Name: \qquad Key
Midterm 1 Quiz (61 points)
Time Limit ${ }^{1}$: 1 Hour.
You must show all of your work!

1. Bo and Samuel own Neverland Water Park, a highly sucessful theme park with aquatic rides. To better understand how well their business is doing, they hire Jesse to do some market research. Jesse determines that the number of people, N (in hundreds), who come to the park on a given day is a continuous function of the temperature, T (in ${ }^{\circ} F$) that day. Below is some of the date Jesse gathered. [13 points]

T	60	65	70	75	80	85	90	95
N	1	15	25	33	38	42	44	41

A) What are the units of $\frac{d N}{d T}$? [2 points]

$$
\text { Unit of } \frac{d N}{d T}=\frac{\text { unit of } N}{\text { unit of } T}=\frac{\text { hundred of } p_{p}}{\text { degree } F}
$$

C) Using your answer from A), how many people do you expect will come to the park on a day where the temperature is $77^{\circ} \mathrm{F}$? [3 points]

$$
@ T=75, N=33 \& \frac{w^{\text {where }}}{d t}=1
$$

so @ $5=77, N \approx 33+2(1)=35$; to come on a $77^{\circ} \mathrm{F}$ day.
D) Using your answer from A), estimate $\frac{d^{2} N}{d T^{2}}$ when $T=70 .[2$ points]
E) Is N an invertible function of T ? Justify your answer. [3 points]
 $90^{\circ} \mathrm{\&} 95^{\circ}$ where 4200 pol. cone. But 4200 IC ' ane if tiro is 85. Cast be iavertule if 2 Tepee, hare the sane \# of pol.
${ }^{1}$ This is how long I think you should spend on this to be 'on pace' to finish a full midterm in 90 minutes.
2. True or False (circle ${ }^{2}$ TRUE if the statement is ALWAYS TRUE and circle FALSE otherwise). [10 points; 1 point each]
TRUE FALSE If $f(x)$ is a cubic polynomial, then $f(x)$ has 3 roots.
TRUE FALSE For any A and B greater than $0, \log (A \times B)=\log (A)+\log (B)$.
TRUE FALSE The function $g(y)=\tan (y)$ is monotone. (on $-\pi / 2<y<\pi / 2$)
TRUE FALSE Every invertible function is monotone. (monotone \Rightarrow invertible)
TRUE FALSE If $a(2)=2$ and $a(10)=-6$, then a has a root between 2 and 10 (True if a is c s)
TRUE FALSE If $p(q)$ is differentiable for $q=7$, then $p(q)$ is continuous at $q=7$.
TRUE EALSE The sum of two odd functions is an odd function. $f(-x)+g(-x)=-f(x)+-g(x)=-(f * y)(x)$
TRUE FALSE If $l^{\prime}(j)$ is concave down, then $l^{\prime \prime}(j)<0$. [Change $l^{\prime \prime}(j) \psi_{0} l^{\prime \prime}(j)(f)(-x)$
TRUE FALSE $3 e^{x}$ can be obtained from e^{x} by a horizontal shift. $t^{\prime}(j) O R<0$ to dec. OR $\left(i j t_{0}(i)\right]$

A) On the axes below, sketch the graph of a function $f(x)$, that satisfies ALL of the following properties. Be sure to label your axes. [7 points]
$f(x)$ is continuous everywhere except $x=5$
$f(x)$ is increasing and concave down on $(-\infty, 0)$
$f(0)=2$
$f^{\prime \prime}(x)>0$ on (0.5)
$f(x)$ has a vertical asymptote at $x=5$
$\lim _{x \rightarrow \infty} f(x)=2$
$f^{\prime}(x)<0$ for $x>5$
NOTE: These Q is are common on exams. This one is a bit on the easy side. Try doing many of them. The key is using the $f(x) / f^{\prime}(x) / f^{\prime \prime}(x)$ table
to translate these statements into statement, about f, then draw,

B) Using the graph of $g(x)$ below, compute the following limits. Write DNE if a limit does not exist. [6 points; 1 point each]
$\lim _{x \rightarrow-\infty} g(x)=+\infty \quad(0, D N E)$
$\lim _{x \rightarrow-2} g(x)=-4$
$\lim _{x \rightarrow 0}^{x \rightarrow-2} g(x)=D \wedge E$
$\lim _{x \rightarrow 3} g(x)=2$
$\lim _{x \rightarrow 5^{-}} g(x)=3$
$\lim _{x \rightarrow \infty} g(x)=2$

[^0]HIS PROBLEM IS VERY SUbtle
4. The Detroit Tigers are hosting the New York Yankees in a baseball game Tuesday ${ }^{3}$ night in Comerica Park. The game will start at 8 pm . Let $N(h)$ be the number of fans, in thousands, in Comerica Park h hours before the start of the game. Assume $N(h)$ is invertible. [13 points]
A) Interpret $N(3)=5 .[2 \mathrm{pt}]$

At $(8-3 \Rightarrow) S_{\text {pm }}$ (Shes before game starts), there will be 5000 fans in the stadium.
B) What is the sign of $N^{\prime}(1)$? Justify your answer.[3 pts]
$N^{\prime}(i)$ is negative became as our input (time before game) get, bigger, there are fewer fans in the stadium. $\left[\begin{array}{l}\text { Think: Should } N(2) \text { o, } N(1) \\ \text { be big ger.' } N(2)<N(1) .\end{array}\right]$

C) Interpret $N^{-1}(10)=1 .[2 \mathrm{pts}]$

$$
\begin{aligned}
& N^{-1}(10)=1 \longleftrightarrow N(1)=10 \\
& A T 7_{\text {pm }}(1 h, \text { before game start), } \\
& 10,000 \text { fans are in the stadium. }
\end{aligned}
$$

D) In addition to the fans coming to the stadium, there will be 5,219 players, coaches, security officers, and media writers are also in the stadium. In terms of N, write a function $P(m)$ which gives the number of total number of people in the stadium m minutes after noon on Sunday. [4 pts] If we are m minutes after now, we are f ow $8-\frac{m}{60}$ how before start (8_{p-1}). Since P wants total ppl (not thousands) need to vert. rescale (stretel) by $x / 000$. Also vishift by S219.

$$
P(m)=1000 N\left(8-\frac{n}{60}\right)+5219 .
$$

E) Suppose $P^{\prime}(411)=253$, where P is as in part D. Interpret this in practical terms. [2 pts]

411 mi . before start $=1: 09 \mathrm{pm}$.
Between 109 p \& 110pm, about 253 people enters the stadium.
${ }^{3}$ Yesterday? Two days ago? I wrote this question on Monday,

$$
\text { radius }=10 \mathrm{~h}
$$ feet above the floor. Lucy the Ladybug and an Albert the Ant are sitting at the very top of the dartboard having a fascinating conversation about pesticide. Suddenly, Paul the Person decides to spin the dartboard (clockwise) at a rate of 10 rations per minutes (RPM's). [12 points] A) How fast is the dartboard spinning, in radians per second? How long, in seconds, is one period of rotation? [2 points]

$$
\begin{aligned}
& \frac{10 \text { rotation }}{1 \text { minute }}=\frac{1 \text { rotation }}{6}=\frac{2 \pi \text { radians }}{\text { section }}=\frac{\pi \text { seconds }}{6}=\frac{\pi}{3} \text { radians per second. } \\
& T \text { he period is } 6 \text { seconds }
\end{aligned}
$$

B) Because ladybugs have suction-like grip on their feet, Lucy does not fall off the dartboard. Instead she spins around with the edge of the dartboard, going in circles. Find a formula for $L(t)$ which gives Lucy's height, in inches, off the ground t seconds after Paul starts spinning the dartboard. [4 pts]

$$
\text { midline }=5 f f=60 \mathrm{in}
$$

$$
a_{\text {amplitude }}=10 i_{n}=\left(\frac{20 i n}{2}\right)
$$

$$
\begin{aligned}
& \text { max }=60 i_{n}+10 i_{n}=70 i_{n} \quad \text { start } a \text { top } \\
& m i_{n}=60 i_{n}-10 i=50 i_{n} \\
& \\
& L(t)=10 \cos \left(\frac{\pi}{3} t\right)+60
\end{aligned}
$$

(68 in .
C) Paul is exactly $68^{\prime \prime}$ tall. When is the first time after Paul spins the dartboard that Lucy will be exactly even with the top of Paul's head? [3 points]

$$
\begin{aligned}
& 68=60+10 \cos \left(\frac{\pi}{3} \quad t\right) \text { soluefor } \\
& 8=10 \cos \left(\frac{\pi}{3} t\right) \\
& 08=\cos \left(\frac{\pi}{3} t\right)
\end{aligned}
$$

BONUS) Albert also has very good grip in his feet. However, instead of sitting in one place and riding the edge of the dartboard, Albert starts walking toward the bullseye at a rate of 1 inch per second. Once he gets to the center, he sits there. Find a formula for $A(t)$ which gives Albert's height, in inches, off the ground t seconds after Paul starts spinning the dartboard. Draw a sketch of the graph of $A(t)$. [4 points] inti:

$$
\begin{aligned}
& \begin{array}{l}
\text { Technically } L(t)= \begin{cases}\ln & t \geq 0 \\
70 & t<0\end{cases} \\
\& A(t)= \begin{cases}\frac{t \leq 10}{60} & t \geq 10 \\
0 & t \leq 0\end{cases}
\end{array}
\end{aligned}
$$

[^0]: ${ }^{2}$ For this just circle the correct answer. But for your own benefit, be able to justify your answers fully. For statements that are false, can you change the statement slightly to make it true?

