New insights into the formation and annealing behavior of latent fission tracks

Bart W.H. Hendriks (1), Maik Lang (2), Weixing Li (2), Patrick Kluth (3), and Rodney C. Ewing (2)

(1) Geodynamics group, Geological Survey of Norway, Trondheim, Norway (bart.hendriks@ngu.no)
(2) Department of Geological Sciences and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Mich
(3) Department of Electronic Materials Engineering, Physics Education Centre, Research School of Physics and Engineering, Australian Nat

The fission track dating technique, as it is used in geological studies, is largely based on mathematical fits to data for etched track-lengths as a
and composition. Observations of tracks in geological materials by techniques other than optical microscopy (e.g. Paul and Fitzgerald 1992; Jaskie
less common. Consequently, the internal structure of latent (i.e., unetched) fission tracks is rather poorly known. In fact, the added value of using
microscopy to study fission track annealing behavior - in order to improve the geological application of the technique - has been questioned (Paul
behavior of latent fission tracks, as revealed by TEM investigations, was thought not to correlate with that of etched tracks.

During the past decade, important papers (e.g., Jonckheere 2003; Hendriks and Redfield 2005) have highlighted the need to investigate the struc
tracks at the nano-scale. Most recently, researchers at the University of Michigan have led a multidisciplinary effort to understand the internal stru
advanced high-resolution analytical techniques. Transmission Electron Microscopy (TEM) and synchrotron based Small Angle X-ray Scattering
been carried out, and the authors of cited articles are from: University of Michigan (USA), Helmholtz Centre for Heavy Ion Research (GSI, G
Undersøkelse (NGU, Norway), Rensselaer Polytechnic Institute (USA), Australian National University, Australian Synchrotron, Centre Interdiscip
ions, les Matériaux et la Photonique (CIMAP, France) and Pacific Northwest National Laboratory (USA). Exciting results offering new perspectives
annealing have appeared in a series of papers: Lang et al. 2008a, 2008b, 2009a; Zhang et al. 2010; Li et al. 2010, 2011; Afra et al. 2011. These s
heavy ions can be used to simulate fission tracks in minerals with and without pressure, that detailed thermal annealing studies can be comple
observed in situ by high-resolution TEM, that very precise data on track size can be obtained on millions of tracks at a time and observed in situ di
SAXS, and that molecular dynamics methods can be used to simulate the internal structure of tracks.

Li et al. (2010) studied the interr
tracks in Durango apatite by TEM
having an amorphous core, as is γ
tracks in apatite are actually por
lower atomic density than the
high-resolution TEM images sug
fission tracks are not solid but ma
The new data also provide
dependence of the annealing ra
track with respect to the crystalloq
is, of course, well-known to the O
fission tracks, but a completely r
nano-scale track-segments actu
original orientation (which could br
to become parallel to the c-axis.
apparent inconsistency between 1
and unetched fission tracks impli
tracks in minerals can survive tc
(track fragments are still be obse
130 minutes at 700°C).
New insights into the formation and annealing behavior of latent fission tracks

interstitials and vacancies within the amorphous zircon fission tracks. The amorphous core of zircon fission tracks is not significantly different surrounding solid, which results in a relatively simple annealing mechanism. Fission tracks in zircon fade in a continuous way and they do not s also explains the agreement between the total annealing temperatures of etched (800°C after 1 hr; Yamada et al. 1995) and unetched fission track hrs as observed by TEM). The thermal annealing of the porous tracks in apatite is a much more complicated process involving several underlying tracks can segment into periodic droplets (controlled by Rayleigh instability) and random motions of atoms on the surface of track segments (voids these segments. Preferential movement of atoms along the c-axis results in a more rapid track segmentation and annealing of tracks perpendicular to fission tracks in apatite is due to the high surface energy and high diffusivity of atoms on the inside surface of the porous tracks.

The two studies by Li et al. referred to above employed TEM, which can image individual tracks. A disadvantage of this technique is that prolonged electron irradiation can actually anneal the damage structure. Li et al. circumvented this issue by using a low current density beam and by moving samples away from the beam during the thermal annealing by the heating stage inside the TEM. SAXS however, does not have this disadvantage, has rapid data acquisition times and does not require elaborate sample preparation. This technique is sensitive to subtle changes in electron density within latent tracks by measuring the scattering of x-rays due to density fluctuations on length scales comparable to the lateral track dimensions. A suitable model is used to describe the experimentally determined scattering intensities (Figure 3a). The change in electron density due to radiation damage is significant and the damage boundaries sharp, which makes ion tracks into excellent scattering objects. Thus, high-quality data on track dimension and morphology (discontinuous vs. continuous tracks) can be obtained with accuracy down to fractions of a nanometer. Since x-ray beams of 100 μm spot size are used in transmission mode, millions of tracks can be investigated along their entire length during a single measurement without any track modifications (x-rays are non-destructive). Afra et al. (2011) used SAXS to study fission tracks in the same set of Durango apatite samples used for TEM investigations (Li et al. 2010, 2011) and performed both isochronal ex situ and isothermal in situ annealing experiments (Figure 3b). They demonstrated that this technique can determine the detailed structure of the latent tracks as function of temperature in apatite and found that annealing initially occurred by structural relaxation which was then followed by recrystallization.

The initial paper to come out of our collaborative efforts (Lang et al. 2008a; also presented at the Fission Track meeting in Anchorage) documented the first report of fission tracks simulated in a laboratory under geologically relevant pre studies of pressure effects done previously were conducted on tracks created at surface conditions, only to be put under pressure and temperature of our experiments was to create tracks in zircon at 250°C and 7.5 kbar (typical of conditions described for subduction zones) by irradiia diamond-anvil cell (DAC) with very energetic ions (Figure 4). Subsequently, track diameters were measured by TEM after pressure release and cc tracks induced at ambient conditions. A statistically significant difference was observed (with the high P/T tracks slightly larger), which was relevance for zircon fission track studies employing chemical etching. Other materials have since been studied by the same technique by Lang et al. different material’s response at more extreme conditions. The newest development in this direction combines irradiation at ion accelerators and synchrotrons. This will not only allow to create the tracks directly under pressure, but also to study their annealing kinetics at high temperatur pressure.

Using TEM it is not possible to measure track lengths as is commonly done on etched fission tracks. However, the morphology of a fission track etching because the core of the track as well as some of the surrounding material is removed. The contrasting nature and annealing of latent fission tracks as documented by Li et al. (2011) is a striking example of how the internal structure of a track controls its annealing behavior, and this informat
studies of chemically-etched tracks. Etching can reveal the final, etchable lengths of individual tracks, but details about their annealing behavior changes in morphology during annealing depend on many factors and only some of these are considered in traditional etching based studies (e.g. orientation, etc.). Others, such as track radius, radiation damage in the surrounding material, potential gas content and the uniformity of the track al taken into account. The fission track technique as it is used in geological studies will ultimately benefit from these new insights, just as the consi and the crystallographic orientation of tracks has already improved the fission-track technique in the 80s and 90s.

Figure 4 (from Lang et al. 2008a): Photograph (top) and schematic illustration (bottom) of the irradiation experiment for exposing pre to a beam of relativistic heavy ions. The very small sample is enclosed in the DAC. The inset is a TEM-image and displays simulated 7.5 kbar and 250 °C. For the irradiation, the DAC is placed in air, 45 cm behind the beamline window. The schematic (not to scale) sho including the resistance heating coil (only shown for one anvil).

References

New insights into the formation and annealing behavior of latent fission tracks

http://www.ontrackforum.org/index.php?option=com_content&view=arti...