1. Let $\frac{d y}{d x}=2 x-y$. Sketch a slope field for this differential equation. Is $y=2 x$ a solution to the differential equation? Why or why not? N_{i}, be cause if $y=2 x$, then

$$
\begin{aligned}
& \frac{d y}{d x}=2 ; \text { bot } 2 x-y=2 x-(2 x)=0 . \\
& S_{0} \frac{d y}{d x} \neq 2 x-y
\end{aligned}
$$

2. Is $y=e^{e^{x}}$ a solution to $\frac{d y}{d x}=\ln \left(y^{y}\right)$? [HINT: It may help to simplify first. Think about

Suppose $y=e^{e^{x}}$. Then by chain cole,

$$
\xrightarrow{\text { mplify first. Think about }}|\operatorname{lng}|=e^{x+C} \mid B_{i}=: e^{c}
$$

$\frac{d y}{x}=e^{x} \cdot e^{e^{x}}$. Also, $\ln \left(y^{3}\right)=y^{\ln y}$

$$
=e^{e^{x}} \cdot \ln \left(e^{e^{x}}\right)=e^{e^{x}} e^{x} \text {. Thus }
$$

$y=e^{\left(B e^{x}\right)} \leftarrow$ This is all solution to this Jittery; we have the ore where $B=1$
@t:0 $q=1 \& \frac{d i}{d t}=q^{2} t=1 \cdot 0=0=\mathrm{m}$ S S_{0} out tangent line is $q \approx 0(t-0)+1$, which give is $\quad(: s) \approx 0(: 5)-c)+1=1$
(at: $s \quad q=1$, so $\frac{d y}{d t}=(1)^{2}(s)=.5=m$. So out target line is
$q \approx, 5(t-5)+1$, which gives $q(1) \approx, 5(1-, 5)+1=1,25$

$$
\text { So } \quad q(1) \approx 1.25
$$

4. The most interesting man in the world wants a refreshing beer after a long day of wrestling tigers. Unfortunately, his liquid nitrogen chamber has no beer in it. So he puts a room temperature $\left(70^{\circ} F\right)$ Dos Equis in. One second later, the temperature has already dropped to $69^{\circ} F$. Set up and solve a differential equation to determine how long the beer needs to be before it is cold enough to drink (the most interesting man in the world prefers his beers to be $\left.34^{\circ} \mathrm{F}\right)$. You may assume Newton's Law of Cooling ${ }^{1}$ and his liquid nitrogen chamber is kept at a

$$
\begin{aligned}
& \frac{d T}{d t}=k\left(T T_{b i r}-T_{a I_{r}}\right) \\
& \frac{d T}{d t}=k(T+350) \\
& \frac{d T}{T+350}=\int k d t \\
& \ln |T+3 S c|=k t+C
\end{aligned} \quad \rightarrow T T
$$

5. BONUS: Willy Wonka's 1000 gallon chocolate swimming pool starts with 100 gallons of water in it with a chocolicity (chocolate concentration) of 20 grams of chocolate per gallon. Fresh water is flowing into the tank at a rate of 10 gallons per minute, while 1 gallon of the mixed chocolate water leaks out every minute. What will the chocolicity of the water in the tank be when the tank is full?

$$
C=\frac{N}{V}=\frac{557.67}{1000} \approx .557 \dot{g}_{4} l
$$

${ }^{1}$ The rate of change of the temperature of a body is directly proportional to the din ce between the temperature of the body and the temperature of the surrounding air.
\rightarrow b/ M\& lutist
both illwnys pisitlue

