Quiz 1 (20 points)
Name:
Section: 201/202 (circle one)

1. A biologist is growing mold in a Petri dish for an experiment. At noon she starts the experiment by innoculating (putting mold into) the dish. At 4 pm , she notices that the mold has grown to cover an area of $5 \mathrm{~cm}^{2}$. At 7 pm , she returns and finds the mold now covers an area of $7 \mathrm{~cm}^{2}$. Let $f(t)$ be the area of the mold, in cm^{2}, in the Petri dish t hours after noon.
(a) Assuming the area of the mold grows linearly over time, find a formula $l(t)$ which gives the area the mold covers t hours after noon. (3 points).
(b) Assuming the area of the mold grows exponentially over time, find a formula $e(t)$ which gives the area the mold covers t hours after noon. (3 points).
(c) Using your formula $e(t)$ from part (b), how long does it take for the area of the mold to triple? (3 points).
(d) Suppose the biologist returns at 9 pm to find the mold has grown to $8.8 \mathrm{~cm}^{2}$. Which of your formulas more accuately predicts this growth? Justify your reasoning. (3 points).

2. Given below is the graph of $y=f(x)$.

Find the function for the above graphs in terms of $f(x)$. (No partial credit, 8 points)

Write your answer here

(a)
(b)
(c)
(d)

