# Math 116-101 or 102 (circle one) (Spring 2012) <br> Quiz 5: §9.3-9.5; 10.1-10.2 <br> 6/12/2012 

Show all work and include units where appropriate. You have 30 minutes to complete this quiz. (25 pts)

1. Determine the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{5^{n}(x-2)^{n}}{n^{2}+1}(5 \mathrm{pts})$

Using the ratio test, $\left.\lim _{n \rightarrow \infty}\left|\frac{5^{n+1}(x-2)^{n+1}}{(n+1)^{2}+1} \div \frac{5^{n}(x-2)^{n}}{n^{2}+1}\right|=\lim _{n \rightarrow \infty} \right\rvert\, \frac{5^{n+1}}{5^{n}} \frac{n^{2}+1}{n^{2}+2 n+2}(x-$ $2)\left|=|5(x-2)|\right.$. Thus our radius of convergence is $\frac{1}{5}$.

Testing our end points, when $x=2+\frac{1}{5}$, our power series evaluates as $\sum_{n=1}^{\infty} \frac{5^{n}\left(\left(2+\frac{1}{5}\right)-2\right)^{n}}{n^{2}+1}=$ $\sum_{n=1}^{\infty} \frac{5^{n}\left(\frac{1}{5}\right)^{n}}{n^{2}+1}=\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$, which converges by $p$-test ${ }^{1}(p=2>1)$.
When $x=2-\frac{1}{5}$, our power series evaluates as $\sum_{n=1}^{\infty} \frac{5^{n}\left(\left(2-\frac{1}{5}\right)-2\right)^{n}}{n^{2}+1}=\sum_{n=1}^{\infty} \frac{5^{n}\left(\frac{-1}{5}\right)^{n}}{n^{2}+1}=$ $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$, which converges absolutely, as shown above. Therefore our interval of convergence is $\left[2-\frac{1}{5}, 2+\frac{1}{5}\right]$.
2. Does $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ converge absolutely, converge conditionally, or diverge? Justify your answer. (5 pts)

We note that $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\ln (n)}=0$, sucessive terms alternate signs, and $\left|\frac{(-1)^{n}}{\ln (n)}\right|>\left|\frac{(-1)^{n+1}}{\ln (n+1)}\right|$ for all $n$. Thus the series converges by the alternating series test. However, $\sum_{n=2}^{\infty}\left|\frac{(-1)^{n}}{\ln (n)}\right|=$ $\sum_{n=2}^{\infty} \frac{1}{\ln (n)}>\sum_{n=2}^{\infty} \frac{1}{n}$, whih diverges by $p$-test. Therefore, $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ converges conditionally.

[^0]3. Determine whether each of the following series converges or diverges. Justify your answer. (5 pts each)
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n-3)}{5 n+2}$
$\lim _{n \rightarrow \infty} \frac{(-1)^{n}(n-3)}{5 n+2}$ does not exist, therefore by the $n^{\text {th }}$ term test, the series diverges.
(b) $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{n^{2} \cos \left(\frac{1}{n}\right)}$

As $n$ increases from 1 to $\infty, \frac{1}{n}$ decreases from 1 to 0 , thus causing $\sin \left(\frac{1}{n}\right)$ to decrese and $\cos \left(\frac{1}{n}\right)$ to increase. Therefore $f(n)=\frac{\sin \left(\frac{1}{n}\right)}{n^{2} \cos \left(\frac{1}{n}\right)}$ is a positive decreasing function for $n \geq 1$. Therefore we may apply the integral test, thus $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{n^{2} \cos \left(\frac{1}{n}\right)} \approx \int_{1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{n^{2} \cos \left(\frac{1}{n}\right)}={ }^{2} \int_{\cos (1)}^{0} \frac{1}{w} d w=\left.\ln (w)\right|_{\cos (1)} ^{0}=\ln (0)-$ $\ln (\cos (1))=-\ln (\cos (1)) \approx .6156$. Because the integral converges, the sum also converges.
4. Find the degree 3 taylor polynomial for $f(x)=\sqrt[3]{1+x}$ around $x=0$. ( 5 pts )
$f(x)=\sqrt[3]{1+x}=(1+x)^{\frac{1}{3}}$, so $f^{\prime}(x)=\frac{1}{3}(1+x)^{\frac{-2}{3}}, f^{\prime \prime}(x)=\frac{-2}{9}(1+x)^{\frac{-5}{3}}$ and $f^{\prime \prime \prime}(x)=\frac{10}{27}(1+x)^{\frac{-8}{3}}$. Thus $f(0)=1, f^{\prime}(0)=\frac{1}{3}, f^{\prime \prime}(0)=\frac{-2}{9}$, and $f^{\prime \prime \prime}(0)=\frac{10}{27}$. Thus our taylor polynomial is

$$
f(x) \approx P_{3}(x)=1+\frac{1}{3} x+\frac{\frac{-2}{9} x^{2}}{2!}+\frac{\frac{-10}{27} x^{3}}{3!}
$$

[^1]
[^0]:    ${ }^{1}$ Or more accurately, by comparison with $\sum \frac{1}{n^{2}}$, which converges by $p$-test.

[^1]:    ${ }^{2}$ By w-sub with $w=\cos \frac{1}{n}$, and $d w=\frac{\sin \left(\frac{1}{n}\right)}{n^{2}}$. This causes our bounds to become $\cos \left(\frac{1}{1}\right)=\cos (1)$ and $\cos \frac{1}{\infty}=\cos (0)=1$.

