Solution to quiz 2

1. [6 points] The average weight of a squirrel in Ann Arbor oscillates sinusoidally between a low of 5 pounds on January 1 and a high of 9 pounds on July 1, and a low of 5 pounds on January 1 next year again. Suppose that the function $P(t)$ gives the average weight in pounds of an Ann Arbor squirrel t months after January 1.
a). What is the amplitude of $P(t)$?

Solution: $\quad \frac{9-5}{2}=2$
b). What is the period of $P(t)$?

Solution: 12 (months)
c). Find a formula for $P(t)$.

Solution: Suppose $y=A \cos (B t)+k$, then $A<0$. Midline is $y=\frac{5+9}{2}=7$, so $k=7$; amplitude is 2 , so $|A|=-A=2$, so $A=-2$; period is $\frac{2 \pi}{B}=12$, so $B=\frac{\pi}{6}$. Therefore the formula is

$$
P(t)=-2 \cos \left(\frac{\pi}{6} t\right)+7
$$

2. [2 points] $f(x)=\sin (x)^{x}$, write down the limit definition of $f^{\prime}(3)$. (You don't need to calculate it, just write the definition.)
Solution:

$$
f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{\sin (3+h)^{3+h}-\sin (3)^{3}}{h}
$$

3. [4 points]The cost, C (in dollars) to produce g gallons of ice cream can be expressed as $C=f(g)$. Assume f is invertible. Interpret
(1) $f^{\prime}(100)=2.5$

Solution: When 100 gallons of ice cream are produced, it costs approximately 2.5 dollars to produce 1 more gallon of ice cream.
Or, It costs approximately 2.5 more dollars to produce 101 gallons of ice cream than producing 100 gallons.
(2) $\left(f^{-1}\right)^{\prime}(100)=2.5$

Solution: When the cost is 100 dollars, approximately 2.5 gallons more ice cream will be produced if 1 more dollar is spent.
4. [6 points]Consider a particle, whose position, s, is given by the table

t (seconds)	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6
S (feet)	0.5	1.4	3.8	6.5	9.6	9.2	8.7	6.1

(1) Estimate the velocity of the particle at $t=0.2$. (Don't forget the unit)

Figure 1: Problem 5

Solution: $\quad v(0.2)=S^{\prime}(0.2) \approx \frac{S(0.4)-S(0.2)}{0.4-0.2}=\frac{1.4-0.5}{0.2}=4.5 \mathrm{ft} / \mathrm{s}$
(2) Use (1) and the table to estimate the position of the particle at $t=0.17$. (Don't forget the unit)
Solution: $\quad S(0.17) \approx S(0.2)+S^{\prime}(0.2)(0.17-0.2)=0.5+4.5 \cdot(-0.03)=0.365 \mathrm{ft}$.
(3) For which t, does the velocity appear to be positive?

Solution: For $0.2 \leq t \leq 1.2, S(t)$ is increasing, so $v(t)=S^{\prime}(t)$ appear to be positive for $0.2 \leq t \leq 1.2$.
5. [2 points] See figure 1, which graph represents the position of an object that is speeding up and then slowing down?
Answer: (c) Since speed is $v(t)=S^{\prime}(t)=$ slope of tangent line at t, speed is increasing then decreasing, so slope of tangent lines is increasing then decreasing.

