Math 116-101 or 102 (circle one) (Spring 2012)

Name:
Quiz 4: §8.7-8.8, 9.1-9.3
6/05/2012 Show all work and include units where appropriate. You have 30 minutes to
complete this quiz. (25 pts)

1. Consider the function

$$
p(x)= \begin{cases}0, & \text { if } x<0 \\ k x^{2}(1-x), & \text { if } 0 \leq x \leq 1 \\ 0, & \text { if } x>1\end{cases}
$$

(a) For what value of k is $p(x)$ a probability density function? (3 pts)

We have

$$
\begin{aligned}
1=\int_{-\infty}^{\infty} p(x) d x & =\int_{0}^{1} k x^{2}(1-x) d x=\int_{0}^{1} k\left(x^{2}-x^{3}\right) d x \\
& =\left.k\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right|_{0} ^{1}=\frac{k}{12} .
\end{aligned}
$$

Thus $k=12$.
(b) Using that value of k, find the probability that x is greater than 0.5.(2 pts)

We set up

$$
\int_{0.5}^{\infty} p(x) d x=\int_{0.5}^{1} 12\left(x^{2}-x^{3}\right) d x=\left.12\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right|_{0.5} ^{1}=\frac{11}{16} .
$$

(c) Find the mean. (3 pts)

We set up and calculate

$$
\text { mean of } \begin{aligned}
x=\int_{-\infty}^{\infty} x p(x) d x & =\int_{0}^{1} 12 x\left(x^{2}-x^{3}\right) d x=\int_{0}^{1} 12\left(x^{3}-x^{4}\right) d x \\
& =\left.12\left(\frac{x^{4}}{4}-\frac{x^{5}}{5}\right)\right|_{0} ^{1}=\frac{12}{20}=0.6 .
\end{aligned}
$$

(d) Find the median. (Hint: Use your calculator, but not do do any definite integrals.) (3 pts)
We set up the definition of the median T and obtain

$$
0.5=\int_{-\infty}^{T} p(x) d x=\int_{0}^{T} 12\left(x^{2}-x^{3}\right) d x=12\left(\frac{T^{3}}{3}-\frac{T^{4}}{4}\right) .
$$

Using a calculator to solve numerically using either the root or intersect function yields $T \approx 0.61427$.
2. Use the formulas for the sums of geometric series on the following. (3 pts each)
(a) $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots$ The infinite geometric series formula is $\sum_{n=0}^{\infty} a x^{n}=\frac{a}{1-x}$. This series has $a=1$ and $x=-\frac{1}{2}$ and so the sum is

$$
\frac{1}{1-\left(-\frac{1}{2}\right)}=\frac{1}{\left(\frac{3}{2}\right)}=\frac{2}{3}
$$

(b) $\sum_{n=5}^{15}\left(\frac{2}{3}\right)^{n}$ The finite geometric series formula is $\sum_{i=0}^{n-1} a x^{i}=\frac{a\left(1-x^{n}\right)}{1-x}$.

$$
\begin{aligned}
\left(\frac{2}{3}\right)^{5}+\left(\frac{2}{3}\right)^{6}+\cdots+\left(\frac{2}{3}\right)^{15} & =\left(\frac{2}{3}\right)^{5}\left(1+\left(\frac{2}{3}\right)+\cdots+\left(\frac{2}{3}\right)^{10}\right) \\
& =\left(\frac{2}{3}\right)^{5}\left(\frac{1-\left(\frac{2}{3}\right)^{11}}{1-\left(\frac{2}{3}\right)}\right)
\end{aligned}
$$

where we used the finite geometric series formula with $a=1, x=\frac{2}{3}$, and $n-1=10$ once we factored out the $\left(\frac{2}{3}\right)^{5}$.
3. Suppose that you make monthly deposits into a savings account of $\$ 250$, with the first deposit occurring today. Every month, your account pays 4% interest. Let B_{n} represent the balance in your account immediately after the nth deposit.
(a) Find B_{1}, B_{2}, and $B_{3} .(3 \mathrm{pts})$ With each deposit, the balance increases by $\$ 250$. Moreover, the amount in the account at the time of the previous deposit has increased by 4%, therefore is multiplied by 1.04 . We have

$$
\begin{gathered}
B_{1}=250, \quad B_{2}=250+B_{1} \cdot 1.04=250+250(1.04) \\
B_{3}=250+B_{2} \cdot 1.04=250+(250+250(1.04)) 1.04=250+250(1.04)+250(1.04)^{2}
\end{gathered}
$$

(b) Find a closed form, explicit formula (that is, no summation signs or $+\cdots+$) for B_{n}. (5 pts) We extrapolate the pattern and observe

$$
B_{n}=250+250(1.04)+250(1.04)^{2}+\cdots+250(1.04)^{n-1} .
$$

Using the finite geometric series formula with $a=250$ and $x=1.04$ we obtain

$$
B_{n}=250 \frac{\left(1-1.04^{n}\right)}{(1-1.04)}
$$

