Solution to quiz 4

1. [6 points] Suppose $f(x)=e^{x^{2}}$.
(1) [2 points] Find the tangent line approximation of $f(x)$ at $x=1$.

Solution: $f^{\prime}(x)=2 x e^{x^{2}}$, so $f^{\prime}(1)=2 e$, the tangent line approximation $L(x)=f(1)+$ $f^{\prime}(1)(x-1)=e+2 e(x-1)=2 e x-e$.
(2) [2 points] Use your answer in part (1) to estimate $e^{1.01^{2}}$.

Solution: $e^{1.01^{2}}=f(1.01) \approx L(1.01)=2 e \cdot 1.01-e=2.02 e-e$.
(3) [2 points] Is your estimation in part (2) an overestimate or underestimate? Use concavity to explain your answer.
Solution: $f^{\prime \prime}(x)=\left(4 x^{2}+2\right) e^{x^{2}}>0$, so $f(x)$ is always concave up, so the estimation is an underestimate.
2. [6 points]Suppose that x and y satisfy the relation given by the curve

$$
x^{2}+x y+y^{2}=3
$$

(1) [4 points] Find $\frac{d y}{d x}$ (in other words, y^{\prime}).

Solution: take derivative directly to both sides, we have $2 x+y+x y^{\prime}+2 y y^{\prime}=0$, so $(x+2 y) y^{\prime}=-(2 x+y)$, so $y^{\prime}=-\frac{2 x+y}{x+2 y}$.
(2) [2 points]Find all points on the curve at which the tangent line is horizontal.

Solution: The tangent line is horizontal means the slope is 0 . So let $y^{\prime}=-\frac{2 x+y}{x+2 y}=0$, we have $2 x+y=0$, so $y=-2 x$. Then plug $y=-2 x$ back in the original equation, we have $x^{2}+x \cdot(-2 x)+(-2 x)^{2}=3$, so $3 x^{2}=3$, then $x=1$ (so $y=-2$) or $x=-1$ (so $y=2$). We find 2 points, $(1,-2)$ and $(-1,2)$.
3. [7 points] Let $f(x)=x^{2}(x-1)^{2}$. Find all the critical points of $f(x)$ and use either the first derivative test or the second derivative test to classify these critical points as a local max, local min, or neither. Show all your steps!
Solution: $f(x)=x^{4}-2 x^{3}+x^{2}$, so $f^{\prime}(x)=4 x^{3}-6 x^{2}+2 x=2 x\left(2 x^{2}-3 x+1\right)=$ $2 x(2 x-1)(x-1)$. Let $f^{\prime}(x)=0$, we have 3 solutions, $x=0, x=0.5$ or $x=1$. These are where the critical points locate.
Let's use the second derivative test. $f^{\prime \prime}(x)=12 x^{2}-12 x+2$, so $f^{\prime \prime}(0)=2>0, f^{\prime \prime}(0.5)=$ $-1<0, f^{\prime \prime}(1)=2>0$. By the test, we know $f(x)$ has a local min at $x=0$ and $x=1$, and a local max at $x=0.5$.
We can also use the first derivative test. Now the three critical points divide the x-axis into 4 intervals, $(-\infty, 0),(0,0.5),(0.5,1)$ and $(1, \infty)$. We pick any value on each interval to find the sign of f^{\prime} on that interval.
$(-\infty, 0)$, e.g, pick $-1, f^{\prime}(-1)=-12<0$, so $f^{\prime}<0$ on $(-\infty, 0)$;
$(0,0.5)$, e.g, pick $0.25, f^{\prime}(0.25)=0.1875>0$, so $f^{\prime}>0$ on $(-\infty, 0)$;
$(0.5,1)$, e.g, pick $0.75, f^{\prime}(0.75)=-0.1875<0$, so $f^{\prime}<0$ on $(-\infty, 0)$;
$(1, \infty)$, e.g, pick $2, f^{\prime}(2)=12>0$, so $f^{\prime}>0$ on $(-\infty, 0)$;
By the first derivative test, we can get the same result.

