Structure and magnetic properties of \((\text{Nd}_{1-x}\text{Er}_x)_3\text{Fe}_{18}\text{Co}_6\text{Cr}_5\) \((x = 0.0–0.8)\) compounds

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/0022-3727/35/24/302)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 141.211.244.31
The article was downloaded on 18/06/2013 at 16:54

Please note that terms and conditions apply.
Structure and magnetic properties of \((\text{Nd}_{1-x}\text{Er}_x)_3\text{Fe}_{18}\text{Co}_6\text{Cr}_5\) (\(x = 0.0–0.8\)) compounds

B D Liu\(^1\), W X Li\(^1\), J L Wang\(^1\), Y X Li\(^2\), G H Wu\(^1\) and F M Yang\(^1\)

\(^1\) State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, PO Box 603, 100080 Beijing, People’s Republic of China
\(^2\) School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130, People’s Republic of China

Received 30 July 2002
Published 28 November 2002
Online at stacks.iop.org/JPhysD/35/3161

Abstract
The structure and magnetic properties of the \((\text{Nd}_{1-x}\text{Er}_x)_3\text{Fe}_{18}\text{Co}_6\text{Cr}_5\) compounds with \(x = 0.0–0.8\) have been investigated by means of x-ray diffraction and magnetic measurements. It is found that all the compounds are single phase and crystallize in the \(\text{Nd}_3(\text{Fe},\text{Ti})_{29}\)-type structure with monoclinic symmetry and space group \(\text{A}_2/m\). The lattice constants \(a\), \(b\) and \(c\) and the unit-cell volume \(V\) show a tendency to decrease with increasing Er content, reflecting the lanthanide contraction. The Curie temperature decreases with increasing Er content. The spin-reorientation temperature \(T_{sr}\) increases with increasing Er content till \(x = 0.2\), then tends to saturate upon further increase in Er content. The saturation magnetization at 5 K decreases with increasing Er content owing to the antiferromagnetic coupling between Er and Nd moments. A first-order magnetization process is observed for compounds with \(x = 0, 0.2\) and 0.4 at critical field values of 8 T, 4.5 T and 3.5 T, respectively, applied along the hard magnetization direction.

1. Introduction
The successful synthesis of the \(\text{Nd}_2(\text{Fe},\text{Ti})_{19}\) compound by Collocott et al [1] at the Fe-rich corner of the \(R(=\text{rare-earth})–\text{Fe–Ti}\) phase diagram, where Ti is used as a stabilizing element, has brought renewed interest in the search for new permanent-magnet materials. The structure of the \(\text{Nd}_2(\text{Fe},\text{Ti})_{19}\) compounds was later established to be a preferable \(\text{Nd}_3(\text{Fe},\text{Ti})_{29}\)-type of structure with monoclinic symmetry and \(A_2/m\) space group [2–4]. Up to now, \(\text{R}_3(\text{Fe},\text{Ti})_{29}\) compounds with \(R = \text{Ce}, \text{Pr}, \text{Nd}, \text{Sm}, \text{Gd}, \text{Tb} \) and \(Y\) and \(T = \text{Ti}, \text{V}, \text{Cr}, \text{Nb}, \text{Mo}, \text{Mn} \) and \(R\) have been synthesized [5–11]. Yang et al [12] have synthesized an interstitial \(\text{Sm}_3(\text{Fe},\text{Ti})_{29}\) compound, which exhibits excellent permanent-magnet properties. In order to find 3:29 compounds with easy-axis anisotropy at room temperature, \(x \geq 0.4\). Furthermore, substitution of Co for Fe in these compounds leads to a drastic increase of the Curie temperature. However, up to now 3:29 phase \(R-T\) intermetallics with \(R\) a heavy rare-earth element, such as Ho or Er, have not yet been synthesized. The 3:29 structure, like the \(\text{ThMn}_{12}\) \((1:12)\) and \(\text{Th}_2\text{Zn}_{17}\) \((2:17)\) structures, can be derived from \(\text{CaCu}_5\) \((1:5)\) structure. In fact, the 3:29 structure consists of \(R(\text{Fe},\text{M})_{12}\) and \(R(\text{Fe},\text{M})_{17}\) in the ratio of 1:1. It is well known that there exist two structures for the \(R_2\text{Fe}_{17}\) compounds: the \(\text{Th}_2\text{Zn}_{17}\)-type of structure for the light-\(R\) elements and the \(\text{Th}_2\text{Ni}_{17}\)-type structure for the heavy ones. The compounds with the moderately heavy \(R\) elements may crystallize in both structures [15]. All \(R(\text{Fe},\text{M})_{29}\) compounds with \(R = \text{light rare-earth and Gd, Tb and Dy}\) [9] have the \(\text{Nd}_3(\text{Fe},\text{Ti})_{29}\)-type structure.

In order to investigate the effect of Er on the structure and magnetic properties of the 3:29 compounds, we have selected the \((\text{Nd}_{1-x}\text{Er}_x)_3\text{Fe}_{29-y}\text{Co}_y\text{Cr}_z\) system, because in the \(R(\text{Fe},\text{Cr})_{29}\) compounds, the necessary Cr content...
decreases when R changes from the light to the heavy R [9], whereas in the R₇(Fe,Co,Cr)₁₉ compounds with R = Gd [13, 14], the necessary Cr content increases with increasing Co content. To keep the Cr content constant, we have fixed the Co content of the (Nd₁₋ₓErₓ)₁₁Fe₂₀₋₅₋ₓCoₓCr₅ compounds, taking z = 5 and y = 6. In the present paper, a study of the effect of substitution of Er for Nd in (Nd₁₋ₓErₓ)₁₁Fe₁₈CoₓCr₅ compounds on the structure and magnetic properties is presented.

2. Experimental methods

Ingots with composition (Nd₁₋ₓErₓ)₁₁Fe₁₈CoₓCr₅ were prepared by arc-melting the constituent elements with a purity of at least 99.9% in an argon atmosphere. All the ingots were remelted at least four times to ensure homogeneity. In order to compensate for the loss of R during the melting and annealing, 5% excess of R relative to the stoichiometric composition was added. The ingots were annealed in a sealed quartz tube under the protection of an argon atmosphere at 1363 K for 72 h to maximize the amount of (Nd₁₋ₓErₓ)₁₁Fe₁₈CoₓCr₅. At the end of the annealing, the alloys were water-quenched. XRD with CuKα radiation and thermomagnetic analysis were employed to check the phase homogeneity. The thermomagnetic curves were measured in a superconducting quantum interference device (SQUID) magnetometer from 5 K to room temperature and in a vibrating-sample magnetometer (VSM) from room temperature to above the Curie temperature. The Curie temperatures were derived from the M²—T curves and by extrapolating M² to zero. Magnetization curves were recorded in a SQUID magnetometer at 5 K in external magnetic fields up to 5 T. The values of saturation magnetization Mₛ were obtained from M—1/B plots by extrapolating 1/B to zero.

In order to determine the anisotropy field, fine-powdered particles were mixed with epoxy resin and packed in a plastic tube of cylindrical shape. In the usual magnetic alignment, the epoxy is allowed to harden while the plastic tube is positioned in an applied magnetic field of about 1 T with the cylinder axis parallel to the field direction, so that the cylinder axis becomes the easy magnetization direction (EMD). In the case of rotation alignment, the epoxy hardened while the plastic tube rotated around its cylinder axis in a magnetic field that was applied perpendicular to the axis, so that the cylinder axis will correspond to the hard magnetization direction.

3. Results and discussion

The phase homogeneity of the (Nd₁₋ₓErₓ)₁₁Fe₁₈CoₓCr₅ compounds has been checked by means of both XRD and thermomagnetic analysis. It was found that the (Nd₁₋ₓErₓ)₁₁Fe₁₈CoₓCr₅ compounds are single phase for x = 0.0–0.8, crystallizing in the Nd₃(Fe,Co,Cr)₂₉ type of structure with monoclinic symmetry and space group A₂/m. As an example, figure 1(a) shows the XRD pattern of randomly oriented powder of (Nd₀.₆Er₀.₄)₁₁Fe₁₈Co₅Cr₅ which could very well be indexed based on the Nd₃(Fe,Co,Cr)₂₉ type of structure. As mentioned above, the 3:29 structure consists of the 1:12 and 2:17 structures at a ratio 1:1. Since there are two different structures of the 2:17 phase—the Th₂Zn₁₇ type of structure for the light R elements and the Th₃Ni₁₇ type of structure for

![Figure 1. XRD patterns of (a) randomly-oriented, (b) normally-aligned and (c) rotation-aligned powder samples of (Nd₀.₆Er₀.₄)₁₁Fe₁₈Co₅Cr₅ compounds.](image)

| Table 1. The unit-cell parameters of (Nd₁₋ₓErₓ)₁₁Fe₁₈CoₓCr₅ compounds. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| x | a (Å) | b (Å) | c (Å) | β (deg) | V (Å³) |
| 0 | 10.556 | 8.539 | 9.708 | 96.607 | 869.16 |
| 0.2 | 10.515 | 8.482 | 9.654 | 96.777 | 855.03 |
| 0.4 | 10.509 | 8.465 | 9.641 | 96.745 | 851.77 |
| 0.6 | 10.516 | 8.454 | 9.624 | 96.841 | 849.45 |
| 0.8 | 10.51 | 8.455 | 9.623 | 96.868 | 848.99 |

the heavy ones—there should also be two different structures of the 3:29 phase when the R changes from light to heavy. However, the experimental results indicate that no structural transition occurs up to x = 0.8 in the (Nd₁₋ₓErₓ)₁₁Fe₁₈CoₓCr₅ system. The lattice constants a, b, c and the unit-cell volume V have been derived from the XRD patterns and are listed in table 1. It can be seen that V decreases with increasing Er content due to the smaller radius of the Er atom compared with that of Nd.

In order to examine the magnetocrystalline anisotropy, XRD patterns of magnetically-aligned-powder samples were measured. As an example, figure 1(b) shows the XRD pattern of magnetically-aligned powder of the (Nd₀.₆Er₀.₄)₁₁Fe₁₈Co₅Cr₅ compound. It can be seen that the (040) reflection is strongly enhanced, whereas the (23-1), (40-2) and (30-4) reflections remain unchanged, or have weakened, and other peaks have almost disappeared, compared with the XRD pattern of the randomly-oriented powder shown in figure 1(a). This indicates that the (Nd₀.₆Er₀.₄)₁₁Fe₁₈Co₅Cr₅ (x = 0.0–0.8) compounds possess easy-plane-type anisotropy at room temperature. Figure 1(c) shows the XRD pattern of rotation-aligned powder of (Nd₁₋ₓErₓ)₁₁Fe₁₈CoₓCr₅ compounds. It can be seen that the [204] reflection is strongly enhanced and that the other reflections have disappeared, which further demonstrates that the EMD is in the plane perpendicular to the [204] direction.
According to the transformation relationship between the 1:5 and the 3:29 structure, the (040), (23-1), (40-2) and (30-4) reflections in the 3:29 structure correspond to the (1-10), (100), (110) and (111) reflections in the 1:5 structure. Based on the study of the magnetic anisotropy of \(\text{Y}_3(\text{Fe},\text{Ti})_{29} \) compounds [16] and the model of Courtois et al [16], the contribution of the Fe sublattice to the magnetic anisotropy in \(\text{Y}_3(\text{Fe},\text{Ti})_{29} \) compounds is along the [1 1 0] direction of the 1:5 structure and the Nd (\(\alpha J < 0 \)) and Er (\(\alpha J > 0 \)) sublattices prefer the \([1-10]\) and \([110]\) directions of the 1 : 5 structure, respectively. It can be seen in figure 1(b) that the EMD of the \((\text{Nd}_{1-x}\text{Er}_x)\text{Fe}_{18}\text{Co}_6\text{Cr}_5 \) compounds is in a direction intermediate between the [1-10] direction favoured by the Nd sublattice and the [110] direction favoured by both the Fe and Er sublattices.

The temperature dependences of the magnetization of the \((\text{Nd}_{1-x}\text{Er}_x)\text{Fe}_{18}\text{Co}_6\text{Cr}_5 \) compounds measured in a field of 0.05 T in the temperature range from (a) room temperature to above the Curie temperature and (b) 5 K to room temperature.

Based on the study of the magnetic anisotropy of \(\text{Y}_3(\text{Fe},\text{Ti})_{29} \) compounds [16] and the model of Courtois et al [16], the contribution of the Fe sublattice to the magnetic anisotropy in \(\text{Y}_3(\text{Fe},\text{Ti})_{29} \) compounds is along the [1 1 0] direction of the 1:5 structure. Based on the study of the magnetic anisotropy of \(\text{Y}_3(\text{Fe},\text{Ti})_{29} \) compounds [16] and the model of Courtois et al [16], the contribution of the Fe sublattice to the magnetic anisotropy in \(\text{Y}_3(\text{Fe},\text{Ti})_{29} \) compounds is along the [1 1 0] direction of the 1:5 structure and the Nd (\(\alpha J < 0 \)) and Er (\(\alpha J > 0 \)) sublattices prefer the \([1-10]\) and \([110]\) directions of the 1 : 5 structure, respectively. It can be seen in figure 1(b) that the EMD of the \((\text{Nd}_{1-x}\text{Er}_x)\text{Fe}_{18}\text{Co}_6\text{Cr}_5 \) compounds is in a direction intermediate between the [1-10] direction favoured by the Nd sublattice and the [110] direction favoured by both the Fe and Er sublattices.

The temperature dependences of the magnetization of the \((\text{Nd}_{1-x}\text{Er}_x)\text{Fe}_{18}\text{Co}_6\text{Cr}_5 \) compounds measured in a low field of 0.05 T are shown in figure 2(a) from room temperature to above the Curie temperature and in figure 2(b) from 5 K to room temperature. The derived Curie temperatures are shown in figure 3 and also listed in table 2, where it can be seen that the Curie temperature decreases with increasing Er content. In the \((\text{Nd}_{1-x}\text{Er}_x)\text{Fe}_{18}\text{Co}_6\text{Cr}_5 \) compounds, the Curie temperature is dominated by \(T - T \) interactions with a small contribution from the \(R - T \) interaction as evidenced by the slight variation in \(T_C \) that accompanies the addition of Er. In a molecular-field approximation, the magnetic-ordering temperature of \(R - T \) intermetallic compounds can be expressed as follows [17]:

\[
T_C = \frac{1}{2}[T_T + (T_T^2 + 4T_{RT}^2)^{1/2}] \tag{1}
\]

where

\[
T_T = n_{R-T}N_T \left[\frac{4S(S+1)\mu_B^2}{3k_B} \right]
\]

\[
T_{RT} = n_{R-T}|\gamma|(N_TR_T)^{1/2}
\times \left[\frac{2(S(S+1)\mu_B^2)}{5k_B} \right]
\]

with \(\gamma = 2(g - 1)/g_J \) the effective moment of Fe in the paramagnetic state, and \(N_T \) and \(N_R \) are the number of Fe and R atoms per unit volume, respectively. \(g_J \) and \(J_R \) are the Landé factor and the total angular moment of the R atoms, respectively. \(T_T \) and \(T_{RT} \) stand for the contributions to \(T_C \) from the \(T - T \) and \(R - T \) interactions, respectively. It can be seen that \(T_{RT} \) is proportional to the de Gennes factor of the R ion, \(G(J) = (g_J - 1)^2J(J + 1) \), which is 1.84 for Nd and 2.55 for Er. Moreover, due to the lanthanide contraction, \(N_T \) and \(N_R \) should increase upon substitution of Er for Nd in \((\text{Nd}_{1-x}\text{Er}_x)\text{Fe}_{18}\text{Co}_6\text{Cr}_5 \) compounds. On the other hand, \(n_{R-T} \) decreases with increasing atomic number of the R element [18]. Therefore, the dependence of \(T_C \) on the Er concentration is the result of the competition of \(G(J) \), \(N_T \), \(N_R \) and \(n_{R-T} \).

It can be seen in figure 2(b) that compared with the Er-rich compounds, the magnetization increases obviously with increasing temperature for the Nd-rich compounds, as observed in the \(\text{Nd}_3\text{Fe}_{24}\text{Cr}_4 \) compound [9], which was considered as magnetohistory effect and was described based on the presence of narrow Bloch walls [19]. With further increasing temperature, all the compounds show a peak at a certain temperature in the thermomagnetic curves, which correspond to spin orientation of the EMD [20]. Such spin-reorientation transition of the EMD was also observed for \(\text{Nd}_3\text{Fe}_{24}\text{Cr}_4 \) compounds [9]. The spin-reorientation temperature \(T_{sr} \) at which the spin reorientation occurs has been

Figure 2. Thermomagnetic curves of \((\text{Nd}_{1-x}\text{Er}_x)\text{Fe}_{18}\text{Co}_6\text{Cr}_5 \) compounds measured in a field of 0.05 T in the temperature range from (a) room temperature to above the Curie temperature and (b) 5 K to room temperature.

Table 2. Magnetic parameters of \((\text{Nd}_{1-x}\text{Er}_x)\text{Fe}_{18}\text{Co}_6\text{Cr}_5 \) compounds.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(T_C) (K)</th>
<th>(T_{sr}) (K)</th>
<th>(M_{3K}) ((\mu_B/\text{f.u.}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>555</td>
<td>147</td>
<td>39.5</td>
</tr>
<tr>
<td>0.2</td>
<td>538</td>
<td>157</td>
<td>29.8</td>
</tr>
<tr>
<td>0.4</td>
<td>528</td>
<td>160</td>
<td>26.3</td>
</tr>
<tr>
<td>0.6</td>
<td>523</td>
<td>158</td>
<td>18.9</td>
</tr>
<tr>
<td>0.8</td>
<td>514</td>
<td>156</td>
<td>17.8</td>
</tr>
</tbody>
</table>
derived for all the investigated compounds and is shown in figure 3. It can be seen that the spin-reorientation temperature increases with increasing Er content up to \(x = 0.2 \) and tends towards saturation for further increasing Er contents. The spin reorientation is a result of the competition of the Nd-, Er-, Fe- and Co-sublattice anisotropies that have different types of anisotropy and show different temperature dependencies.

Figure 4 shows the magnetization curves at 5 K measured on the magnetically aligned samples of the \((\text{Nd}_1-x\text{Er}_x)_3\text{Fe}_{18}\text{Co}_{6}\text{Cr}_{5}\) compounds in fields applied parallel or perpendicular to the aligned direction. The values of the saturation magnetization are shown in figure 5 where it can be seen that the saturation magnetization decreases with increasing Er content due to the antiferromagnetic coupling between the Er and Nd moments. Based on a simple dilute model and supposing that the magnetic moments of Er are antiparallel to those of Nd, Fe and Co moments, the saturation magnetization \(M_s \) of the \((\text{Nd}_1-x\text{Er}_x)_3\text{Fe}_{18}\text{Co}_{6}\text{Cr}_{5}\) compounds at 5 K is expressed by

\[
M_s = M_0 - 3x(\mu_{\text{Nd}} + \mu_{\text{Er}})
\]

where \(M_0, \mu_{\text{Nd}} \) and \(\mu_{\text{Er}} \) represent the saturation magnetization of \(\text{Nd}_3\text{Fe}_{18}\text{Co}_{6}\text{Cr}_{5} \) and the average free-ion magnetic moment of Nd and Er, respectively. The calculated results are also presented in figure 5 as a dashed line. The difference between the experimental and calculated values may be due to deviation of the \(R \) moments in the \((\text{Nd}_1-x\text{Er}_x)_3\text{Fe}_{18}\text{Co}_{6}\text{Cr}_{5}\) compounds from the free-ion moments.

In figure 4 anomalies can be seen in the hard magnetization curves of the \((\text{Nd}_1-x\text{Er}_x)_3\text{Fe}_{18}\text{Co}_{6}\text{Cr}_{5}\) compounds with \(x = 0, 0.2 \) and 0.4. These anomalies correspond to a first-order magnetization process (FOMP) [21, 22], which indicates a magnetic-field-induced spin phase transition from one spin phase to another. This transition process can be understood as follows: when the field is applied parallel to the hard magnetization direction of the samples, the direction of magnetization of the samples may first turn to the \(a- \) or \(c- \)axis and then turn to the \(b- \)axis, the hard magnetization direction. The critical fields for the FOMP were determined to be 8 T, 4.5 T and 3.5 T for \(x = 0, 0.2 \) and 0.4, respectively.

4. Conclusion

All \((\text{Nd}_1-x\text{Er}_x)_3\text{Fe}_{18}\text{Co}_{6}\text{Cr}_{5}\) compounds with \(x = 0.0-0.8 \) are of single phase and crystallize in \(\text{Nd}_x(\text{Fe},\text{Ti})_{29} \)-type of structure with monoclinic symmetry and space group \(A2/m \). Substitution of Er for Nd in \((\text{Nd}_1-x\text{Er}_x)_3\text{Fe}_{18}\text{Co}_{6}\text{Cr}_{5}\) compounds leads to a decrease of the unit-cell volume due to the lanthanide contraction. All \((\text{Nd}_1-x\text{Er}_x)_3\text{Fe}_{18}\text{Co}_{6}\text{Cr}_{5}\) compounds possess planar anisotropy at room temperature. The Curie temperature shows a tendency to decrease with increasing Er content. A spin-reorientation transition is observed in all compounds. The spin-reorientation temperature \(T_{\text{sr}} \) increases with increasing Er content up to \(x = 0.2 \) and tends towards saturation with further increasing Er content. The saturation magnetization at 5 K of the \((\text{Nd}_1-x\text{Er}_x)_3\text{Fe}_{18}\text{Co}_{6}\text{Cr}_{5}\) compounds decreases with increasing Er content. A FOMP is observed for \(x = 0, 0.2 \) and 0.4 in the hard-direction magnetization curves, in the field range used.

Acknowledgment

This work is supported by State Key Project of Fundamental Research Grant (No G2000067106).

References

Structure of (Nd_{1−x}Er_x)_{3}Fe_{18}Co_{6}Cr_{5} compounds

[10] Hongge Pan, Fuming Yang, Yun Chen, Xiufeng Han, Ning Tang, Changpin Chen and Qidong Wang 1997 *J. Phys. Condens. Mater.* **9** 2499

