3. Table 1 below displays some values of an invertible, differentiable function f(x), while Figure 2 depicts the graph of the function g(x). Set h(x) = f(g(x)) and $j(x) = \frac{f(x)}{g(x)}$.

Table 1

x	1	2	3	4	5
f(x)	-5	-2	2	4	7
f'(x)	5	6	2	3	3
f''(x)	1	-1	-3	-2	0

Evaluate each of the following. To receive partial credit you must show your work!

(a) (4 points)
$$(f^{-1})'(2)$$

(b) (4 points) h'(4)

(c) (4 points) h''(4) [*Hint: you may want to use your work from part (b).*]

(d) (4 points) j'(4)

5. [13 points] The equation below implicitly defines a hyperbola.

$$x^2 - y^2 = 2x + xy + y + 2.$$

a. [5 points] Find $\frac{dy}{dx}$.

b. [4 points] Consider the two points (4, 2) and (2, -1). Show that one of these points lies on the hyperbola defined above, and one does not.

c. [4 points] For the point in part (b) which lies on the hyperbola, find the equation of the line which is tangent to the hyperbola at this point.