Math 116-101 or 102 (circle one) (Spring 2012) Name:

Quiz 5: §9.3-9.5; 10.1-10.2
6/12/2012

Show all work and include units where appropriate. You have 30 minutes to complete
this quiz. (25 pts)
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2. Does Z )) converge absolutely, converge conditionally, or diverge? Justify your
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answer. (5 pts)
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1Or more accurately, by comparison with 3 #, which converges by p-test.



3. Determine whether each of the folllowing series converges or diverges. Justify your
answer. (5 pts each)
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As n increases from 1 to oo, % decreases from 1 to 0, thus causing sin(%)
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to decrese and cos(+) to increase. Therefore f(n) = %s?)l) is a positive

decreasing function for n > 1. Therefore we may apply the integral test,
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In(cos(1)) = —In(cos(1)) ~ .6156. Because the integral converges, the sum

also converges.

4. Find the degree 3 taylor polynomial for f(z) = v/1 + x around z = 0. (5 pts)
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2By w-sub with w = cos %, and dw =
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cos L = cos(0) = 1.

. This causes our bounds to become cos(1) = cos(1) and



