Effect of Mn substitution on the volume and magnetic properties of Er$_2$Fe$_{17}$

J. L. Wang
State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People’s Republic of China and Departamento de Fisica de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

M. R. Ibarra, C. Marquina, and B. García-Landa
Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

W. X. Li, N. Tang, W. Q. Wang, F. M. Yang, and G. H. Wu
State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People’s Republic of China

(Received 7 November 2001; accepted for publication 7 May 2002)

The effects of Mn substitution on the magnetic properties of Er$_2$Fe$_{17-x}$Mn$_x$ compounds have been investigated by different experimental techniques. An unusual composition dependence of the unit cell volume at room temperature occurs due to a strong magnetovolume effect, which has been confirmed by high temperature linear thermal expansion measurements. From magnetization measurements the composition dependence of the spontaneous magnetization of the 3d-sublattice magnetic moment and of the Curie temperature has been determined. Spin reorientation has been detected for compounds with $3 \leq x \leq 5.5$, as well as remarkable magnetic history effects. © 2002 American Institute of Physics. [DOI: 10.1063/1.1489718]

INTRODUCTION

Intermetallic compounds based on rare-earth elements (R) and 3d-transition metals (T) form a large family of materials that is very important from technological and fundamental points of view. It is well known that in these intermetalics, the R-sublattice magnetic moments and the T-sublattice magnetic moments are either ferro- or antiferromagnetically coupled if R is a light or heavy rare-earth element. In general the magnetic behavior of these compounds can be explained by a local moment two-sublattice model. This is also true when magnetic atoms are substituted for by nonmagnetic ones. In order to improve the magnetic properties of a compound, deep knowledge of the intrinsic mechanisms of the exchange and crystal electric field interactions is needed. With this in mind a series of experiments that replace either the R or the T atoms by other magnetic atoms have been undertaken. In these cases the two-sublattice model is no longer applicable and a multisublattice model has to be introduced to describe the experimental results. Recently, the effects of manganese substitution on R–T intermetallic compounds have attracted significant attention from both fundamental and technological points of view. It is well known that in these intermetallics the R-sublattice magnetic moments and the T-sublattice magnetic moments are either ferro- or antiferromagnetically coupled if R is a light or heavy rare-earth element. In general the magnetic behavior of these compounds can be explained by a local moment two-sublattice model. This is also true when magnetic atoms are substituted for by nonmagnetic ones.

In Er$_2$Fe$_{17}$, the rare-earth sublattice and the Fe-sublattice anisotropy constants have opposite signs, and the Fe sublattice contribution to the anisotropy energy prevails over the whole temperature range. The substitution of Fe by Mn modifies the balance between contributions to the anisotropy energy. On the other hand, the presence of Mn will modify the Curie temperature and the effective magnetic moment of the 3d sublattice. Insight into these effects has been achieved by investigating the spontaneous magnetovolume effect of several compounds with different Mn concentrations.

EXPERIMENT

Er$_2$Fe$_{17-x}$Mn$_x$ alloys with $x = 0, 1.0, 2.0, 3.0, 3.5, 4.0, 4.5, 5.5$ and 6.0 were prepared by arc melting 99.9% purity materials in argon atmosphere. The ingots were annealed in argon atmosphere at 1273 K for 24 h, and subsequently quenched in water. X-ray diffraction (XRD) with Cu $K\alpha$ radiation was used to check whether the samples were single phase and to determine the lattice parameters. X-ray diffraction of magnetically aligned powder samples allowed us to determine the easy magnetization direction (EMD) at room temperature. Thermal expansion measurements were performed using a “push-rod” linear differential transformer method in the temperature range of 150–550 K. The temperature dependence of the magnetization, $M(T)$, was measured in a magnetic field of 500 Oe in a superconducting quantum interference device (SQUID) from 5 to 350 K. The Curie temperatures T_c were derived from M^2 vs T plots and by extrapolating M^2 to zero. The magnetization curves at 1.5 K of free powder samples were measured using an extraction sample magnetometer (ESM) in magnetic fields up to 6 T.

RESULTS AND DISCUSSION

Based on x-ray diffraction analysis and on the temperature dependence of the magnetization at low magnetic field it can be concluded that all the compounds investigated are single phase and crystallize in a hexagonal Th$_2$Ni$_{17}$-type...
structure. Lattice parameters a and c were obtained from XRD patterns of randomly oriented powder samples and are shown in Fig. 1. It would be expected that the unit-cell volume increases monotonically with an increase in the Mn content, given that Mn atoms are larger than Fe atoms. Nevertheless, our experimental results indicate that the composition dependence of the unit-cell volume at room temperature is not monotonical. Similar behavior was found earlier in Pr$_2$Fe$_{17-x}$Mn$_x$ and Tb$_2$Fe$_{17-x}$Mn$_x$ compounds and it was ascribed to the possible existence of magnetovolume effects in those compounds which are magnetically ordered at room temperature. In order to prove this assumption we obtained spontaneous volume magnetostriction, $\Delta V/V(T)$, in the Er$_2$Fe$_{17-x}$Mn$_x$ series by measuring their linear thermal expansion (LTE), $\Delta l/l(T)$, given that $\Delta V/V(T) = 3 \Delta l/l(T)$. The measurements were performed up to very high temperatures in order to obtain the nonmagnetic contribution. As an example, in Fig. 2 we show $\Delta V/V(T)$ and the temperature dependence of the LTE coefficient, $\alpha(T)$, of Er$_2$Fe$_{10}$Mn and Er$_2$Fe$_{15}$Mn$_2$, in which their magnetic ordering temperature, T_C, is above or close to room temperature. $\Delta V/V(T)$ tends towards linear behavior at high temperatures and both $\Delta V/V(T)$ and $\alpha(T)$ exhibit a clear Invar-like anomaly around the Curie temperature. The magnetic contribution to the thermal expansion which gives rise to Invar behavior can be obtained by comparing the experimental results with the lattice volume contribution, $(\Delta V/V)_{latt}$. This contribution can be calculated through the Grüneisen relation, $\alpha_{nm}(T) = \kappa \gamma C_v(T)/\beta$, with α_{nm} being the phonon anharmonic LTE coefficient, κ the isothermal compressibility, γ the Grüneisen parameter and C_v the specific heat. We have calculated $(\Delta V/V)_{latt}$ using a Debye temperature of $\theta_D = 450$ K. $(\Delta V/V)_{latt}$ was fitted to the experimental results in the paramagnetic regime. The thermal dependence of $(\Delta V/V)_{latt}$ is shown in Fig. 2 by a dashed line. It can be seen also that even in the paramagnetic phase a considerable value of spontaneous magnetostriction was measured, which indicates the existence of strong short-range magnetic correlations above T_C. On the other hand, it has been reported that for small amounts of Mn substitution, the Mn atoms preferentially occupy $6c/4f$ sites of the crystallographic structure, which have the largest Wigner–Seitz cell volume. Therefore, the unusual behavior of the unit-cell volume when $x < 3.5$ mentioned above can be understood by considering the magnetovolume effect in compounds whose Curie temperature T_C is above or close to room temperature, even though the influence of the $6c/4f$ site preferential occupation by Mn cannot be completely discarded.

The magnetization curves at 1.5 K of the free powder samples of Er$_2$Fe$_{17-x}$Mn$_x$ compounds are shown in Fig. 3. The spontaneous magnetization M_s was derived from Arrott plots of M^2 vs H/M. The composition dependence of M_s at 1.5 K is shown in Fig. 4. It can be seen that with an increase in Mn content the spontaneous magnetization M_s first decreases almost linearly, going through a minimum at about $x = 4$, and then increases with a further increase in Mn content. Based on the slope of the linear part in the composition dependence of M_s vs x, the magnetic moment was derived from the linear regime. The magnetic moment per Mn atom was found to be $4.8 \mu_B$. The magnetic moment per Fe atom was found to be $1.6 \mu_B$.
dependence of M_s, it can be derived that for compounds with $x<4$ the substitution of Mn atoms for Fe leads to a decrease of around $4.8 \mu_B$ per Mn atom. The appearance of the minimum of the composition dependence of M_s can be explained in terms of a compensation concentration that originates from the ferrimagnetic coupling between the erbium and the 3d-sublattice magnetization. The transition metal sublattice magnetization M_T can be obtained from the M_s measured by subtracting the rare-earth sublattice magnetization. We believe that the rare-earth sublattice magnetization is the same for all the compounds and is obtained from the free ion magnetic moment. The results are shown in Fig. 4. It can be seen that M_T monotonically decreases with an increase in Mn content. The calculated composition dependence of M_s based on a simple dilution model, in which the Mn atoms do not have magnetic moment, is also shown for comparison (dashed line). It is obvious that the observed decrease of M_T with an increase in Mn content is faster than that expected with a simple dilution model. This suggests that the Mn atoms have magnetic moment which should be aligned antiparallel to the Fe moments. This assumption is supported by neutron diffraction results obtained for the $\text{Er}_2\text{Fe}_{17-x}\text{Mn}_x$ compounds with $x=3$–5.5, in which the presence of manganese induces antiferromagnetic coupling not only between Mn moments and Fe moments, but also between Fe moments.11

From Fig. 3, it can also be seen that for compounds with $x>3.0$ the magnetization curves at 1.5 K exhibit a large high field susceptibility. It is particularly high for compounds with $x=3.5$ and 4.0 (0.434 and 0.500 T$^{-1}$ μ_B/f.u., respectively). A mean-field theory analysis of the ferrimagnetic compounds in terms of the two-magnetic sublattice model indicates that at low magnetic fields the moment configuration is strictly antiparallel, but beyond a critical magnetic field the exact antiparallel configuration is broken up and the two sublattice magnetizations start to bend towards each other. This critical field is given by $B_{\text{crit}} = \frac{M_T - M_{\text{Fe}}}{n_{\text{Fe}}}$, where n_{Fe} stands for the intersublattice molecular-field coefficient and M_{Fe} for the Fe sublattice magnetization. In general, the value of B_{crit} in the R_2Fe_{17} compounds with R = heavy rare earth is very high. Nevertheless, in $\text{Er}_2\text{Fe}_{17-x}\text{Mn}_x$ compounds the difference between M_T and M_{Er} becomes smaller as the Mn content increases and therefore B_{crit} decreases, making the rotation of the Er- and T-sublattice moments towards each other easily occur at low fields. The existence of this nonlinear magnetic moment structure is responsible for the above-mentioned large high field susceptibility.

The temperature dependences of the magnetization measured in an external magnetic field of 0.05 T are shown in Figs. 5(a) and 5(b). The M versus T curve for $x=0$ reflects ferrimagnetic behavior. In the case of compounds with $x=3.0$, 3.5, 4.0, 5.0 and 5.5 an anomaly, marked by arrows in Fig. 5, has been observed, which can be ascribed to spin reorientation: the easy magnetization direction changes from the basal plane at high temperature to the c axis at low temperature.12 It is generally accepted that in the R–T compounds the overall anisotropy is determined by the interplay of the R-sublattice and T-sublattice anisotropies. It is known that in $\text{Er}_2\text{Fe}_{17}$ the Fe-sublattice magnetization tends to lie on the basal plane of the $\text{Th}_2\text{Ni}_1\text{Fe}_{17}$-type structure (planar anisotropy) and the Er-sublattice magnetization tends to align parallel to the c axis (axial anisotropy) over the whole temperature range.12 The fact that the easy magnetization direction of $\text{Er}_2\text{Fe}_{17}$ lies on the basal plane means that the Fe-sublattice anisotropy dominates over the whole temperature range below the Curie temperature. The occurrence of spin reorientation in $\text{Er}_2\text{Fe}_{17-x}\text{Mn}_x$ compounds with $x=3$–5.5 indicates that Mn substitution strongly influences the balance among different contributions to the anisotropy energy. At low temperature the Er-sublattice contribution to the anisotropy energy dominates and the total anisotropy is uniaxial. This is a consequence of the different temperature dependences of Er- and T-sublattice anisotropy energies. For an increase in tem-

FIG. 4. Composition dependence of the spontaneous magnetization M_s and of the transition-metal sublattice moment M_T at 1.5 K for $\text{Er}_2\text{Fe}_{17-x}\text{Mn}_x$ compounds as well as M_s for $\text{Y}_2\text{Fe}_{17-x}\text{Mn}_x$ compounds (taken from Ref. 12). The dashed line corresponds to the composition dependence of M_s according to the dilution model.

FIG. 5. Temperature dependence of the magnetization in a field of 0.05 T of $\text{Er}_2\text{Fe}_{17-x}\text{Mn}_x$ compounds with $x=0.0$–3.5 (a) and 4.0–6.0 (b). The arrows indicate the T_{Cur}.

Downloaded 26 Dec 2002 to 159.226.45.98. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
temperature the Er-sublattice anisotropy decreases faster than that of the T sublattice. This leads to spin reorientation at a certain temperature, T_{sr}. The composition dependence of T_{sr} is shown in Fig. 6.

From Fig. 5 it can also be seen that for compounds with $x=5$ and 5.5 the magnetization has a compensation point at $T_{comp} \approx 15$ and ≈ 12 K, respectively (also see Fig. 6). The total magnetization is parallel to the rare-earth moments below T_{comp} and parallel to the T moments above T_{comp}.

The composition dependence of Curie temperature T_C is shown in Fig. 6. T_C first changes very slowly up to $x=2$ and then decreases rapidly with a further increase in Mn content. This behavior is different from that observed in $\text{R}_2\text{Fe}_{14}\text{C}$ (Ref. 19) and $\text{R}_2\text{Fe}_{14}\text{B}$ (Ref. 10) compounds, where Mn substitution for Fe leads to a rapid decrease of T_C with an increase in Mn content even at $x=0$.

In general, we can consider that T_C is determined by the intensity of the exchange interaction and by 3d-sublattice magnetization M_T. Among the three types of exchange interaction present in R–T intermetallics (T–T, R–T, and R–R), T–T interaction is the strongest and the R–R interaction is the weakest. The T–T interaction is sensitive to the distance between T–T atoms, and it is represented by the exchange interaction constant, J_{TT}. According to molecular field approximation, if we only consider the T–T interaction, the relation among T_C, the T–T interaction and the 3d-sublattice magnetization M_T, can be written as

$$3k_B T_C = J_{TT} Z_{TT} S_T (S_T + 1).$$

Here, S_T is the so-called pseudospin, which is related to the 3d-sublattice magnetization: 1

$$M_T = -g_T \mu_B S_T.$$

In compounds with $x>2$ the decrease of T_C with a further increase in Mn content can be considered a result of the decrease of 3d-sublattice magnetization. In the case of $x \approx 2$ the observed slow decrease of T_C with x could be due to the competition between the variation of the intensity of T–T interaction and the variation of M_T with the Mn content. This behavior could be related to preferential occupation of the 6c/4f Fe sites by Mn in this doping range, which leads to enhancement of the T–T interaction, as previously reported for the case of Nd$_2$Fe$_{17-x}$Mn$_x$ compounds.18

The strong decrease of the magnetization at low temperatures observed in the compounds with $x \geq 1$ (see again Fig. 5) is similar to that observed by Jacobs et al.16 in the Ho$_2$Fe$_{16}$Mn$_4$C compound. In that case it was ascribed to magnetic history effects that resulted from the presence of narrow domain walls. In the case of $\text{Er}_2\text{Fe}_{17-x}\text{Mn}_x$ compounds with $x=4$ and 4.5, below 50 K the magnetization remains constant. This implies that below this temperature the magnetic domain walls no longer move and that the magnetic domains are randomly oriented. This can be seen by comparing the hysteresis loops at 5 and 100 K. In Fig. 7 the hysteresis loop at 5 K of a free powder sample and the initial magnetization curve at 5 K and hysteresis loops at 5 K and 100 of a bulk sample of $\text{Er}_2\text{Fe}_{17-x}\text{Mn}_x$ are shown. It can be seen that the coercivity of a bulk sample decreases quickly with an increase in temperature from 1.4 T at 5 K to 0.1 T at 50 K.

In Fig. 8 the temperature dependence of the magnetization of $\text{Er}_2\text{Fe}_{13}\text{Mn}_4$ measured at different magnetic applied fields is displayed. In both the zero-field cooling (ZFC) and the field cooling (FC) processes the measurements were obtained when the temperature was increased. The sample was previously cooled from above the Curie temperature to 1.5 K in zero applied magnetic field (the ZFC curve) and under a certain applied field (FC curve). The ZFC and FC processes exhibit different behavior, which can be considered to be a magnetohistory effect.16 The critical temperature T_{ct} at which both curves diverge (marked by an arrow in Fig. 8) decreases as the magnetic field applied increases.
CONCLUSIONS

Positive spontaneous volume magnetostriction and a negative thermal expansion coefficient were found below the ordering temperature for Er$_2$Fe$_{17-x}$Mn$_x$ compounds with $x < 3.5$. This strong magnetovolume effect, together with the Mn initial affinity for the largest Wigner–Seitz cell volume sites, leads to an irregular composition dependence of the unit-cell volume at room temperature. The spontaneous magnetization exhibits a minimum at about $x = 5.4$ and the $3d$-sublattice magnetization decreases monotonically with an increase in Mn content. A spin reorientation transition was detected below room temperature for compounds with $x > 3$. The large high-field magnetic susceptibility observed at low temperatures suggests a noncollinear arrangement of the R and $3d$-sublattice magnetizations in these compounds. The Curie temperature T_C slightly changes at low Mn doping rates and rapidly decreases with a further increase in Mn content. This variation can be explained in terms of the composition dependence of the $3d$-sublattice magnetization and the strength of the T–T interaction. The compounds with $x \geq 1.0$ show remarkable magnetic history effects that are ascribed to the presence of narrow domain walls.

ACKNOWLEDGMENTS

One of the authors (J.L.W.) wishes to express his gratitude to Dr. P. A. Algarabel and Dr. L. Morellón for help in the experimental measurements and to the Spanish CICYT for financial support of a postdoctoral grant.