Solution to quiz 1

1. A biologist is growing mold in a Petri dish for an experiment. At noon she starts the experiment by innoculating (putting mold into) the dish. At 4 pm , she notices that the mold has grown to cover an area of $5 \mathrm{~cm}^{2}$. At 7 pm , she returns and finds the mold now covers an area of $7 \mathrm{~cm}^{2}$.
(a) Assuming the area of the mold grows linearly over time, find a formula $l(t)$ which gives the area the mold covers t hours after noon. (3 points).
Solution: let $y=l(t)=m t+b$, then $l(4)=5$ and $l(7)=7$, so slope $m=\frac{7-5}{7-4}=\frac{2}{3}$. Use the point slope form, we have $y-7=\frac{2}{3}(x-7)$, simplify, $y=l(t)=\frac{2}{3} t+\frac{7}{3}$.
(b) Assuming the area of the mold grows exponentially over time, find a formula $e(t)$ which gives the area the mold covers t hours after noon. (3 points).
Solution: Let $y=e(t)=P_{0} a^{t}$, then

$$
\begin{aligned}
& e(4)=5 \Rightarrow P_{0} a^{4}=5 \\
& e(7)=7 \Rightarrow P_{0} a^{7}=7
\end{aligned}
$$

Divide the second equation by the first and cancel out P_{0}, we have $1.4=a^{3}$, so $a=1.4^{\frac{1}{3}}=$ 1.1187, plug this back into either equation, we have $P_{0}=3.1925$. So $e(t)=3.1925 \cdot(1.1187)^{t}$.
(c) Using your formula $e(t)$ from part (b), how long does it take for the area of the mold to triple? (3 points).
Solution: $3 P_{0}=P_{0}(1.187)^{t}$, cancel out $P_{0}, 3=(1.1187)^{t}$, so $t=\ln (3) / \ln (1.1187) \approx 9.795$ years.
(d) Suppose the biologist returns at 9 pm to find the mold has grown to $8.8 \mathrm{~cm}^{2}$. Which of your formulas more accuately predicts this growth? Justify your reasoning. (3 points).
Solution: $l(9)=\frac{2}{3} \cdot 9+\frac{7}{3}=8.33, e(9)=3.1925 \cdot(1.1187)^{9}=8.76$, so exponential is more accurate because it predicts $8.76 \mathrm{~cm}^{2}$ of mold, which is closer than the $8.33 \mathrm{~cm}^{2}$ of mold predicted by $l(t)$.
2. Given below is the graph of $y=f(x)$.

Find the function for the above graphs in terms of $f(x)$. (No partial credit, 8 points)

Write your answer here

(a) shift down by 1 and right by 1 , so $f(x-1)-1$.
(b) vertical and horizontal scaling by $1 / 2$, so $\frac{1}{2} f(2 x)$
(c) reflect over x-axis and shift up by 1 , so $-f(x)+1$.
(d) reflect over y-axis and shift down by 0.5 , so $f(-x)-0.5$.

