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ABSTRACT 
 Designers faced with the task of developing the next model 

of a brand must balance several considerations.  The design 

must be novel and express attributes important to the 

customers, while also recognizable as a representative of the 

brand.  This balancing is left to the intuition of the designers, 

who must anticipate how all customers will perceive the new 

design.  Oftentimes, the design freedom used to meet a styling 

attribute such as aggressiveness can compromise the 

recognition of the product as a member of the brand.  In this 

paper, an experiment is conducted measuring change in ten 

styling attributes common to both design freedom and brand 

recognition for automotive designs, using customer responses 

to vehicle designs created interactively.  Results show that, 

while brand recognition is highly dependent on the particular 

manufacturer, tradeoffs between design freedom and brand 

recognition may be measured using predictive models to inform 

strategic design decisions. 

 

1 INTRODUCTION 
In developing the next generation of an existing vehicle 

model, an automotive designer must make strategic tradeoffs 

between competing considerations.  One consideration is the 

human desire for novelty, as the appeal of the current model 

fades with time [1], [2].  Another consideration is the desire for 

consistency with past designs, often referred to as brand 

character.  Much as there is ―family resemblance‖ among 

members of a family, the designer seeks to maintain a 

recognizable brand character among all the brand‘s members.  

Any deviation from the past may reduce the new design‘s 

association with the brand, as how well as how it conveys 

attributes known to be important to the target customers (e.g., 

luxuriousness) [3]. 

Particularly for the automotive industry, brand loyalty is a 

significant driver of customer purchase decisions. Brands such 

as BMW and Cadillac have taken more than 100 years to build 

a brand reputation; oftentimes, in stated customer responses, 

brand is near or at the top in influencing purchase decisions [4].  

By maintaining brand recognition, the equity of the brand may 

be leveraged for new products, thus influencing customer 

preference [5]–[8]. 

At the same time, design freedom, sometimes called design 

―reach,‖ is the extent to which designers are able to deviate 

from past designs.  This extent significantly contributes to a 

corporation‘s innovation capacity and market competitiveness 

[9]–[11]. Previous studies have shown that vehicle 

manufacturers that focus on maximizing designer freedom for 

vehicle styling are more likely to capture market share, 

particularly during early stages of the product life cycle [12]. 

Consequently, both design freedom and brand recognition 

are competing considerations during the design process that 

must be traded off with each other.  Strategic design decisions 

involving tradeoffs between styling design freedom and brand 

recognition are paramount to realizing market success in the 
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future [13]—akin to musicians aiming to produce their next 

great hit while still sounding true to themselves. 

Within academia, balancing between design freedom and 

brand recognition has been studied extensively in the product 

innovation and styling strategy literatures, with a consensus that 

there is an optimal amount of deviation from previous designs 

[14], [15].  Within industry, it is known that given too little 

design reach relative to the market‘s desire for change and the 

brand‘s history of change, the product appears weak and stale: 

given too much reach, the customer reaction may be anxiety 

and discomfort [16].  If the reach is in the wrong direction, 

because it either violates the brand‘s identity or strays from the 

benefits desired by the target market, the product may fail to 

meet its objectives [17]. 

In this study, we measure how brand recognition and 

design freedom interact and trade off with each other for four 

automotive vehicle brands—Audi, BMW, Cadillac, and Lexus.  

To make such measurements, we decompose both brand 

recognition and design freedom to a common set of styling 

design  attributes—an approach supported by psychology and 

design research suggesting styling design attributes such as 

‗aggressiveness‘ may be more representative of visceral human 

perceptions of design than geometric design variables such as 

‗120 cm vehicle grill‘  [18]–[20].  By manipulating the values 

of these styling design attributes rather than geometric design 

variables, we are able to trace relative changes in both design 

freedom and brand recognition better. 

Manipulation of these design attributes, however, still 

requires a mapping from the geometric design variables that the 

designer controls: We cannot simply dial up the 

‗aggressiveness‘ of the vehicle, but we can decide the width of 

the wheelbase.  Accordingly, we build on a general 

methodology common in the design community—determining 

the values of design attributes as functions of the underlying  

geometric design variables using customer responses [21]–[23]. 

A key difference in our approach, however, is that we do not 

explicitly model the functional form of the nonlinear mapping 

between styling attributes and geometric variables.  Instead, we 

crowdsource this mapping as a black-box function that exists in 

the minds of the customers. 

An experiment is conducted involving three steps: (1) 

determination of styling attribute values for existing vehicles 

using a Markov chain derived for partial rankings over 

customer responses to 2D design representations, (2) generation 

of new conceptual designs using morphable 3D design 

representations, and (3) determination of design freedom and 

brand recognition via deviations of both styling design 

attributes and geometric design variables using a proposed 

design freedom distance metric and conditional multinomial 

logit model.  Customer responses and new concept designs are 

gathered using an online interactive survey comprised of 

sequential design evaluation and design generation stages using 

both two-dimensional (2D) images and three-dimensional (3D) 

morphable vehicle models rendered in real time. 

Results show that there is indeed a tradeoff between brand 

recognition and design freedom according to the proposed 

design freedom metric.  This tradeoff is predicted to affect 

BMW and Cadillac the most, suggesting that these brands face 

greater challenges to maintain brand recognition while evolving 

the styling of future vehicles.  The tradeoff is less conclusive 

for Audi and Lexus, as these brands are found to have low 

absolute brand recognition across a number of customers 

surveyed throughout the world. 

The main contribution of this work is an extension of 

previous descriptive investigations [24]–[26] of brand 

recognition and design freedom to a predictive investigation 

involving modeling of brand recognition and design freedom.  

While it is often qualitatively recognized that brand recognition 

and design freedom must trade off with each other, we make a 

preliminary inroad to quantitative measurement. This work 

does not attempt to optimize the tradeoff between design 

freedom and brand recognition, as that decision is comprised of 

a multitude of stakeholders—particularly designers, marketers, 

and strategic design managers.  Instead, we posit that the 

present work can augment stakeholder intuition during the 

strategic design decision-making process. 

Additional contributions include: (1) the combined use of 

multiple design representations for predictive modeling 

including styling attributes and more conventional geometric 

variables as have been recently studied [21], [27]–[29]; (2) a 

hybrid combination of parametric models and non-parametric 

representations; (3) the use of realistic, morphable 3D modeling 

techniques in an interactive web-based environment; (4) 

filtering crowdsourced data on ―brand-conscious‖ customers to 

clamp data relevant for this study; and (5) using the crowd as a 

―black box‖ for modeling an implicit nonlinear function 

distributed over a number of people. 

The rest of the paper is structured as follows: Section 2 

describes related work from the design and management fields.  

Section 3 sets up the problem formulation and formalizes the 

notion of design freedom and brand recognition.  Section 4 

discusses the experimental setup. Section 5 gives the results of 

the experiment, including discussion of its implications. Section 

6 concludes with a summary of this study. 

 

2 BACKGROUND AND RELATED WORK 
We build on two major bodies of related literature for this 

study.  From the strategic management and customer product 

innovation communities, we establish foundation using 

qualitative justifications for upholding design freedom and 

brand recognition.  From the design community, we consider 

previous efforts towards measuring tradeoffs between design 

styling and other considerations, as well as methodologies 

towards eliciting customer preferences via various design 

representations. 

 

2.1 Design Freedom and Brand Recognition 
A number of studies have considered the importance of 

design freedom from the perspective of organizational 

innovation capability.  Customers expect novelty in new 

product offerings [1], yet such novelty must be bounded [16].  
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Companies that follow a ―design-driven‖ approach towards 

balancing this tradeoff via strategic design decisions have been 

shown empirically to capture larger market shares [15]. 

The effect of brand recognition on customer preferences 

has been studied in depth for new product offerings [3].  

General conclusions from these studies are that brands are 

comprised of highly complex associations between within-

brand products and features [30], as well as related people, 

places, and out-of-brand products [31].  Particularly because 

vehicles fall under the category of ―durables,‖ namely, products 

where lifecycle use is important to the customer, brand 

recognition plays a very important role [32].  These conclusions 

are aligned with observations in the automotive sector, where 

brand has been shown to be one of the foremost contributors to 

customer preference [4]. 

The current study builds on recent results that have shown 

that the ―face‖ of the vehicle—the view looking directly at the 

front of the vehicle—is most closely associated with vehicle 

brand [25]. Moreover, anecdotal evidence from experienced 

sources within the industry support this notion [33].  

Accordingly, all experiments conducted in this study consider 

the face view of vehicle designs. 

 

2.2 Brand-Conscious Customers 
Brand-conscious customers, able to correctly identify 

brand from unbranded vehicles, are used for filtering the data 

collected in the study.  These brand-conscious customers are 

filtered as data from customers unable to identify brand add 

noise to the construction of predictive models for brand 

recognition. Moreover, appealing to brand-conscious customers 

has been found to be important for premium brands such as 

those considered in this study [34]. 

To identify brand-conscious customers, we filter out 

customers not able to correctly identify brands above a given 

threshold for designs that already exist in the market.  Recent 

literature in crowdsourcing research has shown that data from 

―experts‖ within a crowd, in this case ―brand-conscious 

customers‖ within a crowd, may be aggregated to obtain an 

accurate ‗crowd consensus vote‘ using simple algorithms such 

as majority vote [35], [36]. 

On the other hand, if such filtering on the ―experts‖ in the 

crowd is not done, simple algorithms to aggregate customer 

input may result in heavily biased crowd-level evaluations [37].  

In our case, this may skew estimates of design freedom when 

trading off brand recognition.  Such filtering of customer data 

to guide the design process has been similarly explored by 

using customers to interactively help guide the creative aspect 

of early-stage design [38], [39]. 

 

2.3 Design Representation 
Design representation refers to the method that a design 

artifact is captured to either a computer or a customer during 

one of many steps during the design process [40].  We make the 

distinction between the two as it has been shown that computer 

representations and human representations may be entirely 

different, resulting in the need to construct models and conduct 

experiments in the appropriate space [41], [42].  Moreover, we 

consider three different factors of design representation, 2D and 

3D; parametric and non-parametric; and styling attributes and 

geometric variables. 

 
2D and 3D Representations Recent studies have shown 

that brand recognition is dependent on the fidelity of the design 

representation [25].  Informally, there is a certain level of 

realism to the design that must be achieved for customers to 

correctly identify vehicle brand.  We build on this notion by 

representing vehicle designs using the highest fidelity 

representation possible whether a 2D image or a 3D high 

polygon mesh, as shown in Figure 3 and Figure 4, respectively. 

Studies have also shown that there exist differences 

between 2D and 3D design representations regardless of 

fidelity.  In particular, customer preferences assessed via 

conjoint analysis have been found to be inconsistent when 

contrasting the type of design representation [43]–[45]. 

 

Parametric and Non-Parametric Design representations 

may additionally be categorized as parametric or non-

parametric.  Parametric design representations have numerous 

applications via 2D silhouettes [20], [28], [29], [46]  or 3D 

interpolated Bezier curves [47], [48]; however, perhaps the 

 

Figure 3: Example images shown to customers during the 2D 
representation portion of the experiment.  These images were 
used to assess styling attribute values, as well as brand 
recognition.  Note that these images remained static (were not 
morphed by customers) during the experiment, and did not 
contain brand logos. 

 

 

Figure 4: Example baseline 3D model and customer-morphed 
3D model used during the 3D representation and design portion 
of the experiment.  These models are morphable so that 
customers are able create conceptual designs to achieve a 
given design attribute using the crowdsourced web application.  
Similar to the 2D representation, these 3D models did not 
contain brand logos 
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most realistic 3D interpolated Bezier curves come from design 

research done within the automotive industry [49]. 

In the shape grammar literature, non-parametric design 

representations are used as basic constituent shape elements to 

generate larger and more complex forms. These include 

automotive applications [50], some with focus on vehicle face 

details [24], [51] and vehicle side profiles [52], [53]. 

The present study is qualitatively similar to the shape 

grammar approach in that it employs a design generation 

process where an agent creates new designs, but it is limited in 

scope when contrasting the corresponding design spaces.  In 

particular, shape grammars are able to generate a much larger 

set of possible designs as defined by the Cartesian product of 

grammar enumeration, whereas the design generation 

considered in this study is limited to the convex hull defined by 

the morphing bounds on the 3D design representations. 

In this study, we cast the 3D design representation as a set 

of geometric features that morph not strictly related via a 

mathematical function, but instead requiring pre-defined input 

from professional vehicle designers [33].  This results in a 

hybrid of both parametric and non-parametric design 

representations, where a number of geometric features morph 

the 3D design via Laplacian deformation of its constituent 

polygonal mesh [54].  Note that we only consider static images 

for the 2D design representations in this study. 

 

Visceral Attributes and Geometric Variables While 

geometric variables via 2D and 3D representations, parametric 

or non-parametric, capture the physical form of the design as a 

computer may interpret it, human perceptions are better suited 

to a different representation [2], [19].  In particular, design 

attributes such as ‗Friendly‘ versus ‗Aggressive‘ have been 

shown to be more ‗chunkable‘ in human perceptual 

understanding than variables such as ‗130 cm long airdam‘ 

[19].  

Expanding on the information processing flow in Crilly et 

al. [39], we assume that the perceptual transmission from 

transmitter (designer) to receiver (customer) is conveyed 

through a vector of attribute values representing the design 

artifact. To develop analytical decision-making models [55], we 

further assume that the attributes themselves are functions of 

geometric design variables.  Styling attributes are likely 

nonlinear functions of geometric variables, e.g., slight 

geometric changes in the edges between a smile and a frown 

may make large differences in an attribute such as ‗happiness‘ 

[4].  By gathering customer responses within the space of 

design attributes versus design variables, we are more likely to 

be capturing data representative of human perception [42]. 

 

2.4 Quantitative Models of Product Styling 
Some early work for quantitatively modeling styling and 

aesthetics comes from the marketing community, where 

conjoint analysis has proved valuable [56].  This modeling 

technique takes a number of variables representing the design‘s 

form as input, and uses customer preferences across a set of 

discrete points within the design space. 

The design community has similarly used conjoint analysis 

to model styling form in efforts to optimize customer 

preferences through decision-based design [57]–[59].  Relevant 

examples of such applications include 2D vehicle side view 

silhouettes [20], [28] and 2D vehicle faces [46], [60].  Recently, 

3D vehicles studies such as perceived safety [47] and virtual 

reality studies have been implemented [48].  Some applications 

have used nonlinear conjoint models such as explicit feature 

mappings [61] and implicit feature mappings [47]. 

 

3 PROBLEM FORMULATION 
We formally define brand recognition and design freedom, 

and the manner in which the two are measured.  We 

additionally define how customer responses to conceptual 

designs are aggregated to assess the overall crowd consensus to 

various changes in conceptual designs. 

 Let 𝑓: 𝛢 → ℝ and 𝑔: 𝛢 → ,0, 1- denote design freedom 

and brand recognition, respectively, in which 𝛢 =
*𝐚 = ,𝑎1, … , 𝑎𝑀-: 𝑎𝑚  ∈ ,0,1-+ is the space of styling attribute 

vectors.  Note that as discussed in Section 2, this definition 

assumes the styling design attributes are a common set of 

inputs to both design freedom 𝑓(𝐚) and brand recognition 

𝑔(𝐚), and that both are defined over the set of existing and 

conceptual designs 𝐱 ∈ *𝐱 = ,𝑥1, … , 𝑥𝑁-: 𝑥𝑛 ∈ ℝ+ for an 

associated brand 𝑏 = 1…𝐵.  

These design attributes *𝑎𝑚+1
𝑀 are defined as the building 

blocks of customer perceptual representations of design styling 

[42], as they are representative of how human perception is 

chunked [19].  Informally, humans conceptualize a vehicle 

using terms such as ‗sportiness‘ rather than the huge number of 

geometric design variables that constitute sportiness such as 

‗length of upper airdam.‘ 

The design attributes must be able to be empirically 

manipulated to measure relative changes across brand 

 

Figure 1: Dependencies between design freedom and brand 
recognition, design attributes, and design variables.  Note that 
while design freedom and brand recognition are explicit linear 
functions of design attributes, design attributes are nonlinear 
functions of geometric design variables implicit in the customer 
perceptions of vehicles. On the right hand side, we denote the 
functional form of the associated dependencies 
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recognition and design freedom.  Accordingly, we parameterize 

the design attributes as a nonlinear function of a set of 

predefined geometric design variables denoted *𝑥𝑛+1
𝑁.  We 

make this parameterization to capture the notion that changing 

a given design variable may affect multiple attributes at the 

same time in a complex manner. 

The dependencies of design freedom and brand 

recognition, design attributes, and design variables are shown 

in Figure 1. We next define the functional form of each 

dependency. In particular, we detail the mathematical 

relationship between (1) design freedom and design attributes, 

(2) brand recognition and design attributes, and (3) design 

attributes and design variables.  

 

3.1 L1 Multinomial Logit for Brand Recognition 
We define brand recognition as a linear combination of 

design attributes, in which the attributes maximally 

discriminate between the brands considered in this study. 

To determine the linear coefficients to predict brand, we 

assume a multinomial logistic regression functional form, 

conditioned only on brand-conscious customers and regularized 

using the L1-norm, as given in Equation (1). 

 

 

 

𝑔𝑏(𝒂) =
𝑒𝝎 

 𝒂

∑ 𝑒𝝎 
 𝒂𝐵

𝑏=1

+ |𝝎 |1 

( 1 ) 

 

 

 

To train the coefficients 𝝎𝑏  of this model, we use l-BFGS 

optimization to maximize the penalized multinomial likelihood 

[55].  Note that we use the notation for coefficients from the 

machine learning community; these coefficients are also often 

denoted β in marketing and θ in statistics.  The data is 

conditioned using a hard threshold, where a brand-conscious 

customer must achieve greater than T percentage correct 

recognition of brands across a set of existing designs. 

 
3.2 Design Freedom Distance Metric 

Design freedom is the leeway designers have to generate 

conceptual designs while accounting for many implicit and 

explicit constraints [33]. In this work, we define design 

freedom as a distance from existing designs to a new 

conceptual design.  While design distance metrics have been 

used for engineering specifications and various representations 

[40], [62], these metrics do not accommodate various 

stakeholder input as needed in this study. 

We propose a distance metric between two designs 𝛼 and 𝛽 

for brand b as given in Eq. (2).  This metric is used to assign a 

scalar value that captures both geometric and perceptual styling 

differences between designs. 

This distance metric captures stakeholder considerations to 

the overall design freedom in two ways:  First, design freedom  

 

 ||𝑓𝑏
α − 𝑓𝑏

β
|| = ∑ I𝜔 , ≠0 [𝜆1  .𝑎𝑚

(α) − 𝑎𝑚
(β)
/
2

𝑀

𝑚=1

+ 𝜆2∑.𝑟𝑏,𝑛𝑚,𝑥𝑛
(α) − 𝑥𝑛

(β)
-/
2

𝑁

𝑛=1

] 

 

( 2 ) 

 

 
 

 

𝑎𝑚= design attributes measured using 2D representation 

𝑥𝑛= geometric design variables common to both 2D and 3D  

representation 

𝜆1 = importance parameter of design attributes  

𝜆2 = importance parameter of geometric design variables 

I𝜔 , ≠0 = indicator function if attribute m is important for brand b  

𝑟𝑏,𝑛𝑚 = sensitivity of attribute m to variable n for brand b 

 

implicit in the mind of the customer is captured using 𝑟𝑏,𝑛𝑚 and 

I𝜔 , ≠0, both of which are assessed using the customers crowd.  

Informally, these values capture the notion that differences 

between two designs exists using both geometric and 

perceptual representations in the mind of the customer. 

Second, design freedom explicit from stakeholders within 

the producing organization are captured using 𝜆1 and 𝜆2, which 

may represent, say, relative influences of the marketing and 

engineering departments, respectively.  Informally, we use these 

parameters to tune how important it is to maintain an attribute 

like ―aggressiveness‖ for a marketing campaign, or a certain 

geometric shape for vehicle aerodynamics.  Accordingly, the 

value of this parameter is specific to the corporation being 

considered. 

Using this distance metric, overall design freedom is assed 

as the distance from the current design in MY2014 to a 

proposed design (𝒙′, 𝒂′). Denoting the existing design (𝒙∗, 𝒂∗), 
design freedom for the proposed design is given by Eq. (3) 

using vector notation for brevity. 

 

         𝑓𝑏
′(𝒙′, 𝒂′) = ||𝑓𝑏(𝒙

′, 𝒂′) − 𝑓𝑏(𝒙
∗, 𝒂∗)|| 

                           = 𝜆1(𝒂
′ − 𝒂∗)𝑻 diag[𝐈𝝎 ≠0](𝒂

′ − 𝒂∗) 

                           + 𝜆2(𝒙
′ − 𝒙∗)𝑻diag,𝐑𝐈𝝎≠0-(𝒙

′ − 𝒙∗) 
 

 

( 3 ) 

𝐈𝝎 ≠0 = M x 1 vector of indicator functions for brand b 

𝐑 = N x M matrix of attribute-variable sensitivities 

diag,∙- = operator to transform vectors to diagonal matrices 

 

To calculate the sensitivities of design attributes to design 

variables 𝑟𝑏,𝑛𝑚, we conduct a one-sided t-test between the 

baseline design variable 𝑥𝑛
∗  and the morphed design variable 𝑥𝑛

′  

from customer responses for a given attribute m and brand b.  

This hypothesis test sets the 𝑟𝑏,𝑛𝑚= 1 if the p-value for the t-test 

is less than 0.05, and 𝑟𝑏,𝑛𝑚 = 0 otherwise. 

The values of the indicator function I𝜔 , ≠0 are calculated 

by assigning the value 1 to all non-zero elements of the 

corresponding weight vector described in Section 3.1.  Note 

that this weight vector is already sparse due to L1 

regularization. 
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3.3 Crowdsourced Markov Chain for Design Attributes 

While the representation of the styling design attributes 

and geometric design variables are explicitly defined, both the 

attribute values and the nonlinear function relating design 

attributes to design variable are not.  Conventionally, this 

function is approximated by explicitly assuming a functional 

form, such as the linear logit model often used in design utility 

theory treatments, followed by estimating part-worth 

coefficients of the assumed model. 

We take a different approach by assuming the nonlinear 

function relating design attributes to design variables is 

implicitly captured within the minds of the customers.  By 

crowdsourcing the attribute values of the designs—asking a 

crowd of customers to evaluate designs over attributes—we 

avoid needing to determine this complex nonlinear function 

form explicitly.   This has advantages as we are now capturing a 

function that may exist in a much more expressive function 

space, allowing more realistic modeling of nonlinear 

interactions.  Moreover, we avoid the need of explicitly 

mathematically representing geometric variables, as realistic 

3D vehicle polygon meshes may be upwards of 100,000 

vertices. 

To obtain this implicit and distributed function, we instead 

need a method of aggregating customer responses to capture 

changes in design attribute values as a function of changes in 

design variable values. Accordingly, we aggregate the 

responses *𝑟𝑐+1
𝐶 made by customers 𝑐 = 1…𝐶, in which each 

response is in the form of a partial ranking for a single design 

attribute. Partial rankings without ties are chosen as they are 

more intuitive for human evaluation [63], and importantly do 

not require the notion of a non-relative scale, i.e., ―what would 

it mean to give the first seen design a 4 /10 ‗aggressive‘ score 

without seeing the entire set of designs?‖ 

To aggregate these partial rankings, we derive a Markov 

chain solved using a modified version of PageRank [64]. The 

states of this Markov chain correspond to the cars to be ranked 

as shown in Figure 2. The transition probabilities depend on 

those partial rankings. The stationary probability distribution of 

this Markov chain will be used as the value of the attribute. 

The transition probability 𝑃𝑖𝑗 , 𝑖, 𝑗 = 1,… , 𝑁 from the state 

representing car i to the state representing car j is defined as the 

frequency that car j is ranked higher than car i in all partial 

ranks that contain car i. If the transition probability 𝑃𝑖𝑗  is large, 

then it means that car j is more likely to have higher value of 

the attribute than car i. We define the transition probability 

matrix 𝐏 = (𝑃𝑖𝑗) as the raw transition probability matrix. 

Note that the stationary distribution 𝝅 of a Markov chain is 

a distribution vector, which is unchanged after the operation of 

transition matrix P as given in Eq. (4). 

 

  

𝝅 =  𝝅𝐏 
( 4 ) 

𝝅 = (𝜋1, 𝜋2, … , 𝜋𝑁) 
 𝜋𝑖 ≥ 0 and ∑ 𝜋𝑖

𝑁
𝑖=1 = 1 

 

 

According to Markov chain theory, there is no guarantee 

that the raw transition probability matrix P will have unique 

stationary distribution [65]. To achieve this uniqueness, we 

make two extensions to convert the raw transition matrix P to a 

stochastic, irreducible, and aperiodic matrix [64]. 

 
Extension 1 The first extension is that the rows in P that only 

contain 0‘s are replaced with 
1

𝑁
𝒆𝑇, where 𝒆𝑇 is a column vector 

consisting of 1‘s.  This adjustment results in a stochastic matrix 

denoted S as given in Eq. (5). 

 

𝐒 = 𝐏 +  𝛉(
1

𝑁
𝒆𝑇) 

 

( 5 ) 

𝜃𝑖 = {
1 𝑖𝑓 i − th row in 𝐏 consists of 0s

 0 otherwise
 

 

Extension 2 The second extension is made to convert S into an 

irreducible and aperiodic matrix. We define this new matrix G 

as given in Eq. (6). 

 

𝐆 =  𝛾𝐒 + (1 − 𝛾)
1

𝑁
𝒆𝒆𝑻 

 

( 6 ) 

where 𝛾 is a scalar between 0 and 1 controlling the intensity of 

the perturbation that ensures uniqueness. 

With these extensions, a unique stationary distribution 

exists for G. From Eq. (6), the stationary distribution vector 𝝅 

can be obtained by calculating the eigenvectors of G, or by 

iteratively calculating 𝜋(𝑘+1) = 𝜋(𝑘)𝐆, 𝑘 = 1,2, … until 

convergence.  To calculate the values of attributes 𝒂𝑏 for brand 

b based on the set of all partial rankings from customer 

responses *𝑟𝑐+1
𝐶, we simply define the attribute value for car i as 

𝜋𝑑 , 𝑑 = 1,2, … , 𝐷. 
 

4 EXPERIMENT 
We conduct an experiment involving three steps. First, we 

develop a predictive model for brand recognition as a function 

of ten styling design attributes. This model acts as an objective 

―baseline‖ to measure changes for both design freedom and 

brand recognition. To develop the model, we ask customers to 

evaluate attributes for 2D images data past vehicle designs of 

each manufacturer. 

Figure 2: Diagram of Markov chain used to aggregate customer 
responses in the form of partial rankings of cars to obtain 
design attribute values for each brand.  Black arrows show non-
zero transition probabilities from the raw transition matrix, while 
red dashed arrows show perturbation probabilities added to 
ensure a unique stationary distribution. 
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Next, customers create morphed designs from the baseline 

models.  These designs are used to quantify how much a change 

from the baseline designs affects a change in brand recognition.  

Customers are asked to morph 3D models of previous designs 

to be more or less like one of the ten design attributes. 

The third step essentially runs the first step again, but using 

2D images of the morphed 3D designs.  By assessing brand 

recognition of the morphed designs, this step allows us to 

measure how changes in design freedom affect changes in 

brand recognition. 

 
4.1 Participants 

Customers were gathered through the crowdsourcing 

platform Amazon Mechanical Turk.  These participants were 

composed of 315 people.  Note that while we crowdsource 

these data through an open call, we filter out all participants 

who did not achieve a 30% or greater percentage at correct 

brand recognition of current vehicle designs.  This enabled us 

to use customer response data only from brand-conscious 

customers as justified in Section 2. 

 

4.2 Vehicle Brands and Models 
The brands chosen were Audi, BMW, Cadillac, and Lexus, 

due to their relative similarities over targeted market segment, 

as well as similarity of product offerings across vehicle classes.  

For each brand, five models were chosen from model year 2014 

(MY2014) corresponding to five vehicle classes as given in 

Table 1. 

 
Table 1: Description of the four vehicle manufacturer brands and 

five associated vehicle classes used in this study. 

Brand Compact Midsize Fullsize Crossover SUV 

Audi A4 A6 A8 Q5 Q7 

BMW 3 series 5 series 7 series X3 X5 

Cadillac ATS CTS XTS SRX Escalade 

Lexus IS GS LS RX GX 

 

4.3 2D Images and 3D Morphable Vehicle Models 
Images of the vehicle face, the front view of the vehicle, 

were sourced from an online vendor [66].  The face image has 

been shown to have more correlation with brand recognition 

than either the side view or rear view [25]. Each image was 

comprised of a white vehicle on a white background to 

minimize confounding interactions from color as shown in 

Figure 3.  Moreover, the brand logo was removed for each 

vehicle image using Adobe Photoshop in order to focus 

customer responses just on styling. 

Four morphable 3D models, one for each brand, were 

developed for use in this study as shown in Figure 4.  Morphing 

was pre-computed offline using Laplacian deformation and 

volumetric-based mesh defomation techniques [54].  These 

models were imported into the web-based survey using the 

browser-based WebGL renderer, allowing real-time and 

realistic deformation via client side GPU interpolation. 

4.4 Design Attributes 
As described in Section 3, design attributes are used as a 

common set of values that are used to link brand recognition 

with design freedom.  We sourced ten design attributes from 

real design teams, specifically those used within the automotive 

industry [4]. 

 
Table 2: Styling design attributes used in this experiment.  Each 
of the ten attributes was captured by a semantic differential with 
a corresponding “low” and “high” value. 

Low 
Attribute 

High 
Attribute 

 Low 
Attribute 

High 
Attribute 

Awkward Well Proportioned  Passive Active 

Weak Powerful  Traditional Innovative 

Conservative Sporty  Understated Expressive 

Basic Luxurious  Friendly Aggressive 

Conventional Distinctive  Mature Youthful 

 

 
4.5 Procedure 

A web-based interactive survey was developed to capture 

customer responses in the form of partial rankings for the 2D 

portion of the site, and customer responses in the form of 

dragging sliders to morph designs for the 3D portion of the site. 

The overall flow was as follows: Participants were first 

directed to an introduction page, where they were given 

instructions on ranking vehicles according to a semantic 

differential.  This semantic differential consisted of only one of 

the ten attributes from either low to high value or vis-versa, to 

act as a counter balance for ordering biases.  Note that over the 

entire interactive survey, a participant was always given the 

same semantic differential to reduce participant burden.  

Next, participants were directed to the 2D design ranking page, 

with the 4 vehicles in a top row and 4 outlined placeholders in a 

bottom row.  Instructions on the page were given to drag and 

drop the 4 vehicles from the top row to the bottom row using 

the mouse, including possibility of reordering the partial 

ranking.  

Upon clicking the ―Submit‖ button for the partial ranking, 

participants were then asked to choose the brand of each 

vehicle using a drop-down menu with 34 possible options (e.g., 

Audi, Volvo, Toyota).  Only after participants chose a 

recognized brand for each of the vehicles, were they allowed to 

continue to the next partial ranking. 

After each participant completed five partial rankings on 

the 2D portion of the site, they were directed to the 3D portion 

of the site for generating new designs.  In this portion, each 

participant was given a randomly chosen 3D model in the 

midsize vehicle segment from the four brands as described in 

Section 4.2.  Participants were then asked to maximize the 3D 

design using four sliders that controlled vehicle morphing along 

the same design attribute as their semantic differential from the 

2D portion of the site.  Customers were able to rotate the 3D 

vehicle model to assess the overall gestalt of the face. 
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Upon submitting their chosen 3D design, participants were 

then directed to a short survey in which they were asked basic 

demographic information as well as task relevant information.  

The task relevant information included questions regarding 

commute time, as this has been shown to be correlated with 

brand recognition [25]. 

In the third step of the experiment, 3D designs from brand-

conscious customers were used to create 2D images by taking 

snapshots from the face of the vehicle model.  These new 2D 

images of the morphed 3D vehicles were then used according 

to the same partial ranking procedure described in this 

subsection, except now with a new crowd of customers.  This 

step was used to measure geometric variable and attribute 

changes for the design freedom metric described in Section 3.2, 

and to validate the brand recognition model described in 

Section 3.1 from the non-morphed 2D designs.  Note that these 

new 2D images came from 32 randomly selected 3D designs 

from brand-conscious customers. 

 

Data Analysis 
Online crowdsourcing has often been empirically shown to 

be a noisy process partially due to various motivations of 

participants [35], [67]–[69].  Accordingly, while the vast 

majority of data was kept, we filtered out data from participants 

using several data processing steps to ensure data fidelity.  

First, participants that simply ―clicked through‖ the survey 

were filtered out by requiring they average time on the 2D 

portion of the site was greater than 6 seconds per ranking. 

Second, data from non-brand-conscious customers were 

filtered as described in Section 2.2.  A brand recognition 

accuracy threshold of 30% was chosen after viewing the brand 

recognition accuracy for the entire crowd.  Note that brand 

recognition accuracy was treated as a constant variable across 

the entire survey, and all data were filtered out for a given 

participant if he or she did not fall above the threshold. 

Third, using the data filtered from these two processes, we 

then aggregated the partial rankings from each brand-conscious 

customer using the method described in Section 3 to obtain the 

design attribute values for each new conceptual design.  These 

design attributes were used to build a model of brand 

recognition according to the method described in Section 3.1.  

Note that this filtered data included participants from both 2D 

images of non-morphed designs and 2D images of the morphed 

designs due to the relative values obtained using the partial 

ranking aggregation method described in Section 3.3. 

Brand recognition was assessed by calculating the number 

of correct responses to the set of 32 morphed conceptual 

designs over the total number of times that that particular 

conceptual design showed up in the partial rankings. 

Normalized design freedom was calculated using the 

metric described in Section 3.2.  The values of 𝜆1 and 𝜆2 were 

chosen for each brand to scale the design freedom by 

subtracting the mean and dividing the standard deviation.  This 

operation was chosen on a brand-by-brand basis as this did not 

change the brand recognition versus design freedom 

distributions. 

 

 

5 RESULTS AND DISCUSSION 
Four plots capturing the empirical relationships between 

brand recognition and design freedom for each manufacturer 

are given in Figure 5.  Each plot includes a trend line obtained 

using Thiel-Sen robust linear regression to capture (to first 

order) how fast brand recognition decreases as design freedom 

is increased, with the slopes of each of these trend lines given 

in Table 3.  Histograms showing the marginal distributions are 

also plotted to convey the relative coverage of the data for each 

brand. 

 
Table 3: Slope coefficients of L1 regularized linear model fit to 
brand recognition vs design freedom for four brands. 

Brand 
Slope of Brand Recognition  

vs Design Freedom 

Audi - 0.009 

BMW - 0.085 

Cadillac - 0.054 

Lexus - 0.047 

Figure 5: Brand recognition versus design freedom for the four vehicle brands in this study over 2D images taken of the conceptual 
designs generated during the 3D portion of the experiment.  Note that brand recognition accuracy is defined as the percentage of time  
a brand-conscious customer—a  customer who correctly identified more than 30% of the MY2014 baseline vehicle brands—was able 
to correctly recognize a new morphed design.  
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The brand recognition versus design freedom slope for 

each of the four manufacturers is negative, confirming intuition 

that increasing design freedom results in decreased brand 

recognition, a result obtained entirely from the data. 

From these slopes, we can see that BMW and Cadillac 

have the quickest loss of brand recognition with increased 

design freedom.  Lexus and Audi are shown to be third and 

fourth in this ranking, however, our results for Lexus and Audi 

may not be as warranted largely because both of these 

manufacturers have low absolute brand recognition. 

In particular, Figure 6 shows the absolute brand 

recognition across the four brands for brand-conscious 

customers and non-brand conscious customers.  We observe 

that BMW and Cadillac have the most recognizable brand, 

justified as the data consists of over 5000 brand identifications 

from a pool of 315 customers distributed throughout the world.  

Lexus was found to have the lowest brand recognition, both 

amongst brand-conscious customers as well as non-filtered 

customers. 

 

Applications to Industry 
The study was conducted largely following ideas and needs 

of real industrial design teams and immediate practical 

applications are likely. For example, the procedure used in this 

study may be used as a decision support tool for product 

researchers and strategic design managers to explicitly show 

which visceral design attributes and geometric design variables 

have the most leeway when creating a future design. 

Advantages of such a tool would be in putting design 

decisions in the hands of the experience and intuition of 

designers and strategic design managers, while giving near real-

time feedback from a targeted crowd of customers.  Such tools 

may be complemented by recent advances in virtual and 

augmented reality technologies for designs and customers alike. 

 

Limitations 
The design space spanned by the parameterization of 

geometric variables for the 3D models does not capture the 

entire set of possible vehicle face design concepts.  While this 

is in part why we assumed brand recognition as a linear 

function of attributes, and attributes as an (implicit) nonlinear 

function of geometric variables, it must be noted that future 

studies may greatly differ in their parameterizations. 

Filtering the data for brand-conscious customers has some 

limitations.  We assumed that brand recognition accuracy is a 

static quantity throughout the survey.  This does not account for 

familiarity with the brands after consistently seeing the same 

four throughout the survey.  A larger number of data points 

must be collected in future studies to reduce the uncertainty in 

Figure 5.  We also note that increased data would allow filtering 

on customers with higher average brand recognition accuracy 

over current MY2014 vehicle. 

Moreover, this study only considered designs from 

MY2014, limiting these static findings from time-series trends.  

Future work considering design data over a number of years 

would provide additional insight as brands and design 

languages often undergo dramatic shifts in design language.  

Along these lines, this study only considered luxury brands.  

Insights into whether these same findings and methodology are 

appropriate for non-luxury brands would provide additional 

support along this line of study. 

Limitations to the crowdsourced function estimation 

approach detailed in Section 3.3 are now noted:  First, attribute 

values will change depending on which cars are involved in the 

ranking, a point that we will revisit in Section 4. Second, the 

formulation assumes that customers are homogeneous in their 

perceptions of the design attributes.  While this assumption is 

certainly not always true, we mitigate the effect of 

heterogeneity by normalizing for the relative contribution of a 

design attribute to either design freedom or brand recognition 

as given in Eq. (6). 

Finally, we note that including heterogeneity in customer 

responses to design attributes may significantly increase fidelity 

of the brand recognition prediction model described in Section 

3.1.  Such heterogeneity may be captured using models that 

incorporate clustering formulations or formulations that impose 

deviations from a common crowd prior distribution [70]. 

 

6 CONCLUSION 
Design freedom and brand recognition are considerations 

that were measured for four vehicle manufacturers—Audi, 

BMW, Cadillac, and Lexus—as balancing between these two 

considerations has been shown to significantly influence 

consumer purchase decision.  An experiment was conducted 

measuring change in ten styling attributes common to both 

design freedom and brand recognition for automotive designs, 

using customer responses to vehicle designs created 

interactively using 2D and 3D design representations. Results 

show that, while brand recognition is highly dependent on the 

particular manufacturer, measuring tradeoffs between design 

Figure 6: Brand Recognition for the four vehicle brands in this 
study.  Brand-conscious customers refer to those customers 
who could correctly identify at least on average 30% the brands 
of baseline (MY2014) designs. 
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freedom and brand recognition using predictive models can 

augment intuition in making strategic design decisions. 
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