Quiz 1 (20 points)
Name: \quad Key
Section: 201/202 (circle one)

1. A biologist is growing mold in a Peri dish for an experiment. At noon she starts the experiment by innoculating (putting mold into) the dish. At 4 pm , she notices that the mold has grown to cover an area of $5 \mathrm{~cm}^{2}$. At 7 pm , she returns and finds the mold now covers an area of $7 \mathrm{~cm}^{2}$.
(a) Assuming the area of the mold grows linearly over time, find a formula $l(t)$ which gives the area the mold covers t hours after noon. (3 points).

$$
\begin{aligned}
& (4,5) \\
& (7,7)
\end{aligned}
$$

$$
\begin{aligned}
& 7=7\left(\frac{2}{3}\right)+b \\
& 7=14 / 3+b \\
& 7 / 3=b
\end{aligned}
$$

$$
\begin{aligned}
V: \quad & S!4\left(\frac{2}{3}\right)+\frac{7}{3} \\
& S=\frac{8}{=}+7 / 3
\end{aligned}
$$

(b) Assuming the area of the mold grows exponentially over time, find a formula $e(t)$ which gives the area the mold covers t hours after noon. (3 points).
(c) Using your formula $e(t)$ from part (b), how long does it take for the area of the mold to triple? (3 points).

$$
\begin{aligned}
P(19) & =\frac{2}{3}(9)+2,33=8,33 \\
P(9) & =3,1925(1.1187)^{9} \\
& =3.1925(2,744) \\
& =8.76
\end{aligned}
$$

exponential is more becave it predicts $8.76 \mathrm{~cm}^{2}$ of ${ }^{1}$ moll, which is closer the the $8.33 \mathrm{~cm}^{2}$ of mold predicted by $l(t)$

$$
\begin{aligned}
& y=e(t)=y_{0} a^{t} \\
& 7=y_{0} a^{7} \\
& 7=y_{0}(1,1187)^{7} \\
& e(t)=3.1925(1.1187)^{t} \\
& \therefore 5=y_{0} a^{4} \quad\left(a^{511187}\right.
\end{aligned}
$$

2. Given below is the graph of $y=f(x)$.

Find the function for the above graphs in terms of $f(x)$. (No partial credit, 8 points)

Write your answer here
(a)
$f(x-1)-1$
(b) $f(2 x) / 2$
(c) $-f(x)+1$
(d) $f(-x)-.5$

