## Math 116 - Quiz 3

 Name: $\qquad$Answer the following questions showing all work. 5 points each.

1. Let $\frac{d y}{d x}=2 x-y$. Sketch a slope field for this differential equation. Is $y=2 x$ a solution to the differential equation? Why or why not?
2. Is $y=e^{e^{x}}$ a solution to $\frac{d y}{d x}=\ln \left(y^{y}\right)$ ? [HINT: It may help to simplify first. Think about exponent rules.]
3. Let $\frac{d q}{d t}=q^{2} t$ and assume $q(0)=1$. Using Euler's method with a $\Delta t$ step of .5, estimate $q(1)$.
4. The most interesting man in the world wants a refreshing beer after a long day of wrestling tigers. Unfortunately, his liquid nitrogen chamber has no beer in it. So he puts a room temperature $\left(70^{\circ} F\right)$ Dos Equis in. One second later, the temperature has already dropped to $69^{\circ} \mathrm{F}$. Set up and solve a differential equation to determine how long the beer needs to be before it is cold enough to drink (the most interesting man in the world prefers his beers to be $34^{\circ} F$ ). You may assume Newton's Law of Cooling ${ }^{1}$ and his liquid nitrogen chamber is kept at a chilly $-350^{\circ} \mathrm{F}$.
5. BONUS: Willy Wonka's 1000 gallon chocolate swimming pool starts with 100 gallons of water in it with a chocolicity (chocolate concentration) of 20 grams of chocolate per gallon. Fresh water is flowing into the tank at a rate of 10 gallons per minute, while 1 gallon of the mixed chocolate water leaks out every minute. What will the chocolicity of the water in the tank be when the tank is full?
[^0]
[^0]:    ${ }^{1}$ The rate of change of the temperature of a body is directly proportional to the difference between the temperature of the body and the temperature of the surrounding air.

