate is high. Also, the effect of NbhdAvg is anticipated to be highly positive

when the social interactions matters in this decision making. Note that the positive coefficient

of NbhdAvg means that as more neighboring states adopt the universal MHU law, the higher

hazard rate for “(−1 : 1)-failure” (i.e., revision of choice from −1 to 1) the state would encounter
if it does not currently enforce the universal MHU law. At the same time, if the universal law is

currently effective in the state, the hazard rate for “(1 : −1)-failure” (i.e., revision of choice from
1 to −1) decreases with the positive coefficient of NbhdAvg. In other words, the probability rate
that the state would repeal or reduce the universal law becomes lower as more neighbors adopt

the universal law.

5.2 Estimation results

For estimation, we assume the logistic specification for (·) in (7). More precisely, conditional
on , we assume that ( ) follows the i.i.d. type I extreme value distribution with scale

parameter   0 so that () = exp()[1 + exp()] for all −∞    ∞. For the

identification purpose, we assume the unit scale parameter ( = 1). In addition, since the
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decisions can be in both directions (i.e., 1 to −1 by repealing the law and −1 to 1 by adopting the
law), we specify the duration model as  (|) = exp()−1(0+

P
 6=−1), where

−1 () = (2) if −1 = −1 and 1−(2) if −1 = 1. Then the analysis becomes similar

to a multi-spell duration analysis by letting the spell ends if any revision of the law is effective; the

identification and estimation strategies in the previous sections can be readily extended. In this

case, more precisely, the log-likelihood function is given by averages over all spells  = 1 · · · 
as

log ( |) (22)

=

X
=1

X
=1

X
−1
∈{−11}

() log
³
1− exp

³
− exp( ()) ()−1

³
0
 ()

 +  ()−1
´


´´

−
X
=1

X
=1

 ()−1X
= ()

X
−1
∈{−11}

exp ()−1
¡
0 + −1

¢
,

where the -th spell of individual  is from  () to  () and () is the censoring indicator of

the spell . In this context, we could understand the model as an alternating state model, where

each spell does not rely on the history of events occurred before. Therefore, the interpretation

of the sign of ( 0)0 should be such that the positive values accelerate “(−1 : 1)-failure” that
corresponds to the higher probability rate of switching from −1 to 1. Negative values, on the
other hand, accelerate “(1 : −1)-failure” and decelerates the “(−1 : 1)-failure” at the same time.
It thereby represents the lower probability rate of switching from −1 to 1.

Table III summarizes the estimation results. The first two columns show the ML estimates

obtained without unobserved heterogeneity. When NbhdAvg is omitted, all estimates except for

Elevdiff are highly significant but the signs for LRoadway and FatalRate are in the opposite

direction to what were expected. Signs of all the estimates except for LPrecip and FatalRate

are as expected when the social interaction NbhdAvg is taken into account. Note that, however,

the estimates for LPrecip and (especially) FatalRate are not significant at the 5% level, while

the effects from social interactions is highly significant.
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Table III: Estimation Results

No Unobs. No Unobs. With Unobs.

Hetero. I Hetero. II Hetero.

LRoadway -0.650∗∗ 0.354∗∗ 0.346∗∗

(0.059) (0.073) (0.057)

Elevdiff 3.549 3.243 1.759

(2.170) (2.134) (2.099)

LPrecip 1.043∗∗ -0.023 -0.599∗

(0.264) (0.248) (0.329)

Population 0.400∗∗ 0.255∗∗ 0.127∗∗

(0.015) (0.067) (0.022)

Registered -1.579∗∗ -1.519∗∗ -0.705∗∗

(0.070) (0.237) (0.103)

FatalRate -0.917∗∗ -0.051 0.227

(0.230) (0.205) (0.341)

NbhdAvg 4.124∗∗ 1.106∗∗

(0.327) (0.232)

Base. Hazard: 2 -6.131∗∗ -5.369∗∗ -1.569∗∗

(0.016) (0.013) (0.358)

3 -6.158∗∗ -5.580∗∗ -2.854∗∗

(0.248) (0.488) (0.563)

4 -6.106∗∗ -5.605∗∗ -1.935∗∗

(0.010) (0.023) (0.352)

Unobs. Hetero.: 1 0.036∗∗

(0.006)

q2 0.000∗∗

(0.000)

p1 0.688∗∗

(0.109)

Log-Likelihood -767.588 -579.465 -238.370

Note: ML estimation is used for the case without unobserved heterogeneity, whereas EM method is

used for the case with unobserved heterogeneity. Numbers in parentheses denote standard errors. ∗

and ∗∗ represent significance at 10% and 5%, respectively.

The last column of the table displays the estimates of the MPH model assuming two levels

of heterogeneity (1 2) using the EM algorithm with the simulated annealing to find the global

maximum. The values on the second column are used for the initial values. We set 1 = 0,

whereas the values of 1 and 2, and accordingly the mean of , are left unrestricted. Signs of all
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the estimates are as expected except for LPrecip though it is not significantly different from zero

at the 5% level. For other covariates, LRoadway is the only significant variable that affects the

decision of the MHU law. It suggests that the driving condition is not an important factor when

the policy makers decide the level of the MHU law. However, as the total length of road grows,

the state tends to have a stricter MHU law. Both parameters for covariates Population and

Registered, which represent the pressure of two conflicting opinions, are significantly different

from zero at the 5% significance level and are signed as expected.

Note that the sign of the estimates for FatalRate is as expected in the full model although it

is not significant at the 5% level. However, the statistical insignificance does not mean that the

MHU law is ineffective on the fatality rate. The estimation result in Table III only suggests that

the previous fatality rate is not relevant when a state considers revision of the current MHU law.

On the other hand, the estimates for NbhdAvg is significantly positive at the 5% level, which

suggests that the policy makers in each state tend to make a parallel decision with neighboring

states. It explains a behavioral aspect of the states’ legislative decision making procedure (i.e.,

social interactions) and empirically shows how the proximity between states affects their decision

making.

To show the magnitude of effect on hazard rate by each covariate, Table IV reports the

averaged elasticities of hazard rates for each covariates. For log-transformed covariates (LRoad-

way and LPrecip), the values are obtained with respect to the percentage change of the original

levels. For NbhdAvg, the values are obtained by the change in one of the neighbors’ choices

from −1 to 1 (e.g., Halvorsen and Palmquist, 1980). Note that elasticities do not depend on
the baseline hazard by virtue of the proportional hazard specification. A 10% increase in total

length of public roadway (Roadway) leads to 4.01% increase and 2.91% decrease in the hazard

rate for “(−1 : 1)-failure” (i.e., likelihood to introduce the law) and “(1 : −1)-failure” (i.e.,
likelihood to repeal or reduce the law), respectively. Same movements are found for Precip,

Population and FatalRate. The percentage change in the elevation difference (Elevdiff ) would

not induce much of percentage changes in hazard rates. On the other hand, 10% increase in

the number of registered motorcycles (Registered) results in 9.12% decrease in hazard rate for

“(−1 : 1)-failure” whereas 5.13% increase in that for “(1 : −1)-failure.” Finally, when a neigh-
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bor changes its choice from −1 to 1, 169.9% increase in hazard rate for “(−1 : 1)-failure” and
37.9% decrease in hazard rate for “(1 : −1)-failure” are obtained, respectively. It shows that,
as the elasticity by a neighbor’s choice turns out substantially high, each state indeed reacts to

the neighbors’ decisions very sensitively. However, the degree of sensitivity is not symmetric:

pressure from social interactions with neighboring states is higher, on the average, toward the

direction to adopting the universal law than the other way around.

Table IV: Elasticities of Hazard Rates

Elasticity for “(−1 : 1)-failure” Elasticity for “(1 : −1)-failure”

Roadway 0.401 -0.291

Elevdiff 0.103 -0.082

Precip -0.694 0.504

Population 0.706 -0.555

Registered -0.912 0.513

FatalRate 0.312 -1.046

NbhdAvg 1.699 -0.379

Note: Letting [] = exp()(
0
 + 

P
 6=−1) for  = −1 1, the table rep-

resents averaged estimates of the elasticities  log b[] log  over the observations. Elas-
ticities for Roadway and Precip are calculated with respect to the change of Roadway and Precip

before taking logs. Elasticities for NbhdAvg is obtained as (e.g., for the case of “(-1:1)-failure”)

(b [−1] − b[−1])b[−1], where b [−1]) is the counterfactual hazard rate when one of the
neighbors changes from -1 to 1, whereas b[−1] is the original hazard rate estimate.

Finally, the estimation result of the baseline hazard in the full model with unobserved het-

erogeneity (the last column of Table III) shows that the piecewise baseline hazard estimate

(exp(b1) · · ·  exp(b4)) = (1000 0208 0058 0144) are all highly significant. It well demon-

strates the overall behavior of the states, which corresponds to the common trend of the historic

changes of the federal regulations as summarized in the previous subsection. Note that the

baseline hazard during the third period is substantially low, which shows that the incentives for

states to enact the MHU law turned out to be not so effective.
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For the levels of heterogeneity, the higher level (b1), which corresponds to the states that
have higher tendency to change the law, is much larger than the lower level (b2) and the overall
probability assigned to the former is about 2.2 times higher than that associated with the latter.

As the estimates converge, the posterior probabilities (b1 b2) for each state  converges to the
extreme values either 0 or 1. Figure 3 shows that the posterior probabilities correctly describe

each state’s behavior of changing the MHU law in that all states who have revised their law at

least once are assigned to higher level of unobserved heterogeneity and vice versa. Note that

in contrast to the standard duration data, in which a high-risk group is likely to have early

events, a high-risk group in the longitudinal case appears to have frequent events, which can be

described the faster rate of the Poisson process with higher level of .

[Figure 3 is about here]

6 Concluding Remarks

The mandatory MHU law is a long-debated issue. One concerning safety supports the universal

MHU law (e.g., Houston and Richardson, 2007; Muller, 2004; Weiss, 1992), which is mainly

backed by automobile drivers (i.e., non-motorcyclists) and insurance companies. The opposite

opinion adheres to the idea that wearing a helmet is a personal choice: Motorcyclists and

liberalists insist that society’s role is not to mandate personal safety but rather to provide

the education and experience necessary to aid people in making these decisions for themselves.

Moreover, even though it is a common wisdom that wearing helmets reduces the mortality

in motorcycle accidents, medical evidences are still controversial (e.g., Cooter, et al., 1988;

Goldstein, 1986; Huston and Sears, 1981; Krantz, 1985; Stolzenberg and D’Alessio, 2003).

Though we aware such a long debate on the mandatory MHU law, we do not attempt to

answer to this question in this paper. The main point of this paper is to find the evidence that

the coverage of the MHU law in a state is spatially dependent on neighboring states’ coverage.

We develop a model analyzing states’ decision on the coverage of the MHU law. Reflecting the

fact that each decision making can be only realized at certain times, a hazard model naturally

follows. In particular, we introduce a grouped mixed proportional hazard (MPH) model with
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social interactions, which serves as the econometric foundation of the states’ choice model. Note

that, however, this hazard model is different from the cross-sectional duration dependent models

(e.g., Sirakaya, 2006) since the social interaction is based on others’ discrete choice variables

instead of the durations.

Based on the fact that not many revisions were made, we assume that the decisions are

myopic. As a natural extension, a fully dynamic model incorporating a forward-looking behavior

of agents is to be developed.
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Appendix: Derivation of the observed information matrix

Louis (1982) shows that the observed information matrix I can be obtained as

I (Θ) = E
µ

2

ΘΘ0
log (Θ)

¶
−V

µ


Θ
log (Θ)

¶
≡ I1 (Θ)− I2 (Θ) .

We investigate these two terms separately. The multi-spell case in Section 5 can be handled

similarly using the generalized log-likelihood (22).

Complete data information matrix I1 (Θ) Under the regularity conditions, it can be ob-

tained as I1 (Θ) = −2 (Θ) ΘΘ0 from the E-step. More precisely, from the formula (21)

and for individual ,

 (Θ) =

X
=1

b log  + X
=1

b ( log ¡1− exp ¡−

¢¢− −1X
=1



)
,

where  = exp()(
0
). Since the maximization procedures of  and (  ) can be sep-

arated, the Hessian matrix of  (Θ) is block diagonal. In particular, for  = 1 · · ·   and

 = 1 · · · ,




 (Θ) =

X
=1

b ( 
exp
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−1X
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,




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
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
− b


(for  = 1 · · · − 1)

with  = 1−
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=1  , where Ψ
(1)
 =  = exp()

(1)(0). We let
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

exp
¡−

¢
1− exp ¡−

¢ . (A.1)

Then, for   = 1 · · ·   and   = 1 · · · , we have

2 (Θ)


=

X
=1
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,
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All other terms are zero since 2 (Θ) ΘΘ
0 is block diagonal.

Missing information matrix I2 (Θ) From (19), we have
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where  is defined as (A.1). We let



 = 1{ = }−

−1X
=1

1{ = },


 = Ψ

(1)

−

−1X
=1

Ψ
(1)
 ,



 =  −

−1X
=1

.

Then, since  ( ) =  (1− ) 1{ = } for   = 1 · · ·  from the definition of  ,

where the covariance (·) and the variance V(·) are taken over the conditional distribution
of  given the observed data { }=1, we derive that

V

µ
 log (Θ)



¶
=

X
=1

 (1− )



0
 ,



µ
 log (Θ)



 log (Θ)



¶
=

X
=1

 (1− )

 


 1{ = },



µ
 log (Θ)



 log (Θ)



¶
=  (1− )

¡




¢2
1{ = },



µ
 log (Θ)



 log (Θ)



¶
=

 (1− )

2
1{ = }+  (1− )

2

for   = 1 · · ·   and   = 1 · · · . Similarly,



µ
 log (Θ)



 log (Θ)



¶
=

X
=1

 (1− )




 ,



µ
 log (Θ)



 log (Θ)



¶
=  (1− )





,



µ
 log (Θ)



 log (Θ)



¶
=

 (1− )



,



µ
 log (Θ)



 log (Θ)



¶
=  (1− )





,



µ
 log (Θ)



 log (Θ)



¶
=

 (1− )




 ,



µ
 log (Θ)



 log (Θ)



¶
=

 (1− )




1{ = }

for  = 1 · · ·   ,  = 1 · · ·  and  = 1 · · ·  − 1. The missing information matrix is then
given by I2 (Θ) =

P
=1V ( log (Θ) Θ), where V ( log (Θ) Θ) consists of covariance

matrices obtained above conformably with the array of parameters Θ in (A.2). ¤
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(a) Status as of Feb 1975 (t = 1) (b) Status as of Dec 1978 (t = 47)

(c) Status as of Sep 1995 (t = 248) (d) Status as of Dec 2006 (t = 383)

Figure 1. History of Helmet Use Law
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Figure 2. Kaplan-Meier Estimator for Survival Functions

(a) Number of law changes (b) Probability assigned to higher level of
heterogeneity (q̂2)

Figure 3. Law Changes and Heterogeneity
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