Quiz 2 (20 points in total)
Section 201/202 (circle one)
Name:

1. [6 points] The average weight of a squirrel in Ann Arbor oscillates sinusoidally between a low of 5 pounds on January 1 and a high of 9 pounds on July 1, and a low of 5 pounds on January 1 next year again. Suppose that the function $P(t)$ gives the average weight in pounds of an Ann Arbor squirrel t months after January 1.
a). What is the amplitude of $P(t)$?

$$
A=\frac{1}{2}(\text { max }- \text { min })=\frac{1}{2}(9-5)=2 u_{b}
$$

$$
\left(M_{1} \text { in e }=\frac{1}{2}\left(m+m_{\text {min }}\right)=\frac{1}{2}(9+5)=7\right)
$$

b). What is the period of $P(t)$?

$$
P_{\text {er }}=\text { time fo locale }\left(\text { le } I_{o w} \rightarrow h_{\text {high }} \rightarrow I_{0-}\right)=R_{m o} \quad\left(J_{m} \mid \rightarrow J_{m_{1}} 1\right)
$$

c). Find a formula for $P(t)$.

$$
\text { need tosstietch by } \frac{\text { Per }}{2 \pi} \quad(\text { to make new period }=12)
$$

start@min
2. [2 points] $f(x)=\sin (x)^{x}$, write down the limit definition of $f^{\prime}(3)$. (You don't need to calculate it, just write the definition.)

$$
f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{\sin (3+h)^{3+h}-\sin (3)^{3}}{h}
$$

3. [4 points] The cost, C (in dollars) to produce g gallons of ice cream can be expressed as $C=f(g)$. Assume f is invertible. Interpret
(1) $f^{\prime}(100)=2.5$ If we increase our production from 100 gallons of ice cream to 101 gal cost will increase by about $\$ 2.50$
(2) $\left(f^{-1}\right)^{\prime}(100)=2.5$ If we increase our spending (cost) from \$100 up to \$101, we will produce about 2.5 more gallons of ice cream. 1 Answers may vary.
on all quantities.
4. [6 points]Consider a particle, whose position, s, is given by the table

t (seconds)	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6
S (feet)	0.5	1.4	3.8	6.5	9.6	9.2	8.7	6.1

(1) Estimate the velocity of the particle at $t=0.2$. (Don't forget the unit) $V(.2) \approx \frac{s(.4)-s(.2)}{.4-.2}=\frac{1.4-.5}{.4-.2}=4.5 \frac{\mathrm{ft}}{\mathrm{sec}} \quad[$ his is arg. vel. from $t=2$ to $t=.4]$
(2) Use (1) and the table to estimate the position of the particle at $t=0.17$. (Don't forget the unit)
Tan line @ $\left.\left.t=.2:(s-.5)=\begin{array}{rl}4.5(t-.2), \text { so } \quad s-.5 & =4.5(.17-.2) \\ & =-.135\end{array}\right\} s=.5=135=365 \mathrm{ft}\right)$ $s(.2) \quad s^{\prime}(.2)=v(.2)$
(3) For which t, does the velocity appear to be positive?

$$
t<l \sec (s(t) \text { get, bigger as t gets bigger UNTIL } t=1 \sec)
$$

5.[2 points] See figure 1, which graph represents the position of an object that is speeding up and then slowing down?
Answer:
concave 4 then

(a)

Figure 1: Problem 5

(b)

(d)

