Zhaojian Li, Member, IEEE, Shan Bao, Member, IEEE, Ilya V. Kolmanovsky, Fellow, IEEE, and Xiang Yin, Member, IEEE

Abstract—This paper investigates the problem of driver distraction detection using driving performance indicators from onboard kinematic measurements. First, naturalistic driving data from the integrated vehicle-based safety system program are processed, and cabin camera data are manually inspected to determine the driver’s state (i.e., distracted or attentive). Second, existing driving performance metrics, such as steering entropy, steering wheel reversal rate, and lane offset variance, are reviewed against the processed naturalistic driving data. Furthermore, a nonlinear autoregressive exogenous (NARX) driving model is developed to predict vehicle speed based on the range (distance headway), range rate, and speed history. For each driver, the NARX model is then trained on the attentive driving data. We show that the prediction error is correlated with driver distraction. Finally, two features, steering entropy and mean absolute speed prediction error from the NARX model are selected, and a support vector machine is trained to detect driving distraction. Prediction performances are reported.

Index Terms—Distraction detection, driver modeling, nonlinear autoregressive exogenous model, steering entropy, support vector machines.

I. INTRODUCTION

DRIVER distraction is of growing concern to transportation safety. Based on a report from National Highway Traffic Safety Administration, in 2014, ten percent of fatal crashes and 18 percent of injury crashes were due to distraction [1]. From 2010 to 2014, the number of people who are injured from distraction related crashes increased from 416,000 to 431,000 [1]. Drivers get distracted with various activities, from cell phone use, eating, to day dreaming. Recent advances in in-vehicle technologies and electronic devices place additional sources of distractions that may contribute to the increased distraction-affected accidents [2], [3]. Distraction detection and mitigation systems can play an important role in improving driving safety.

Depending on the activity that diverts driver’s attention, driver distraction can be categorized as visual, auditory, cognitive or visual-manual [4]. For instance, making a phone call while driving causes cognitive distraction whereas texting while driving requires multiple, concurrent resources from drivers including intense visual, manual, and cognitive engagement. While all types of driver distraction represent potential hazards for driving safety, visual-manual distraction has the most significant impact on vehicle handling since driving is a vision-intensive task while visual-manual tasks lead to frequent eye movements away from the roadway and significant performance drop in vehicle controls [5]. This paper focuses on developing algorithms to detect visual-manual distracted driving.

Current available distraction detection and mitigation systems have been prototyped using cameras or eye-tracking devices. For example, Saab’s Driver Attention System (AttenD) exploits two cameras that directly face the driver to monitor whether the driver’s gaze is within the “field relevant for driving (FRD)”. A warning will be given by vibrating the seat if the driver’s gaze is outside the FRD for two seconds. In [6], a distraction detection system is developed by measuring eye glances using an eye-tracking system. While eye movement can be a direct indication of driving distraction, accuracy and robustness of the measurements pose great challenges. Factors such as eye glasses, lighting conditions, and head rotations can disturb the tracking system. Furthermore, high-performance eye tracking systems for real on-road application are yet available and are typically prohibitively costly for mass production.

In this paper, we pursue the development of a distraction detection algorithm using kinematic signals from the vehicle Controller Area Network (CAN) bus. Exploitation of the readily available signals can avoid adding costly or obtrusive hardware. Towards this end, many steering wheel signal-based metrics have been proposed as indicators of driver distraction, from simple steering wheel standard deviation [7] to more comprehensive metrics such as steering entropy [8], [9] and high frequency steering content [10]. Longitudinal metrics, e.g., based on speed variation and distance headway variations, have also been identified as potential distraction indicators [11]–[13].

While good correlations have been reported for these approaches, their use for driver distraction detection needs further validation for the following reasons. Firstly,
in [8], [9], and [11]–[13] driver simulators are used to evaluate the proposed metrics. While state-of-the-art simulators were employed, the differences between simulated driving and naturalistic driving are not negligible. Secondly, while additional field experiments were conducted to validate the proposed metrics [7], [11]–[14], in these studies driver distraction was identified using indirect physiological measurements such as electrocardiography [7], [11]–[13] or using the prototyped distraction detection system AttenD [14], which inevitably introduced detection errors. Thirdly, in several existing studies secondary visual tasks were imposed to simulate distracted driving and results were compared to a base-line drive with the same drive task but without imposing distractions [7], [11]–[14]. This setup neglects the fact that chances of driver distraction are much lower when the driving task itself is demanding. Driver distractions tend to happen when the driving workload is light.

To address the above issues, in this paper, vehicle kinematic data from naturalistic driving study program [15] are used to develop driver distraction algorithm. These data have been recorded continuously on everyday driven vehicles without specified base lines. Cabin video data were captured and manually inspected to identify attentive or distracted cases; the resulting labels were used to facilitate the development and validation of the algorithms. In particular, in this paper, the afore-mentioned performance metrics are compared against the processed data. In addition, a Nonlinear Autoregressive Exogenous (NARX) model is developed for vehicle speed prediction. Based on this model, the mean of the absolute prediction error is proposed as a new metric for distraction detection. A support vector machine is then exploited for detection. A support vector machine is then exploited for distraction detection with the identified features. Promising detection performance results are reported.

The rest of the paper is organized as follows. Section II describes the data acquisition and data processing. Performance metrics from the previous literature are reviewed and discussed in Section III. In Section IV, a NARX vehicle speed prediction model is defined and trained on attentive driving data for each subject. In Section V, support vector machines (SVMs) are trained to identify driver distractions; classification accuracy results are reported. Finally, conclusions are drawn in Section VI.

II. DATA ACQUISITION AND PROCESSING

To achieve the objectives of this study, data from the Integrated Vehicle based Safety System (IVBSS) program were used [15]. The IVBSS program was designed to support the development and testing of an integrated in-vehicle crash warning system including Forward Crash Warning, Lane Departure Warning, Lane Change/Merge Warning and Curve Speed Warning systems. Sixteen 2006 and 2007 Honda Accord vehicles were used for data collection, see Figure 1. Each vehicle was instrumented to capture information regarding the driving environment, driver activity, system behavior, and vehicle kinematics, with data collection frequency from 10 to 50 Hz.

A total of 108 randomly sampled, passenger-car drivers participated in the IVBSS study, with the sample stratified by age and gender. The age groups examined were younger drivers between 20 and 30 years old, middle-aged drivers between 40 and 50 years old, and older drivers between 60 and 70 years old. All drivers were required to have a valid driver’s license.

Drivers used the test vehicles as their personal vehicles for a 40-day period. The first 12 days of vehicle use served as a baseline period during which warning functions were not provided to drivers, but all sensors and computations were still operating in the background and all data were recorded. The following 28 days constituted the treatment period during which functions were enabled and warnings were provided to drivers when appropriate. Only assigned participants were permitted to drive the vehicles during the test period, except for emergencies. Drivers were informed that their driving behaviors were being documented and video recorded during the whole test period and will only be used for the purpose of transportation safety research.

The cabin instrumentation in the experimental vehicles is shown in Figure 2. For this study, the data analyzed are from 16 drivers in the first 12 days of data collection, during which all warning systems were disabled. Since we need to manually inspect the cabin video frame by frame to determine the driver’s state (attentive or distracted), due to limited resources we only processed datasets from 16 drivers which we believe is adequate for this study. The distracted driving episodes of interest are visual-manual tasks by the driver (e.g., texting, dialing, etc.). Cabin camera clips are manually inspected to determine the driver’s status (distracted or attentive). In this study, for each driver, ten 20-second distracted episodes are identified and 50 matched control clips, in which drivers did not engage in any secondary tasks, are also identified. Kinematic signals such as steering angle, vehicle speed, and distance to the lead vehicle are recorded for the analysis and algorithm design. Note that to better analyze the correlation between the longitudinal operation and driver distraction, all clips correspond to not being in cruise control mode.

III. PERFORMANCE METRICS FOR DRIVER DISTRACTION

While a variety of driving performance metrics have been proposed for distraction detection and promising correlations have been demonstrated in previous publications, it is imperative to evaluate these metrics when applied to actual naturalistic driving data to be certain of their reference for...
A. High-Frequency Steering Content

It is reported in [10] that high frequency steering wheel (HFSW) content (in 0.35-0.6 Hz frequency band) is sensitive to both primary and secondary task loads. The computation of HFSW involves three main steps: (1) subtracting the mean from the steering signal in a time window (e.g., 20 s); (2) performing a Fourier transform to obtain the power spectrum of the resulting zero-mean steering wheel signal; and (3) integrating the steering power in the 0.35-0.6 Hz frequency band. A sample steering wheel signal trace and the power spectrum of the corresponding zero-mean signal are illustrated in Figure 3. The HFSW is then computed by integrating the power spectrum in the 0.35-0.6 Hz frequency band (magenta area in Figure 3).

The HFSW of attentive and distracted driving for the ten drivers are shown in Figure 4. The filled bars represent 25 to 75 percentile data and the horizontal red line inside each bar represents the medium. The red “+”s are data classified as outliers. From Figure 4 we see that the magnitude of HFSW varies significantly between individual drivers. This may be due to the fact that some drivers tend to move the steering wheel more frequently than others. Also, the reported correlation between higher HFSW and driver distraction [10] is not consistently implied among the drivers. For Drivers 3, 7, 8 and 9, HFSW is lower when the driver is distracted, which indicates that HFSW may not be a good universal metric for distraction detection.

B. Steering Entropy

Steering entropy is an indication of steering smoothness and predictability. The rationale for using it is that attentive drivers continuously assess the environment and unconsciously apply smooth and predictable steering control. On the other hand, distracted drivers tend to introduce large maneuvers for error correction, leading to decreased predictability.

Steering entropy is proposed in [8] to quantify the steering predictability. As illustrated in Figure 5, at each time stamp \(t \), a second-order Taylor expansion is exploited to predict the steer \(\theta_p(t) \) based on previous samples of the steering wheel angle, \(\theta \), as follows:

\[
\theta_p(t) = \theta(t-1) + (\theta(t-1) - \theta(t-2)) + \frac{1}{2}((\theta(t-1) - \theta(t-2)) - (\theta(t-2) - \theta(t-3))),
\]

which can be simplified as

\[
\theta_p(t) = \frac{5}{2}\theta(t-1) - 2\theta(t-2) + \frac{1}{2}\theta(t-3).
\]

The prediction error \(e(t) \) is then calculated as the difference between the actual value \(\theta(t) \) and the predicted value \(\theta_p(t) \) from Equation (2):

\[
e(t) = \theta(t) - \theta_p(t).
\]

It is recommended in [8] that the prediction period should be shorter than 150 ms, which corresponds to the lowest frequency that can be used to represent a human driver’s control response in manual tracking tasks. In this study,

Fig. 2. Cabin instrumentation in the experimental vehicles including cameras and CAN signals.

Fig. 3. High frequency steering content calculation by integrating the steering power in the 0.35-0.6 Hz frequency band. Top: steering wheel angle. Bottom: power spectrum of zero mean signal.

Fig. 4. Box plots of high frequency steering wheel for attentive and distracted driving comparisons.
Fig. 5. Steering wheel prediction.

Fig. 6. Box plots of steering entropy for attentive and distracted driving comparisons.

Fig. 7. Box plots of steering standard deviation for attentive and distracted driving comparisons.

C. Steering Wheel Standard Deviation

As a quantification of steering variation, steering wheel standard deviation is proposed by Liu and Lee as a metric for distraction detection \[7\]. In a time window with \(N\) steering samples, the steering wheel standard deviation, \(\sigma\), is computed as
\[\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\theta(i) - \bar{\theta})^2}\] with \(\bar{\theta} = \frac{1}{N} \sum_{i=1}^{N} \theta(i)\) being the steering mean. In this subsection, we check the proposition using the collected naturalistic driving data. The comparisons between distracted and attentive driving for the ten drivers are shown in Figure 7.

We observe from Figure 7 that the correlation between driver distraction and higher steering standard deviation exists for Drivers 2, 5, and 10. At the same time, the other seven drivers show the opposite correlation. Therefore, we do not use this metric as a feature for distraction detection.

D. Speed Variations and Distance Headway Variations

Longitudinal metrics such as speed variations and distance headway variations have also been proposed as driving distraction indicators \[11\]–\[13\]. The rationale is that attentive drivers tend to produce less jerks while distractions can cause large corrective maneuvers.

The standard deviations of vehicle speed and distance headway based on the naturalistic driving data are illustrated in Figures 8 and 9, respectively. It appears that for most of the drivers the reported correlations between higher speed or distance headway variations and driver distraction are not reflected in the collected naturalistic driving data. The reason for this may be that speed and distance headway are highly dependent on the driving environment. In the next section, in an attempt to improve the correlation, we develop a driver model by considering the distance headway and vehicle speed jointly.

As demonstrated in Figures 6-9, clear correlations can be found between high steering entropy and driving distraction across the drivers while no clear correlations between driving distraction and other factors are found. Furthermore, the steering entropy varies significantly across the drivers. To robustly use this metric for prediction, we use driver-dependent scaling.
factors (i.e., minimum and maximum) to scale the steering entropy between 0 and 1.

IV. NARX SPEED PREDICTION MODELING

In Section III-D, preliminary longitudinal metrics such as standard deviation of vehicle speed and standard deviation of distance headway proposed in [11]–[13] are shown to be lacking as distraction indicators. We hypothesize that this happens for the reason that longitudinal metrics may highly depend on driving environment, e.g., traffic density and lead vehicle dynamics. For example, following an aggressive driver in a congested traffic flow can produce a fair amount of jerks even when the driver is attentive. Furthermore, distance headway and vehicle speed could be considered together to improve the correlation.

In the sequel, we develop a driver model that considers both the speed-distance correlation and driving dynamics. While physics-based models such as Optimal Velocity Model (OVM) [16]–[19] are available, certain parameters need to be tuned for each driver. In this paper, we pursue a data-driven approach since the driving data are readily available to avoid the tunings. The schematic diagram of the proposed model is shown in Figure 10. The driver reacts to the range (distance to lead vehicle, denoted by \(d \)), range rate (distance change rate to lead vehicle, denoted by \(d' \)) and ego vehicle speed (denoted by \(v \)), and then applies the gas or brake pedal to adjust the speed. The vehicle then interacts with the environment, updating the range and range rate which closes the system loop. Note that the model considers both the driving dynamics (reflected in range and range rate) and range-speed correlations.

The driver model can be used to emulate the driver’s reaction and predict vehicle speed based on the near history of range, range rate and vehicle speed. We hypothesize that the prediction error for distracted driving would be larger than that of normal driving since distracted driving is more “unpredictable”. It is noted that different drivers may have different sense of “safe” distance, potentially requiring different driver models. Therefore, the driver model is customized for each driver.

In this paper, we use a Nonlinear Autoregressive Exogenous (NARX) model [20]–[22] to represent the driver’s speed control:

\[
Y(t) = f(Y(t-1), \ldots, Y(t-N_Y), U(t-1), U(t-N_u)),
\]

where \(Y(t) \) represents the output of the model and \(Y(t) = v(t) \) represents the vehicle speed; \(U(t) = [d(t), d'(t)] \) represents the input vector including range and range rate. The parameters \(N_u \) and \(N_y \) are the input delay and output delay, respectively.

We employ an Artificial Neural Network (ANN) as the function approximator for the NARX model in Equation (5). The model is trained for each driver on the attentive driving data set. The size of hidden neurons in the ANN is chosen as ten based on five-fold cross validation. Specifically, we randomly partition the training data into five sets. We then run five training runs and for each run one of the five sets is used to test the prediction performance and the rest four sets are used for ANN training. The prediction errors are then averaged over the five runs. We tried different combinations of parameters \(N_y \) and \(N_u \) and picked ten as the hidden size since no clear improvements are found with more neurons. The \(N_y \) and \(N_u \) are parameters that are related to driver’s response time. The driver’s response time are typically around 0.45-1 second [18], [19]. We tune these two parameters also based on the average prediction error of the five-fold cross-validation illustrated in Figure 11. The parameters are chosen as \(N_y = 1 \) and \(N_u = 5 \) to balance small error and required buffer size.
V. SVM Distraction Detection

In Section III and Section IV, we identified metrics such as steering entropy and speed prediction error from the NARX driving model as feasible distraction indicators. In this section, we exploit machine learning algorithms that can be implemented in real-time for distraction detection. Specifically, we use a support vector machine (SVM) to classify distracted and attentive driving.

Given a set of \(N \) data points \(x_i \in \mathbb{R}^n, i = 1, \cdots N \) and associated binary class labels \(y_i \in \{-1, +1\}, i = 1, \cdots N \), a standard classification problem is to find a mapping function \(f(x) \) to accurately separate the two classes. The Support Vector Machine (SVM) is based on supervised learning that has been successfully used for many applications including in the field of pattern recognition [23], [24], financial engineering [25]–[27], and automotive engineering [28]–[30]. SVM advantages over alternative techniques include substantial theory foundation, effective computational algorithms known to yield global optima, and good generalization ability [29].

In SVM training, two parameters \(\gamma \) and \(C \) are typically tuned through cross-validation where \(\gamma > 0 \) controls the generalization ability of the SVM classifier and \(C > 0 \) is a positive scaler to penalize the constraint violations. More technical details on SVM can be referred to [29], [31], and references therein.

We use the SVM to classify distracted and attentive driving based on the identified features, i.e., steering entropy and mean absolute speed prediction error from the NARX model we developed in Section IV. For each driver, we train an SVM over the processed driving data (the two features and manually examined driving status, i.e., attentive or distracted) for about 60 episodes. Note that the kernel scaling factor \(\gamma \) and constraint violation penalty weight \(C \) need to be specified before the SVM training. We run the ten-fold cross-validation procedure to determine an optimal \(\gamma \) and \(C \). Specifically, we vary \(\gamma \) and \(C \) in a large range and for each \((\gamma, C)\) pair we randomly partition the data into ten sets. We then run ten training runs and for each run one of the ten sets is reserved to test the SVM prediction performance and the rest nine sets are used for SVM training. The classification accuracy, averaged over the ten runs, is referred to as the ten-fold cross-validation accuracy.

The contour plot of the ten-fold cross-validation accuracy in the \(\log(\gamma) - \log(C) \) plane for Driver 6 is illustrated in Figure 13. The best cross-validation accuracy is 93.8% and can be obtained by choosing \(C = 1 \) and \(\gamma = 0.01 \). The same tuning process is used for all other drivers to select \(\gamma \) and \(C \) for the SVM training.

With tuned \(\gamma \) and \(C \), we train the SVM over the data of Drivers 1-10 and we test the SVM prediction using the data from Drivers 11-16. The prediction performance of testing for the six drivers are illustrated in Table I. The term True positive means the number of correctly identified distraction cases while True negative represents the number of correctly identified attentive cases. On the other hand, False negative and False positive represent, respectively, the number of missed detection of distraction and the number of attentive driving cases that are incorrectly classified as distracted.

As we can observe from Table I, the overall accuracy across all drivers can be as high as around 95%. Specifically, the False positive cases are very few; only Driver 14 has one attentive
driving case that is mislabeled as distracted driving. On the other hand, the average false negative rate, defined as FN/(FN + TN), is 78.3% over all drivers; this is a promising initial result which can be further improved on. Future work will include exploiting Recurrent Neural Networks [32] to improve the detection performance.

VI. CONCLUSIONS

In this paper, we processed naturalistic driving data from the Integrated Vehicle Based Safety System (IVBSS) program and manually inspected the cabin camera data to determine the driver’s state (i.e., distracted or attentive). Based on the data, we reviewed existing performance metrics for driver distraction and showed good correlation between driver distraction and steering entropy, whereas the correlation is lacking for other metrics. Furthermore, we developed a Nonlinear Auto-regressive Exogenous (NARX) driving model to predict vehicle speed based on range, range rate, and speed history. An artificial neural network was used as the function approximator and trained with attentive driving data. We demonstrated that driver distraction yields higher prediction error than attentive driving. Finally, we used steering entropy and the absolute mean of speed prediction error as features to develop a support vector machine for driver distraction detection. The SVM approach is capable of achieving a high overall accuracy of 95% and a false positive rate about 78.3% when trained on individual driver specific data.

Fig. 13. Cross-validation accuracy of SVM classification as a function of γ and C for Driver 6.

TABLE I

<table>
<thead>
<tr>
<th></th>
<th>Total cases</th>
<th>TP</th>
<th>TN</th>
<th>FN</th>
<th>FP</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver 11</td>
<td>60</td>
<td>9</td>
<td>50</td>
<td>1</td>
<td>0</td>
<td>98.33</td>
</tr>
<tr>
<td>Driver 12</td>
<td>59</td>
<td>8</td>
<td>49</td>
<td>2</td>
<td>0</td>
<td>96.61</td>
</tr>
<tr>
<td>Driver 13</td>
<td>58</td>
<td>7</td>
<td>48</td>
<td>3</td>
<td>0</td>
<td>94.83</td>
</tr>
<tr>
<td>Driver 14</td>
<td>60</td>
<td>7</td>
<td>50</td>
<td>3</td>
<td>1</td>
<td>93.3</td>
</tr>
<tr>
<td>Driver 15</td>
<td>60</td>
<td>8</td>
<td>50</td>
<td>2</td>
<td>0</td>
<td>96.67</td>
</tr>
<tr>
<td>Driver 16</td>
<td>60</td>
<td>8</td>
<td>50</td>
<td>2</td>
<td>0</td>
<td>96.67</td>
</tr>
</tbody>
</table>

References

Zhaojian Li (S’15–M’16) received the B.S. degree in civil aviation from the Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2010, and the M.S. and Ph.D. degrees from the Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA, in 2014 and 2016, respectively. From 2010 to 2012, he was an Air Traffic Controller with the Shanghai Area Control Center, Shanghai, China. From 2014 to 2015, he was an Intern with Ford Motor Company, Dearborn, MI, USA. He is currently an Assistant Professor with the Department of Mechanical Engineering, Michigan State University. His current research interests include optimal control, autonomous vehicles, and intelligent transportation systems. He was a recipient of the National Scholarship from China.

Shan Bao is currently an Associate Research Scientist with the Human Factors Group, University of Michigan Transportation Research Institute, where she has been conducting research on human factors and driver distraction, driver-behavior modeling, large-scale data analysis, driver training for automated vehicles, and the evaluation of advanced in-vehicle safety systems since 2009.

She received the Ph.D. degree in mechanical and industrial engineering from The University of Iowa in 2009. She has led and conducted multiple, large, simulator and naturalistic-driving studies for industry and government sponsors. Her areas of expertise include the statistical analysis of crash data sets and naturalistic data, experimental design, algorithm development to identify driver states, evaluation of driving-safety technologies, measurement of driver performance, driver decision making, and statistical and stochastic modeling techniques. She currently serves as the Chair of the Surface Transportation Technical Group, Human Factors and Ergonomics Society.

Ilya V. Kolmanovsky (F’08) received the M.S. and Ph.D. degrees in aerospace engineering from the University of Michigan, Ann Arbor, MI, USA, in 1993 and 1995, respectively, and the M.A. degree in mathematics from the University of Michigan in 1995.

He is currently a Full Professor with the Department of Aerospace Engineering, University of Michigan. His current research interests include control theory for systems with state and control constraints, and control applications to aerospace and automotive systems.

He was with Ford Research and Advanced Engineering, Dearborn, MI, USA, for 15 years. He is named as an Inventor on 92 U.S. patents. He was a recipient of the Donald P. Eckman Award of the American Automatic Control Council.

Xiang Yin (S’14–M’17) was born in Anhui, China, in 1991. He received the B.Eng. degree from Zhejiang University in 2012, and the M.S. and Ph.D. degrees from the University of Michigan, Ann Arbor, in 2013 and 2017, respectively, all in electrical engineering. He is currently with the Department of Automation, Shanghai Jiao Tong University. His research interests include supervisory control of discrete-event systems, model-based fault diagnosis, formal methods, and security and their applications to cyber and cyberphysical systems.

Dr. Yin received the Outstanding Reviewer Award from AUTOMATICA in 2016, the Outstanding Reviewer Award from the IEEE TRANSACTIONS ON AUTOMATIC CONTROL in 2017, and the IEEE Conference on Decision and Control Best Student Paper Award Finalist in 2016. He is a Co-Chair of the IEEE CSS Technical Committee on Discrete Event Systems.