
Math 116-101 or 102 (circle one) (Spring 2012) Name:

Quiz 5: §9.3-9.5; 10.1-10.2

6/12/2012

Show all work and include units where appropriate. You have 30 minutes to complete
this quiz. (25 pts)

1. Determine the interval of convergence of the power series
1X

n=1

5n(x� 2)n

n

2 + 1
(5 pts)
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Testing our end points, when x = 2+1

5

, our power series evaluates as
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, which converges by p-test1 (p = 2 > 1).

When x = 2� 1
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, our power series evaluates as
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, which converges absolutely, as shown above. Therefore our interval of

convergence is [2� 1
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2. Does
1X

n=2

(�1)n

ln(n)
converge absolutely, converge conditionally, or diverge? Justify your

answer. (5 pts)

We note that lim
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= 0, sucessive terms alternate signs, and | (�1)

n

ln(n) | > | (�1)

n+1

ln(n+1)

|

for all n. Thus the series converges by the alternating series test. However,
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, whih diverges by p-test. Therefore,
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1Or more accurately, by comparison with
P 1

n2 , which converges by p-test.



3. Determine whether each of the folllowing series converges or diverges. Justify your
answer. (5 pts each)

(a)
1X
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(�1)n(n� 3)

5n+ 2

lim
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5n+ 2
does not exist, therefore by the n

th term test, the series

diverges.

(b)
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As n increases from 1 to 1, 1

n decreases from 1 to 0, thus causing sin( 1n)

to decrese and cos( 1n) to increase. Therefore f(n) =
sin(

1
n )
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is a positive

decreasing function for n � 1. Therefore we may apply the integral test,

thus
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= ln(0) �

ln(cos(1)) = � ln(cos(1)) ⇡ .6156. Because the integral converges, the sum
also converges.

4. Find the degree 3 taylor polynomial for f(x) = 3
p
1 + x around x = 0. (5 pts)
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. Thus
our taylor polynomial is
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2By w-sub with w = cos 1
n , and dw =

sin( 1
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n2 . This causes our bounds to become cos( 11 ) = cos(1) and
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1 = cos(0) = 1.


