Name:

Math 116-101 or 102 (circle one) (Spring 2012) Quiz 5: §9.3-9.5; 10.1-10.2 6/12/2012

Show all work and include units where appropriate. You have 30 minutes to complete this quiz. (25 pts)

1. Determine the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{5^n (x-2)^n}{n^2+1}$ (5 pts)

Using the ratio test, $\lim_{n \to \infty} \left| \frac{5^{n+1}(x-2)^{n+1}}{(n+1)^2 + 1} \div \frac{5^n(x-2)^n}{n^2 + 1} \right| = \lim_{n \to \infty} \left| \frac{5^{n+1}}{5^n} \frac{n^2 + 1}{n^2 + 2n + 2} (x-2) \right| = |5(x-2)|.$ Thus our radius of convergence is $\frac{1}{5}$.

Testing our end points, when $x = 2 + \frac{1}{5}$, our power series evaluates as $\sum_{n=1}^{\infty} \frac{5^n ((2 + \frac{1}{5}) - 2)^n}{n^2 + 1} = \sum_{n=1}^{\infty} \frac{5^n (\frac{1}{5})^n}{n^2 + 1} = \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$, which converges by *p*-test¹ (*p* = 2 > 1). When $x = 2 - \frac{1}{5}$, our power series evaluates as $\sum_{n=1}^{\infty} \frac{5^n ((2 - \frac{1}{5}) - 2)^n}{n^2 + 1} = \sum_{n=1}^{\infty} \frac{5^n (-\frac{1}{5})^n}{n^2 + 1} = \sum_{n=1}^{\infty} \frac{$

 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1}$, which converges absolutely, as shown above. Therefore our interval of convergence is $\left[2 - \frac{1}{5}, 2 + \frac{1}{5}\right]$.

2. Does $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}$ converge absolutely, converge conditionally, or diverge? Justify your answer. (5 pts)

We note that $\lim_{n \to \infty} \frac{(-1)^n}{\ln(n)} = 0$, successive terms alternate signs, and $\left|\frac{(-1)^n}{\ln(n)}\right| > \left|\frac{(-1)^{n+1}}{\ln(n+1)}\right|$ for all n. Thus the series converges by the alternating series test. However, $\sum_{n=2}^{\infty} \left|\frac{(-1)^n}{\ln(n)}\right| = \sum_{n=2}^{\infty} \frac{1}{\ln(n)} > \sum_{n=2}^{\infty} \frac{1}{n}$, which diverges by p-test. Therefore, $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}$ converges conditionally.

¹Or more accurately, by comparison with $\sum \frac{1}{n^2}$, which converges by *p*-test.

3. Determine whether each of the following series converges or diverges. Justify your answer. (5 pts each)

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n-3)}{5n+2}$$

 $\lim_{n\to\infty}\frac{(-1)^n(n-3)}{5n+2}$ does not exist, therefore by the n^{th} term test, the series diverges.

(b)
$$\sum_{n=1}^{\infty} \frac{\sin(\frac{1}{n})}{n^2 \cos(\frac{1}{n})}$$

As *n* increases from 1 to ∞ , $\frac{1}{n}$ decreases from 1 to 0, thus causing $\sin(\frac{1}{n})$ to decrease and $\cos(\frac{1}{n})$ to increase. Therefore $f(n) = \frac{\sin(\frac{1}{n})}{n^2\cos(\frac{1}{n})}$ is a positive decreasing function for $n \ge 1$. Therefore we may apply the integral test, thus $\sum_{n=1}^{\infty} \frac{\sin(\frac{1}{n})}{n^2\cos(\frac{1}{n})} \approx \int_1^{\infty} \frac{\sin(\frac{1}{n})}{n^2\cos(\frac{1}{n})} = 2 \int_{\cos(1)}^0 \frac{1}{w} dw = \ln(w)|_{\cos(1)}^0 = \ln(0) - \ln(\cos(1)) = -\ln(\cos(1)) \approx .6156$. Because the integral converges, the sum also converges.

4. Find the degree 3 taylor polynomial for $f(x) = \sqrt[3]{1+x}$ around x = 0. (5 pts)

 $f(x) = \sqrt[3]{1+x} = (1+x)^{\frac{1}{3}}$, so $f'(x) = \frac{1}{3}(1+x)^{\frac{-2}{3}}$, $f''(x) = \frac{-2}{9}(1+x)^{\frac{-5}{3}}$ and $f'''(x) = \frac{10}{27}(1+x)^{\frac{-8}{3}}$. Thus f(0) = 1, $f'(0) = \frac{1}{3}$, $f''(0) = \frac{-2}{9}$, and $f'''(0) = \frac{10}{27}$. Thus our taylor polynomial is

$$f(x) \approx P_3(x) = 1 + \frac{1}{3}x + \frac{\frac{-2}{9}x^2}{2!} + \frac{\frac{-10}{27}x^3}{3!}$$

²By w-sub with $w = \cos \frac{1}{n}$, and $dw = \frac{\sin(\frac{1}{n})}{n^2}$. This causes our bounds to become $\cos(\frac{1}{1}) = \cos(1)$ and $\cos \frac{1}{\infty} = \cos(0) = 1$.