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Fraudulent elections and disputes about election outcomes are nothing new. Gumbel (2005)

reviews the sorry history of deceit and electoral manipulation in America, going back to the dawn

of the republic. Throughout the world, in old and new democracies alike, allegations of vote fraud

frequently occur (Lehoucq 2003). One new element is voting technologies that make some familiar

methods for physically verifying the accuracy of vote totals impossible to use. The advent of

electronic voting machines means that often now there are no paper ballots to be recounted. To

steal an election it is no longer necessary to toss boxes of ballots in the river, stuff the boxes with

thousands of phony ballots, or hire vagrants to cast repeated illicit votes. All that may be needed

nowadays is access to an input port and a few lines of computer code. To detect such

manipulations is a difficult and urgent problem. In terms of legitimacy it is not clear whether the

worse problem is that erroneous election outcomes may occur or that many may not believe that

correct outcomes are valid.

This paper introduces statistical methods intended to help detect election fraud. Other

methods, using regression-based techniques for outlier detection, have previously been proposed

to help detect election anomalies (e.g. Wand, Shotts, Sekhon, Mebane, Herron, and Brady 2001;

Mebane, Sekhon, and Wand 2001). The methods described here are distinctive in that they do

not require that we have covariates to which we may reasonably assume the votes are related

across political jurisdictions. For one set of methods I describe—methods based on tests of the

distribution of the digits in reported vote counts—all that is needed are the vote counts

themselves. I study the application of those methods to both precinct-level and voting

machine-level vote tabulations. Part of the potential practical relevance of these methods is that

situations in which little more than the vote counts are available may arise frequently in

connection with actual election controversies.

The other set of methods I describe, which are based on testing whether votes are randomly

assigned to the voting machines used for a voting precinct, require candidate vote totals

disaggregated to the level of individual voting machines. More than that, these methods also

require that a fair amount is known about how the voting machines were used. For instance, for

voting machines used during early voting periods,1 we need to know on which days particular

1See Gronke, Bishin, Stevens, and Galanes-Rosenbaum (2005) for a discussion of early voting in Florida during
the 2004 election.
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machines were used, and at which early voting site. In fact it may be useful to know the exact

time at which each vote was cast and on which machine. Such details are routinely available when

some kinds of electronic voting machines are used, except that it may not be possible to tell when

a particular vote was cast: transaction event logs maintained for each machine indicate when a

vote was cast, but to help protect the secret ballot it is not possible to match an individual vote

record (an individual ballot image) with a particular transaction.

Both methods depend in different ways on ideas about voter behavior. The methods that

check whether votes are randomly assigned to machines assume that voters’ choices between

candidates do not depend on the particular voting machine they use. If a set of machines are all

used in the same precinct during the same period of time, and yet the distribution of vote choices

varies significantly across machines, then the idea is to attribute the variation to some kind of

manipulation. Perhaps voters with different preferences were somehow directed to use different

machines. Or perhaps some of the machines were hacked.

The methods that check the distribution of the digits in reported vote counts depend on ideas

about voter choice behavior that differ substantially from the models usually used in research on

political behavior. The digit-test methods are based on the expectation that the second digits of

vote counts should satisfy Benford’s Law (Hill 1995). Benford’s Law specifies that the ten

possible second digits should not occur with equal frequency. A fundamental question is why we

should expect Benford’s Law to apply to vote count data. Even though some have proposed to

use the second-digit Benford’s Law distribution to test for fraudulent votes (e.g., Pericchi and

Torres 2004), prominent election monitors have strongly disputed such proposals (Carter Center

2005). I suggest that a behavioral focus on the individualized uncertainty in each person’s vote

choice may be inappropriate when thinking about vote counts for the purpose of trying to decide

whether the counts are fraudulent. Indeed, leaving aside questions of vote fraud, to the extent

that the familiar kinds of behavioral models cannot in general produce vote counts with second

digits that follow the Benford’s Law distribution—and, in general, they cannot—the fact that

vote counts do often satisfy Benford’s Law is strong evidence that the familiar behavioral models

do not describe the votes people actually cast.

Even if Benford’s Law typically describes vote count data, it does not follow that deviations

from Benford’s Law indicate election fraud. I present the results of some simulation exercises that
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begin exploring what if any kinds of vote fraud a test based on the second-digit Benford’s Law

distribution can detect. In the limited range of simulations I have conducted so far, I find that

the Benford’s Law test is sensitive to some kinds of manipulation of vote counts but not to others.

The test seems sensitive enough to warrant further exploration of its properties. I think it has an

excellent chance of developing into a standard tool for forensically auditing elections.

I apply both the vote randomization test and the Benford’s Law test to data from three

Florida counties in the 2004 general election. The available data include ballot image and voting

machine event log files for electronic early voting and electronic polling place votes in Broward,

Miami-Dade and Pasco counties, including labels identifying the precinct and voting machine for

each ballot.2

A Randomization Test for Voting Machines

The first test addresses whether the distribution of the votes is the same on all of each precinct’s

voting machines. The idea is to assess whether the votes cast in each precinct were randomly and

independently assigned to each machine used in the precinct. A manipulation of the vote that

affected some machines but not others would probably cause the distribution of the votes among

candidates to differ on the affected machines. Testing that the split of the votes is the same on all

the machines used in a precinct is one way to check for such selective manipulation. Voter

preferences vary substantially from precinct to precinct, but if a collection of machines is used to

count the votes in a precinct, with all of the machines being used throughout the same period of

time, and if each voter has the same probability of being assigned to each machine, then the split

of the votes should be roughly the same on all of the precinct’s machines.

To define the test, let πijk denote the probability that voter i in precinct j is assigned to vote

using machine k, and let ρijkl denote the probability that voter i in precinct j using machine k

chooses candidate l. The number of voters in precinct j is nj, the number of machines is mj, and

2The ballot image and event log file data were supplied by David Dill. Additional data regarding characteristics
of the machines used in Miami-Dade were supplied by Martha Mahoney. For more information about data sources
see the Data Note.
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∑mj

k=1 πijk = 1. The number of votes expected for candidate l in precinct j on machine k is

Vjkl =

nj
∑

i=1

πijkρijkl ,

and the expected vote share for candidate l in precinct j on machine k is

Rjkl =

( nj
∑

i=1

πijk

)−1

Vjkl .

If the probability of being assigned to a machine is the same for each voter in precinct j, then

πijk = πjk. If neither the choice the voter makes nor the choice that is recorded depends on either

the machine or on how other voters are assigned to machines, then ρijkl = ρijl. If both of these

conditions hold, the number of votes expected for candidate l in precinct j on machine k is

Ṽjkl = πjk

nj
∑

i=1

ρijl ,

and the expected machine vote share is

R̃jkl =
Ṽjkl

njπjk
= n−1

j

nj
∑

i=1

ρijl .

In this case the vote share expected for candidate l is the same for all the machines in precinct j.

Remark 1 For candidate l in precinct j, for all voters i = 1, . . . , nj and all machines

k = 1, . . . ,mj, suppose that (a) the probability of being assigned to a machine is the same for each

voter (πijk = πjk) and (b) the vote choice does not depend on the machine or on how other voters

are assigned to machines (ρijkl = ρijl). Then the same vote share is expected for candidate l on

every machine used to count votes in the precinct, i.e.,

for all k, k′ = 1, . . . ,mj , R̃jkl = R̃jk′l = n−1
j

nj
∑

i=1

ρijl . (1)

If condition (1) holds, then the proportion of votes cast for candidate l on one machine in a

precinct should not be systematically different from the proportion of votes cast for l on the other

machines in the precinct. The proportion for l on the other machines should tend to be a good
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predictor for the proportion observed on machine k. When computing these predictor proportions

I add small constants to both the numerator and denominator counts in cases where candidate l

receives no votes on some set of mj − 1 machines in a precinct, and I add small constants to the

denominator counts in cases where candidate l receives all the votes on some set of mj − 1

machines. These adjustments avoid making excessively sharp predictions. Formally, let njk

denote the number of votes observed in precinct j on each machine k, with njkl denoting the

number of votes on that machine for candidate l. Let δkk′ = 1 if k = k′, otherwise δkk′ = 0.

Assuming mj > 1, , define adjustment indicators zjl and ajl:

zjl =















1, if, for any k = 1 . . . mj,
∑mj

k′=1(1 − δkk′)njk′l = 0

0, otherwise,

ajl =















1, if, for any k = 1 . . . mj,
∑mj

k′=1(1 − δkk′)njk′l =
∑mj

k′=1(1 − δkk′)njk′

0, otherwise.

Assuming mj > 1, the proportion of votes for l predicted for machine k, using the votes for l on

the machines other than k in precinct j, is

p̌jkl =

∑mj

k′=1(1 − δkk′)(njk′l + zjl/2)
∑mj

k′=1(1 − δkk′)(njk′ + zjl/2 + ajl/2)
, (2)

The adjustment indicators cause the constant 1/2 to be added to all the counts for machines in a

precinct if any machine in the precinct would otherwise be facing a predicted proportion of zero

or one based on the votes recorded on the other machines in the precinct.

I use the Pearson chi-squared statistic to implement a randomization test of whether (1) holds

for each precinct. For precinct j the test statistic is

X2
jl =

mj
∑

k=1

(njkl − njkp̌jkl)
2

njkp̌jkl
.

Remark 1’s assumptions (a) and (b) imply that every distribution of the observed votes among

each precinct’s mj machines is equally likely, subject to the constraint that the number of votes

on each machine remains constant throughout the permutations of the votes. Hence we may test
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for (1) by checking whether the value of X2
jl obtained using the observed data is large compared

to the values obtained over all possible permutations of the observed votes. We fix the machine

totals njk and the total number of votes for candidate l across all of the machines but shuffle the

votes among the machines to obtain new sets of counts, say n∗
jkl. The constraint that the total

number of votes for candidate l across all of the machines is fixed means that

∑mj

k=1 n∗
jkl =

∑mj

k=1 njkl. For each set of shuffled votes we compute the chi-squared statistic,

X2∗
jl =

mj
∑

k=1

(n∗
jkl − njkp̌

∗
jkl)

2

njkp̌
∗
jkl

,

where p̌∗jkl denotes the predicted proportion (2) computed using the shuffled data. Because the

number of permutations of the votes is large even for moderate numbers of votes and machines, I

use a Monte Carlo approach that involves randomly sampling permutations in order to

approximate the probabilities of observing values of X 2∗
jl as large as X2

jl or larger given the

hypothesis that Remark 1’s assumptions (a) and (b) hold. That is, assuming that (a) and (b) of

Remark 1 hold, I estimate

gjl = Prob

(

X2∗
jl ≥ X2

jl | mj, {njk : k = 1, . . . ,mj},

mj
∑

k=1

njkl

)

.

Let ĝjl denote the Monte Carlo estimate of gjl.

To combine the test results from the many precincts there are to assess from each county, I

use the false discovery rate (FDR) (Benjamini and Hochberg 1995; Benjamini and Yekutieli

2005). The randomization method treats each precinct independently, so it is appropriate to use

the form of the FDR that assumes independence. Benjamini and Hochberg (1995) define this

FDR as follows. For candidate l, sort the values ĝjl from all J precincts from smallest to largest.

Let ĝ(j)l denote these ordered values, with ĝ(1)l being the smallest. For a chosen test level α (e.g.,

α = .05), let d be the smallest value such that ĝ(d+1)l > (d + 1)α/J . This number d is the number

of tests rejected by the FDR criterion. If Remark 1’s assumptions (a) and (b) hold for all

machines in all precincts, then we should find d = 0.

A limitation of this method is that in precincts where all or all but one of the machines have

very small counts njkl or njk − njkl, the number of distinct possible values of X2
jl may be too
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small for the test based on the smallest observed tail probability to have any power. For instance,

if α = .05 and J = 757 (roughly the number of precincts in Miami-Dade County), then

α/J ≈ .000066. A tail probability that small cannot occur in a precinct having three machines

with njk values (1, 3, 1) and njkl values (1, 0, 0), as occurs in the ballot image data with the

votes for president in one Miami-Dade election-day precinct. To mitigate this problem, I include

in the analysis only precincts for which there are at least two machines k for which for candidate l

we have both
∑mj

k′=1(1 − δkk′)njk′l > 1 and
∑mj

k′=1(1 − δkk′)(njk′ − njk′l) > 1.3

Data

I apply the randomization test to voting data from the 2004 general election in three Florida

counties: Broward, Miami-Dade and Pasco (see the Data Note for details on sources and contents

of the data). Table 1 shows the number of precincts in each county. On election day, some

machines were used to record votes from more than one precinct. This occurred in cases where

more than one precinct shared a polling place. Most voting occurred on election day, November 2,

2004, but the data also include votes cast during the 15-day early voting period (October 18

through November 1, 2004). Table 1 also shows the number of early voting sites used in each

county (earlyvoting.org 2004; Miami-Dade County 2004; Browning 2004). In Broward and Pasco

counties, voters from all precincts could vote at any early voting site. In Miami-Dade county,

voters from each precinct could vote only at selected early voting locations. At early voting sites

each voting machine was used for voters from multiple precincts. The voting data for the early

voting period do not directly indicate the voter’s precinct but instead indicate which of several

ballot styles the voter used. Table 1 shows the number of styles used during early voting for each

county.

*** Table 1 about here ***

The randomization test is meaningful for precinct j only if at least in principle every voter is

equally likely to use each of the machines. The realities of voting in the Florida counties present

some challenges to this requirement.

The most obvious challenges concern early voting. For much the same reason that we separate

3Probably it would be better to include only precincts where there are at least 1/α possible permutations of the
votes for candidate l, subject to holding constant the machine totals (nj1, . . . , njmj

).
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the election day votes cast in different precincts from one another, we would also like to avoid

grouping together votes cast at different early voting sites. Voters using different sites probably

live in different places and are likely to have significantly different preferences. Moreover, in

Miami-Dade, not every ballot style was available on every voting machine at each early voting

site, so not every voter could use every machine. Unfortunately, neither the ballot nor the event

log files contained any indication of the physical location where each voting machine was used. I

used Personal Electronic Ballot (PEB)4 codes recorded in the event log files to group machines

together, the idea being that machines for which the same PEB was used must have been located

at the same early voting site.5

Another concern with early voting is that not every voting machine was used every day during

the early voting period. I used the event log files to identify the dates during the early voting

period when each voting machine was used. I grouped machines together only if they were used

on all the same days. The “site-days” entries in Table 1 show the number of unique combinations

of the PEB-based location groupings with these date goupings in Broward and Pasco counties,

and the “style-site-days” entry shows the number of unique combinations of the PEB-based

location and ballot style groupings with the date goupings in Miami-Dade County. These serve as

the “precincts” j for the early voting randomization tests. The “site-day-machines” and

“s-s-d-machines” entries show the number of unique combinations of the site-days or

style-site-days goupings with voting machines. These are the “machines” k for the early voting

randomization tests.

Much as machines being used on different days is a concern during the early voting period,

there is also a potential problem due to machines being used at different times during each day.

Figure 1 illustrates several patterns of potential concern. The plots in the figure show the times at

which votes were cast on each voting machine on election day in four Miami-Dade precincts. Each

row of letters in each plot indicates the time at which a “vote cast” transaction occurs for a voting

machine in the event log files, with a letter being plotted at each point when a vote was recorded.

There is one row of letters for each voting machine used in each precinct. Times are shown using

4For a description of how PEBs are used in Election Systems & Software “iVotronic” voting machines, see (Elec-
tronic Frontier Foundation 2004).

5For Miami-Dade County it was possible to supplement the PEB information with copies of files that showed the
location of all but 88 of the machines used during early voting. See the Data Note for details.
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a 24-hour clock and resolved to the second. In precinct 109, most of the machines were used

throughout the day, but the machine labeled “e” was not used after 10am. A reasonable guess is

that the machine was pulled from service at that time. In precinct 233, the machine labeled “c”

was not used after 8am, and the machine labeled “f” was not used before 2pm. In precinct 322,

the machine labeled “b” was used only between 11:30am and 2:30pm. In precinct 326, the

machines labeled “g” and “m” were used only after 1pm. If some machines were not available for

use during substantial parts of the day, then Remark 1’s assumption (a) is not satisfied.

Questions about this assumption also arise for other machines that exhibit irregular usage. For

instance, in precinct 109 the machine labeled “k” was used much less often in the afternoon than

in the morning, and in precinct 326 the machine labeled “p” was used heavily only after 6pm.

*** Figure 1 about here ***

Instead of trying to exclude machines for which usage during the day seems not to match the

pattern of the other machines in a precinct, I construct a measure of how similar the patterns of

time usage are for a precinct’s machines and examine whether the measure is related to the tail

probability estimates ĝjl. Let tjki denote the time (in seconds) at which vote i was cast on

machine k in precinct j. For each machine k in precinct j, I compute

τjk =
1 + (nj − njk)

−2
∑mj

k′=1(1 − δkk′)
∑njk

i=1

∑njk′

i′=1(1 − δkk′)|tjki − tjk′i′ |

1 + (njk)−2
∑njk

i=1

∑njk

h=1 |tjki − tjkh|
.

The denominator measures the mean absolute difference among the times at which votes were

cast on machine k, and the numerator measures the mean absolute difference between the times

at which votes were cast on machine k and the times at which votes were cast on every other

machine k′ in precinct j. The ratio τjk achieves the lower bound of 1.0 if the mean absolute

difference among the voting times on machine k is the same as the mean absolute difference

between the voting times on k and the voting times on the other machines. The ratio increases as

the voting times on machine k tend to differ on average more from the times on the other

machines than they differ from one another. To compute a summary measure for each precinct j,

I compute the geometric mean of the ratios τjk, namely,

τj =

(mj
∏

k=1

τjk

)1/mj

.
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For the four precincts shown in Figure 1, τj has the values τ109 = 1.06, τ233 = 1.09, τ322 = 1.02

and τ326 = 1.05. The largest values for a machine in each of those precincts is maxk(τ109k) = 4.2,

maxk(τ233k) = 33.8, maxk(τ322k) = 3.5 and maxk(τ326k) = 1.8.

We might expect ĝjl to decrease as the dissimilarity between machines—measured by either τj

or maxk(τjk)—increases. A weakness of this approach is that because it not possible to tell which

ballot image corresponds to which event log entry, it is not possible to customize the vote-time

dissimilarity measure for each candidate. Over all the votes cast, however, we can be reasonably

sure that the times recorded in the event log filess do correspond to the votes recorded in the

ballot image files. Table 2 shows that for the most part the total counts of voting events and of

ballot images are the same for each voting machine.

*** Table 2 about here ***

Randomization Test Results

I examine the votes cast for the Republican and Democratic candidates for president (George W.

Bush and John F. Kerry) and for U.S. Senator (Mel Martinez and Betty Castor). I also examine

the votes Yes or No for eight state consitutional amendments that appeared on the ballot in

Florida in 2004. These amendments are described in Table 3. In all cases I consider the shares for

each candidate or for each amendment voting option out of all ballots cast, including in the

denominator ballots for which no vote choice was indicated for the referent office or amendment. I

analyze the early voting data separately from the election day data.

*** Table 3 about here ***

Figure 2 shows a typical pattern for the distribution of the estimates ĝjl. The values depicted

are for election day precincts in Miami-Dade County. Most of the values are much larger than the

test level α = .05.

*** Figure 2 about here ***

There is no tendency for ĝjl to decrease as the dissimilarity in vote times between the machines

in a precinct increases. The ĝjl values are not significantly correlated across precincts with either

τj or maxk(τjk). Indeed, for the Miami-Dade County election day data only seven of the twenty

product moment correlations with each dissimilarity measure are negative, and the most negative
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value found is cor(ĝjl,maxk(τjk)) = −0.06, for the Amendment 3 No votes.6 Similar results are

found for the correlations between log(ĝjl) and log(τj) and between log(ĝjl) and log(log(τj)).

The FDR test results reported in Tables 4, 5 and 6 do not provide much support for the idea

that the votes cast in each precinct were randomly and independently assigned to each machine

used in the precinct. For all three counties, in both the election day and the early voting data,

there are many rejections of the hypothesis that (1) holds. There are somewhat more rejections

among the election day vote counts. Pasco County early voting has the fewest rejections, with one

rejection each for the Amendment 5 Yes votes and for the Amendment 7 No votes. For early

voting in Broward County there are four rejections, for four of the amendment options.

Notwithstanding the attempt to compare only similar machine counts to one another in the

Miami-Dade County early voting data, by separating votes that occur at different sites, on

different days and using different ballot styles, there are rejections in those data for nine of the

twenty candidate and amendment options. The election day results show rejections for ten of the

twenty options in Miami-Dade, thirteen of the twenty options in Broward and five of the twenty

options in Pasco County.

*** Tables 4, 5 and 6 about here ***

On balance it seems unlikely that voting time dissimilarities between the machines in each

precinct can explain the pattern of rejections for the election day votes. We have already reviewed

the pattern of insignificant cor(ĝjl, τj) and cor(ĝjl,maxk(τjk)) values for the Miami-Dade election

day data. For the Broward County data, only five of the cor(ĝjl, τj) values and only six of the

cor(ĝjl,maxk(τjk)) values are negative, and all of those correlations are very small. The largest in

magnitude is cor(ĝjl,maxk(τjk)) = −0.04 for the Amendment 6 No vote. For the Pasco county

data, six cor(ĝjl, τj) values and nine cor(ĝjl,maxk(τjk)) values are negative, but these correlations

are again small. The largest in magnitude does occur for one of the FDR rejections, namely the

Amendment 7 No votes, for which cor(ĝjl, τj) = −0.11. But cor(ĝjl, τj) = −0.10 for the

Amendment 7 Yes votes, and for those votes there are no FDR rejections. For the votes for Bush

and Kerry, which each show more than one FDR rejection, cor(ĝjl, τj) > 0. For these latter two

votes the cor(ĝjl,maxk(τjk)) values are negative but small, respectively −0.03 and −0.02. There is

no significant relationship between the correlations cor(ĝjl, τj) or cor(ĝjl,maxk(τjk)) and the

6The largest positive correlation in the Miami-Dade data is 0.11 for τj , for the Amendment 5 No votes.
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number of FDR rejections for a particular candidate or amendment option.7

Using Benford’s Law to Test for Fradulent Votes

One method that has been suggested for testing whether reported vote totals are fraudulent is to

compare the digits occurring in the vote counts to the distribution of digits expected under

Benford’s Law. Benford’s Law specifies that the different digits should not occur with equal

frequency. That is, each of the nine possible first significant digits (1, 2, . . . , 9) should not each

occur one-ninth of the time, each of the ten possible second significant digits (0, 1, . . . , 9) should

not each occur one-tenth of the time, and so forth. Instead, according to Benford’s Law the first

and second significant digits should occur with the frequencies shown in Table 7. Tests against

Benford’s Law have been promoted for use to detect fraud in forensic financial accounting

(Durtschi, Hillison, and Pacini 2004). In the realm of vote count data the relevance of Benford’s

Law has been controversial. Pericchi and Torres (2004) use tests of the second digits of vote

counts against the Benford’s Law distribution to raise the prospect of fraud in the Venzuelan

recall referendum of August 15, 2004. This charge was specifically denied in the Carter Center

report (Carter Center 2005, 132–133), based on technical analysis reported in Brady (2005) and

Taylor (2005).

*** Table 7 about here ***

Why should Benford’s Law apply to vote count data? A fundamental result is that Benford’s

Law does not in general hold for data that are simply random (Raimi 1976; Hill 1995). This

property is one basis for its proposed use in financial fraud detection. If someone uses numbers

taken directly from a table of random numbers to fill out faked financial records, the digits will

occur with equal frequency. The positive case for using Benford’s Law with financial data is not

altogether perspicuous, however. Durtschi et al. (2004), for instance, rely on the supposedly

complicated origins of financial data as the rationale for expecting Benford’s Law to hold:

“Boyle (1994) shows that data sets follow Benford’s Law when the elements result

7In the Broward County data, a Poisson regression of the number of FDR rejections on the values of
cor(log(ĝjl), log(maxk(τjk))) shows a marginally significant positive relationship: the coefficient estimate is 9.6 with a
standard error of SE=5.8. But in the Miami-Dade County data the same kind of analysis shows a significant negative
relationship between the same variables: the coefficient estimate is −18.1 (SE=4.9). In the Pasco County data the
corresponding analysis produces a coefficient estimate of −1.9 (SE=6.0).
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from random variables taken from divergent sources that have been multiplied, divided,

or raised to integer powers. This helps explain why certain sets of accounting numbers

often appear to closely follow a Benford distribution. Accounting numbers are often

the result of a mathematical process. A simple example might be an account receivable

which is a number of items sold (which comes from one distribution) multiplied by the

price per item (coming from another distribution).” (Durtschi et al. 2004, 20–21)

The complexity rationale runs afoul of the way behavioral political scientists usually think

about voting data. Students of voting behavior have developed a repertoire of models built on the

idea that each individual’s vote choice is essentially a coin flip (i.e., a stochastic choice). For some

elections the coin many have more sides than two, and for different people the probabilities of the

various outcomes are different. But the overall vote counts are seen as merely the sum of all the

different coin flip outcomes. Such a sum of random coin flips lacks the complexity needed to

produce the Benford’s Law pattern in the vote counts’ digits. Taking voter turnout decisions into

account does not essentially change the basic coin flip idea. In this case, to produce the coin flip

probabilities the probability that each person votes is multiplied by the conditional probability

that the person makes a particular choice among the candidates or ballot initiative options.

One can see this standard behavioral perspective at work in the analysis used to support the

conclusions reached about the Venezuelan referendum by the Carter Center. This is most explicit

in the analysis reported by Taylor (2005). Taylor writes, “we use the multinomial model (4) of a

‘fair election’ and find that its significant digit distribution is virtually identical to the observed

distribution, which is different than Benford’s Law” (Taylor 2005, 22). Taylor also generates data

using a Poisson model. As a general matter these two models are essentially the same—as Taylor

(2005, 9) observes, the multinomial arises upon conditioning on the total of a set of Poissons.

Neither has the complexity needed to produce digits that follow Benford’s Law.

The kind of complexity that can produce counts with digits that follow Benford’s Law refers

to processes that are statistical mixtures (e.g., Janvresse and de la Rue (2004)), which means that

random portions of the data come from different statistical distributions. There are some limits

that apply to the extent of the mixing, however. If the number of distinct distributions is large,

then the result is likely to be well approximated by some simple random process that does not
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satisfy Benford’s Law. So if we are to believe that in general Benford’s Law should be expected to

describe the digits in vote counts, we need to have a behaviorally realistic process that involves

mixing among a small number of distributions.

Another issue concerns whether Benford’s Law should be expected to apply to all the digits in

reported vote counts. In particular, for precinct-level data there are good reasons to doubt that

the first digits of vote counts will satisfy Benford’s Law. Brady (2005) develops a version of this

argument. The basic point is that often precincts are designed to include roughly the same

number of voters. If a candidate has roughly the same level of support in all the precincts, which

means the candidate’s share of the votes is roughly the same in all the precincts, then the vote

counts will have the same first digit in all of the precincts. Imagine a situation where all precincts

contain about 1,000 voters, and a candidate has the support of roughly fifty percent of the voters

in every precinct. Then most of the precinct vote totals for the candidate will begin with the

digits ‘4’ or ’5.’ This result will hold no matter how mixed the processes may be that get the

candidate to roughly fifty percent support in each precinct. For Benford’s Law to be satisfied for

the first digits of vote counts clearly depends on the occurrence of brittle accidents in the

distribution of precinct sizes and in the alignment of precinct sizes with each candidate’s support.

It is difficult to see how there might be some connection to generally occurring political processes.

So we may turn to the second significant digits of the vote counts, for which at least there is no

similar knock down contrary argument.

For an example that illustrates these ideas, consider Table 8. This table reports Pearson

chi-squared statistics for two kinds of tests. First is whether the distributions of the first digits of

the precinct vote counts for the major party candidates for president and for U.S. Senator and for

the eight constitutional amendments on election day 2004 in Miami-Dade County match the

distribution specified by Benford’s Law. Second is whether the first digits occur equally often.

For the Benford’s Law test, let qB1i denote the expected relative frequency with which the first

significant digit is i. These qB1i values are the values shown in the first line of Table 7. Let d1i be

the number of times the first digit is i among the J precincts being considered, and set
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d1 =
∑9

i=1 d1i. The statistic for the first-digit Benford’s Law test is

X2
B1

=
9
∑

i=1

(d1i − d1qB1i)
2

d1qB1i
.

For the test that first digits occur equally frequently, the test statistic is

X2
U1

=
9
∑

i=1

(d1i − d1/9)
2

d1/9
.

Assuming independence across precincts, these statistics may be compared to the χ2-distribution

with 8 degrees of freedom.8 That distribution has a critical value of 15.5 for a .05-level test. Since

all of the statistics reported in Table 8 greatly exceed that value, the hypothesis that the first

significant digits follow Benford’s Law may be handily rejected, as may be the hypothesis that the

nine values (1–9) occur equally often.

*** Table 8 about here ***

In contrast, consider Table 9, which reports Pearson chi-squared statistics for tests of the

distribution of the vote counts’ second significant digits. For qB2i denoting the expected relative

frequency with which the second significant digit is i (given by the second line in Table 7), and

with d2i being the number of times the second digit is i among the J precincts being considered

and d2 =
∑9

i=0 d2i, the statistic for the second-digit Benford’s Law test is

X2
B2

=

9
∑

i=0

(d2i − d2qB2i)
2

d2qB2i
.

For the test that second digits occur equally frequently, the test statistic is

X2
U2

=
9
∑

i=0

(d2i − d2/10)
2

d2/10
.

These statistics may be compared to the χ2-distribution with 9 degrees of freedom, which has a

critical value of 16.9 for a .05-level test. The results, reported in the first two columns of Table 9,

give little reason to doubt that Benford’s Law applies. Two of the twenty statistics are larger

8The consequences of dependence are unclear. It may develop that calibration is necessary to establish the correct
distribution, especially when the number of precincts is not large. Similar comments apply to the X2

B2
and X2

U2

statistics introduced for second digits below.
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than the critical value for a .05-level test. But if we consider the twenty tests to be independent,

then with a single-test level of α = .05, using the FDR gives no reason to be concerned unless we

obtain a statistic larger than 25.46 (with a single-test level of .10, using the FDR establishes a

23.59 as the value beyond which we should be concerned).9 The largest X2
B2

value in the first

column of Table 9 is 17.9. The results give reason to reject the assumption that the second digits

are equally likely to take any of the ten possible values. The largest X 2
U2

value in the second

column of Table 9 is 25.3.

*** Table 9 about here ***

The remaining columns of Table 9 show that what works for precincts need not work for

voting machines. The middle columns report the results of applying the tests to the vote counts

on the individual voting machines used on election day in Miami-Dade County. Acknowledging

that some voting machines in Miami-Dade recorded votes from more than one precinct on election

day, the last two columns show results from applying the tests to vote counts for each unique

precinct-machine combination. Both forms of the analysis firmly reject the idea that Benford’s

Law describes the distribution of the second significant digits of the vote counts on election day

voting machines in Miami-Dade County.

Generating Vote Counts that Satisfy Benford’s Law

Is there a family of processes that are behaviorally plausible from a political point of view and

that are capable of producing precinct-level vote counts that satisfy Benford’s Law for the second

significant digits but not for the first significant digits? Can we explain why such a process would

produce precinct counts that satisfy the second-digit Benford’s Law but not machine counts that

do so?

The second question has an answer that does not depend on the details of how the precinct

counts may be generated, so let’s consider it first. The point is to remember that a random

process that is not a mixture does not in general produce digits that satisfy Benford’s Law. Using

that fact, we can explain the non-Benford machine counts in cases where votes are randomly

assigned to the voting machines being used in each precinct. If the probability that each vote cast

9For 20 independent tests and single-test level α = .05, the FDR gives 0.0025 = .05/20 as the first tail probability
to be concerned about, which for the χ2-distribution with 9 degrees of freedom corrsponds to a critical value of 25.46.
The value of 23.59 is obtained analogously.
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in precinct j is assigned to machine k is πjk, then conditioning on the total number of votes cast

in each precinct, the distribution of votes among the machines in precinct j is multinomial with

outcomes proportional to πj = (πj1, . . . , πjnj
). If the probability vectors πj or the total number of

votes cast vary across precincts, these multinomial distributions may vary considerably from

precinct to precinct, but having a collection of vectors of counts each generated by a different

multinomial distribution does not in general give counts that satisfy Benford’s Law.

So what can produce precinct-level vote counts that satisfy the second-digit Benford’s Law?

For a behaviorally realistic process that involves mixing among a small number of distributions,

we can think about political parties, or more generally about the coalitions that come together at

election time. Usually each candidate (or each side) has a collection of core supporters. These

core supporters are virtually certain to vote for their side. Viewed as coins, we might say these

core supporters always come up “heads.” Note that this virtual certainty of support for one

candidate need not imply any loyalty to the candidate that lasts longer than election day. But at

the time the candidate votes, it is there. Any voter who is not such a core supporter for any side

may possibly vote for any of the available alternatives.10 Using the mean probability that such

available voters vote for each candidate, we obtain a model where the total vote for a candidate in

each precinct is a mixture of two distributions: the distribution of core supporters and the

distribution of available voters.

The following R (R Development Core Team 2003) function generates vote counts for one

candidate across a set of simulated precincts from such a model.

pbenf <- function(size, nprecincts=500, lsplit=.1, hsplit=.1, bfrac=1/2) {

z <- sapply(1:nprecincts,

function(x){

p2 <- c(runif(1,0,lsplit),runif(1,(1-hsplit),1));

pf <- c(rbeta(1,1,bfrac),rbeta(1,bfrac,1));

partypm <- rpois(2,size*pf/sum(pf));

sum(votes <- rpois(length(partypm), lambda=partypm*p2))

})

}

For each of the nprecincts simulated precincts the vector p2 contains two numbers. The first

10I think it may be better to distinguish between those voters who have firmly made up their minds for whom
they will vote when they arrive at the polls and those who have not. This would give a distinction between, say,
“committed” and “undecided” voters. In future drafts of this paper I will likely shift to something like that usage.
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number, drawn uniformly from the interval [0, lsplit], represents the probability that available

voters vote for the candidate. The second number, drawn uniformly from the interval

[1 − hsplit, 1], represents the probability that the candidate’s core voters vote for the candidate.

The vector pf represents the proportion of the voters in each precinct who are expected to be of

each type. With the default argument value bfrac = 1/2, the first, Beta-distributed value in pf

has a mean of 2/3 and the second value has a mean of 1/3. The vector partypm contains the

Poisson-distributed expected number of voters of each type. The vector votes contains the vote

counts for the candidate from each type of voters in each precinct. These are summed to give the

overall number of votes for the candidate in each precinct.11

Tables 10 and 11 show the results of a Monte Carlo simulation exercise using function pbenf

to generate precinct vote counts for various choices of the function’s arguments. The parameter

denoted Size in the table refers to the size argument, which is the expected number of voters in

each precinct. All the precincts generated by one invocation of pbenf have the same expected

number of voters, although the actual number, which is Poisson distributed, varies over precincts.

The parameter denoted Split in the table refers to the lsplit argument (the hsplit argument

always has the value 0.1). The values in the Mean Votes column indicate the number of votes the

candidate is expected to receive in each precinct given the corresponding parameter values.12

*** Tables 10 and 11 about here ***

In Table 10 one can see that in most cases the simulated vote counts satisfy the second-digit

Benford’s Law. In Table 11 the simulated vote counts satisfy the second-digit Benford’s Law for

small values of lsplit and Size values up to about Size=2000, and for for larger values of lsplit

and Size=3000, but mostly not for Size values 2250, 2500 and 2750. These results suggest that

the electoral coalition model that features two types of voters for each candidate can generate

vote counts with second digits that satisfy Benford’s Law for a wide variety of parametric

11If the only goal is to produce counts whose second digits usually satisfy the second-digit Benford’s Law, then it is
not necessary to have the expected number of voters (partypm) and the vote counts (votes) be Poisson distributed.
If the pbenf function is changed to use the assignments partypm <- size*pf/sum(pf) and votes <- partypm*p2,
then we get second-digit Benford’s Law results very similar to those obtained for the baseline model for the conditions
considered in the Monte Carlo simulations reported in Tables 10 and 11. This alternative specification demonstrates
that the essential feature that produces the second-digit Benford’s Law pattern is the mixture of the core and available
voting groups, not variation that may occur in the sizes of voting precincts. Using the Poisson-distributed values may
impart greater realism, and it is noteworthy that doing so does not reduce the function’s ability to produce counts
with digits that satisfy the second-digit Benford’s Law.

12The bfrac argument always equals the default value, bfrac = 1/2.
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configurations, although clearly not for all possible parameter values. Hence the electoral

coalition model (or improved versions of it) may possibly explain the patterns we see in real

election data. By the way, the vote counts produced by the pbenf function do not have first

significant digits that satisfy the first-digit Benford’s Law.

Can Benford’s Law Detect Vote Fraud?

Applying the second-digit Benford’s Law test to other vote count data from the 2004 election in

Florida produces some results that suggest that Benford’s Law applies to the data and other

results that raise questions. Table 12 reports results based on data from early voting in

Miami-Dade county. Applying the FDR of Benjamini and Hochberg (1995) to the twenty tests for

site-style-days, the results look fine if we use a single-test level of α = .05, since no X 2
B2

value is

greater than 25.46, but the results are problematic if α = .10 (X 2
B2

for the Amendment 7 Yes

votes is 24.6, which is greater than 23.6). The election day precinct results for Broward, shown in

Table 13, are similar. They are fine using the FDR with α = .05 but problematic using α = .10:

two of the Amendment vote counts have X2
B2

> 23.6. The Broward early voting results for counts

at the level of ballot styles are fine if the FDR is used. The largest X 2
B2

value among these early

voting tests is X2
B2

= 21.4, for the votes for Kerry. The election day results for Pasco, shown in

Table 14, have one value of X2
B2

large enough to reject the hypothesis that Benford’s law applies

even using the FDR among the twenty tests with α = .05. This is the value X 2
B2

= 29.5, which

occurs for the Amendment 7 Yes votes. Considered on their own and using the FDR for twenty

tests, the early voting machine-precinct results for Pasco are fine.

*** Tables 12, 13 and 14 about here ***

The results for voting machines in Tables 12, 13 and 14 further illustrate that the second-digit

Benford’s Law property mostly does not apply to the vote counts on machines in these Florida

counties. The case that comes closest to being an exception is the machine results for early voting

in Broward County. Many of those X2
B2

values are unproblematically small, but three are larger

than the χ2
9 critical value for a single test at level α = .05, and two are large even when we use the

FDR. For the Amendment 8 Yes votes we have X2
B2

= 27.9, which is larger than the critical value

for the FDR for twenty tests with α = .05, and for the Amendment 7 Yes votes we have

X2
B2

= 44.0, which is very large by any standard.
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The value X2
B2

= 29.5 that occurs for the election day precinct data from Pasco County is

large enough to count as a rejection of the second-digit Benford’s Law hypothesis even using the

FDR among all 60 of the election day tests, pooling across the three counties: the quantile of χ2
9

corresponding to a tail probability of .05/60 is 28.35. If we pool over all 120 of the election day

precinct and early voting site-style-day, style and machine-precinct tests, the value X 2
B2

= 29.5 is

not problematic according to the FDR with α = .05, since the quantile of χ2
9 corresponding to a

tail probability of .05/120 is 30.13. But using α = .10 we again have a problem even when pooling

over all 120 tests, because using the FDR we again arrive at the χ2
9 quantile of 28.35.

Do the relatively large X2
B2

values for the precinct-level vote counts suggest the counts have

been fraudulently manipulated? The simulations reported in Tables 10 and 11 suggest that an

electorally intelligible and benign process can produce counts that often satisfy the second-digit

Benford’s Law. Suppose we take a process that we know usually produces such counts and

perturb it in ways that mimic some ways vote fraud may occur. Does the Benford’s Law test

signal that there has been a distortion? If so, we might conclude that the relatively large X 2
B2

values suggest that maybe there has been fraud. Because we know the Benford’s Law test can fail

even when there is nothing like fraud in the data generating process, such a result can do no more

than suggest the possibility of fraud. But if the Benford’s Law test does not catch perturbations

that we inject into otherwise pristine data, then of course the test is not useful for detecting vote

fraud. In this case the mostly clean precinct-level results should not give us any comfort.

I simulate three variations of each of two kinds of vote manipulation. The two basic

manipulations I describe as (1) adding repeaters and (2) proportionally increasing or decreasing

vote totals. The variations apply each manipulation either to all precincts or to precincts in which

the unmanipulated votes fall above or below specified thresholds.

My conception of repeaters harks back to the classic manipulation Gumbel (2005) describes as

having been perfected by several American city political machines in the late nineteenth and early

twentieth centuries. Repeaters in the nineteenth century’s Tammany Hall were the primary

referents of the familiar phrase, “vote early and often.” As Gumbel writes, “The repeaters carried

changes of clothing, including several sets of coats and hats, so they could plausibly come forward

a second or third or fourth time in the guise of an entirely new person.... Many of the repeaters

sported full beards at the beginning of the day, only to end it clean-shaven” (Gumbel 2005, 74).
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Nowadays repeaters might simply be a few lines of computer code hidden in a PEB.

I implement repeaters by adding to a candidate’s vote total a number equal to a specified

fraction of the expected number of voters in each precinct. The number of votes added does not

depend on the number of votes the candidate would otherwise receive, so the number added is not

a function of the candidate’s true support. To implement this idea, I replace the last line in the

function that is applied to each precinct in the pbenf function with the following two lines,

votes <- sum(rpois(length(partypm), lambda=partypm*p2))

votes + sum(partypm)*frac;

The argument frac specifies the fraction of the expected voter number that is to be added.

The idea of proportionally increasing or decreasing vote totals is intended to represent two

kinds of situations. One is where votes from a candidate are simply tossed out. A proportional

decrease in a candidate’s votes corresponds to the case where a fixed proportion of the candidate’s

votes are discarded in each precinct. The other situation is where votes are swapped from one

candidate to another candidate. The candidate from whom the votes are taken could suffer

proportional decreases, while the candidate who is receiving the votes is experiencing proportional

increases. It may be that the Benford’s Law tests can detect either the decreases or the increases,

but not both. I implement this idea by replacing the last line in the function that is applied to

each precinct in the pbenf function with the following two lines,

votes <- sum(rpois(length(partypm), lambda=partypm*p2))

votes <- ceiling(votes*frac);

The argument frac specifies the proportion by which the votes are to be increased or decreased.

There are increases if frac > 1 and decreases if frac < 1.

I also consider variations of repeaters and proportional adjustments in which the

manipulations are done only for a subset of the precincts. The subset to which the manipulations

are applied depends on the votes the candidate is receiving before the manipulation is applied.

The threshold for applying the changes is always the number of votes the candidate is expected to

receive in each precinct. For the simulation function pbenf, that expectation may be computed

using the R code

meanpbenf <-
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size*(1/(1+bfrac))*(lsplit/2) + size*(bfrac/(bfrac+1))*(1+hsplit)/2;

The “Mean Votes” column in Tables 10 and 11 reports these expected vote values for a number of

combinations of parameter values. In the case I designate as “below threshold,” the manipulation

is applied if the candidate is receiving fewer than meanpbenf votes. In the “above threshold” case

the manipulation is applied if the candidate is receiving more than meanpbenf votes.

In each case I simulate these vote manipulations starting with vote counts produced by pbenf,

using parameters that tended to produce counts that satisfied the second-digit Benford’s Law for

a wide range of expected numbers of voters in each precinct. In particular, referring to Tables 10

and 11, I use Split = 0.1 (which is lsplit = .1). Using that Split value produced small values of

X2
B2

for expected numbers of voters per precinct (i.e., “Size”) ranging from 500 to 2,000 and

precincts numbering from 500 to 1,000. Over that range of sizes, the Monte-Carlo estimated

expected value of X2
B2

is always smaller than the expected value of X2
U2

, and often the expected

value of X2
U2

is very large.

The results in Table 15 show that the second-digit Benford’s Law test can sometimes but not

always detect distortions from repeaters acting the same way in all precincts. The column labeled

Add in the table shows the value of frac, which indicates how many votes were added as a

fraction of the expected number of voters in each precinct. For example, with Size = 500 and

Add = 0.05, 25 votes were added to the candidates vote total in each precinct. We ask whether

each averaged X2
B2

statistic shown in the table exceeds the critical value for χ2
9 for a test at level

α = .05, which is 16.9. For Size = 2000 and 1,000 precincts, the average X 2
B2

value is always

larger than 16.9, which suggests the Benford’s Law test would usually detect the manipulation in

such precincts. With Size = 2000 and 500 precincts, the average X 2
B2

is greater than 16.9 only for

Add = 0.10 or larger. So in such precincts it appears the test would usually detect repeaters only

if they were as numerous as ten percent of the bona fide voters. With Size = 1500, the test

typically triggers only for Add greater than 0.20. With Size = 1000 or 500, the test triggers

irregularly for some of the larger values of Add.

*** Table 15 about here ***

The results in Table 16 show that the Benford’s Law test is somewhat better able to signal

manipulation when the repeater manipulation occurs in the precincts where the candidate is
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otherwise getting more votes than would be expected based on the uncontaminated process, but

the test does not do as well when the repeater manipulation is happening in precincts where the

candidate is otherwise receiving fewer votes than would be expected. The averaged X 2
B2

values

shown in the Above Threshold columns are typically larger than the corresponding columns in

Table 15, while the averaged X2
B2

values shown in the Below Threshold columns are typically

smaller.

*** Table 16 about here ***

The results in Table 17 suggest that the Benford’s Law test has only very limited ability to

detect proportional increases or decreases in a candidate’s vote that happen throughout all

precincts. The “Prop.” values in the table indicate the value of frac that was used. The values

used range from a twenty percent reduction in the candidate’s vote (Prop. = 0.8) to a twenty

percent increase (Prop. = 1.2). The only situations in which significantly large average values of

X2
B2

occur are for 1,000 precincts with Size = 2000 and Prop. equal to 1.1 or greater, or with

Size = 500 and Prop. = 0.8. Since a proportional adjustment that affects all precincts the same

way is indistinguishable from a candidate’s simply receiving greater or lesser support throughout

the electorate, it is perhaps not surprising that the Benford’s Law test has little ability to detect

such a manipulation.

*** Table 17 about here ***

The results in Table 18 show that the Benford’s Law test is much more effective when there

are proportional increases that occur in the precincts where the candidate is otherwise getting

more votes than would be expected based on the uncontaminated process. With 1,000 precincts,

the average X2
B2

values are significanly large in three-quarters of the Above Threshold instances

where Prop. is greater than 1. With 500 precincts the average X 2
B2

values are significantly large

when Prop. is greater than 1 only for Size = 2000, with one exceptional case occurring for

Size = 500 and Prop. = 1.15. The Benford’s Law test is mostly not more effective at detecting the

proportional adjustment manipulation when it is happening in precincts where the candidate is

otherwise receiving fewer votes than would be expected based on the uncontaminated process.

There are significantly large average X2
B2

values in the Below Threshold columns with Size = 500

and Prop. > 1, but for the most part the average X 2
B2

values in the Below Threshold columns are

not large.

23



*** Table 18 about here ***

While the Benford’s Law test can detect proportional increases in a candidate’s support in

many situations where only some of the precincts are being affected, it is not very effective at

detecting proportional reductions. In Table 18, the average X 2
B2

values for most of the instances

where Prop. < 1 are not large.

Benford’s Law and Voting Machine Vote Counts

Whatever we may conclude about the extent to which the second-digit Benford’s Law distribution

applies to the precinct-level vote counts from the three Florida counties in 2004, the results in

Table 9 and in the other tables show that the Benford’s Law distribution in general does not

apply to the vote counts on voting machines in these counties. Notwithstanding the evidence from

the randomization tests that there is not much support for the idea that the votes cast in each

precinct were randomly and independently assigned to the machines used in the precinct, I

conjectured that random assignment of votes to machines may explain the non-Benford machine

counts. Ignoring for a moment the question of how votes actually were assigned to machines in the

counties, I now consider whether a process that does assign the votes randomly and independently

does produce second-digit distributions that do not match the second-digit Benford’s Law.

First I consider a process that has precincts that contain the same number of voters as were in

the Miami-Dade election day precincts, but has votes determined according to mixture processes

like those simulated in Table 10. To implement such a process in R, I create a matrix,

precinct.data, that has two rows and as many columns as there are election day precincts. The

first row contains the number of votes cast on election day in each precinct, and the second row

contains the number of voting machines used on election day to record votes for that precinct.13

The R function that uses the precinct.data matrix to simulate randomly assigning votes to

machines is defined as follows.

pbenfm <- function(lsplit=.1, hsplit=.1, bfrac=1/2) {

z <- apply(precinct.data, 2,

function(x){

p2 <- c(runif(1,0,lsplit),runif(1,(1-hsplit),1));

13The total number of machines referenced in the precinct.data matrix corresponds to the number of precinct-
machines indicated in Table 1.
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pf <- c(rbeta(1,1,bfrac),rbeta(1,bfrac,1));

size <- x[1];

partypm <- rpois(2,size*pf/sum(pf));

votes <- sum(rpois(length(partypm), lambda=partypm*p2))

nmachines <- x[2];

mach <- rep(0,nmachines);

# allocate votes at random to the nmachines machines

if (votes > 0) mach <- table(sample(1:nmachines, votes, replace=TRUE));

return( mach )

})

The pbenfm function does not constrain the total number of votes on each machine to correspond

to the number actually recorded on the machine in the original election day data. In pbenfm, each

vote is equally likely to be counted on each of each precinct’s machines.

Running such a simulation with parameters taken from the previously reported simulations

sometimes but not always produces a pattern matching what occurs in the actual data.14 Results

are reported in Table 19. For the chosen set of Split values, ranging from 0.1 to 0.7, the

second-digit Benford’s Law always describes the digits in the simulated precinct vote counts. For

Split values larger than 0.4, the digits in the simulated machine counts do not follow the

Benford’s Law distribution, which matches the pattern in the original data. But for Split = 0.3 or

smaller, the machine counts do satisfy Benford’s Law. Random assignment of votes to machines

does not necessarily annihilate the Benford’s Law pattern.

*** Table 19 about here ***

Randomly assigning the votes actually cast on election day in Miami-Dade County comes

close to reproducing the Benford’s Law test results reported, for precinct-machines, in Table 9.

The first row in Table 20 shows what happens if the votes cast for Bush and Kerry are randomly

assigned to machines, using the same procedure as in pbenfm. That is, in that program, instead of

using votes simulated using the statistical mixture process, the results for “actual precincts” in

Table 20 use the original vote counts for the respective candidates. So the results for precincts in

that row are simply taken from Table 9. For both Bush and Kerry, randomly assigning the votes

produces average X2
B2

values that are only slightly smaller than the ones computed for the

original precinct-machine counts. For the vote counts that actually occurred on election day, it

seems that the approximation to random assignment to machines that did happen then is a large

14Parameters hsplit and bfrac are left at their default values.
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part of the reason the machine vote counts are non-Benford.

*** Table 20 about here ***

Randomly assigning vote counts produced by simulations calibrated to mimic the votes

actually cast on election day in Miami-Dade County muddies the waters a bit. Such results are

reported in the second and third lines in Table 20. To produce those simulations, I used rgenoud

(Mebane and Sekhon 2005; Sekhon and Mebane 1998) to find values for the parameters of the

version of pbenf (using the Miami-Dade precinct sizes) that minimize the discrepancy between

the second digits of the votes expected for each candidate and the second digits of the actual vote

counts. Specifically, I used meanpbenf with size set equal to the actual Miami-Dade election day

precinct sizes to compute expected vote counts, then chose values for the lsplit and hsplit

parameters to minimize a chi-squared statistic in which the distribution of the digits of the

expected vote counts produced by meanpbenf provides the expected values. Results using this

calibration appear in the second line of Table 20.15 The results in the third line of Table 20 follow

upon using a version of the vote simulating function in which four parameters are calibrated. The

expected vote function in this case is the following

meanpbenfB <-

size*(1/(1+lbfrac))*(lsplit/2) + size*(hbfrac/(hbfrac+1))*(1+hsplit)/2

With meanpbenfB I used rgenoud to minimize discrepancies with both the second digits of the

counts and the counts themselves.16 Figure 3, which presents density plots to compare the

calibrated simulations to the actual precinct vote counts, suggests the calibrated simulations

provide a better fit to the votes for Bush than to the votes for Kerry. In any case, neither the

two-parameter calibration nor the four-parameter calibration leads to machine vote counts that

consistently deviate from the second-digit Benford’s Law distribution.17

*** Figure 3 about here ***

All told, nearly random assignment of votes to voting machines may explain the non-Benford

machine counts so frequently observed in the data from the three counties, but it is not

15The calibration values for Bush are lsplit = 0.1168443, hsplit = 0.5699924. For Kerry the values are lsplit =
0.1789472, hsplit = 0.6468790.

16The calibration values for Bush are lsplit = 0.1144489, hsplit = 0.9947601, lbfrac = 3.0359998, rbfrac =
2.6032223. For Kerry the values are lsplit = 0.4803455, hsplit = 0.9807219, lbfrac = 0.2774467, rbfrac =
2.1231147.

17The calibrated simulation results presented in Table 20 use fixed precinct voter sizes; i.e., they use partypm <-

size*pf/sum(pf) and votes <- partypm*p2.
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appropriate to draw from that any wider message about how such randomization may affect

Benford’s Law tests. It is not clear what may be true in general.

Discussion

Both the vote randomization test and the second-digit Benford’s Law appear potentially useful

for detecting election fraud. In both cases a number of issues remain unsettled.

The vote randomization test finds strong evidence that votes were not randomly and

independently assigned to the various voting machines in use in precincts on election day in the

three Florida counties. The test also suggests that votes were not randomly distributed among

comparable machines during the early voting period. The principle question is why do the

candidate and amendment option vote shares differ across machines. One innocent possibility is

that we have not successfully grouped the machines into comparable sets. Differences in usage

times during each day may explain the different vote shares. The measure τjk may not be

adequate, or my use of it may not be correct. There is also at least one distinction among voting

machines that is not reflected in the tests reported in this paper. Some machines were specially

equipped with audio capability to support independent voting by visually impaired voters.

Perhaps the voters who used such machines had distinctive preferences. I did not separate out the

audio-enabled machines principally because information to identify them all is lacking. I have

information that identifies some of the audio-enabled machines in Miami-Dade County, but even

for the machines designated as audio-enabled it is not clear from the records I have whether the

audio capabilities were operating while the machines were being used.

Three classes of questions remain regarding the Benford’s Law tests. First, this paper only

suggests the range of mixture processes that might be behaviorally defensible and also tend to

produce counts with digits that satisfy Benford’s Law. Can processes with more heterogeneity in

each precinct work? The simulations I have conducted so far to explore that suggest the situation

is complicated. Second, how can we make sense of the fact that the mixture process produces

counts that satisfy the second-digit Benford’s Law for many but not all combinations of

parameters? Third, what parameter values produce counts that closely match the counts that

occur in real elections? The small calibration effort I attempted produced a pretty good
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approximation to the counts for Bush on election day in Miami-Dade County but did not do as

well for the counts for Kerry. Can calibration be elevated to become proper estimation? For

instance, is there a rationale for treating the second digits of a set of counts as if they were

sufficient statistics?

Data Note

David Dill supplied ballot and event log files recovered from electronic voting machines in

Broward, Miami-Dade and Pasco counties. The files were originally obtained by Martha Mahoney

using open records requests funded by the Verified Voting Foundation. The ballot files indicate

the choices made for each office by each voter and include labels identifying for each ballot the

voting machine and the precinct (for election day ballots) or ballot style (for early voting ballots).

The event log files show the time (resolved to the second) at which various transactions occurred

on each machine, including the time at which each vote was recorded. It is not possible to match

vote choices in the ballot files to voting events in the event log files.

Early voting polling site locations for many of the Miami-Dade machines was taken from a file

supplied by Martha Mahoney (file “ev.xls,” received by me on August 16, 2005). Of the 670

machines that recorded votes during early voting in Miami-Dade, 88 are not included in that file.

Two files supplied by Martha Mahoney also were used to determine which Miami-Dade machines

were operating with audio capability enabled. These are the “ev.xls” file and a file “Election.xls”

(received by me on August 16, 2005) for the machines used on election day.

The data comprise files for electronic early voting and electronic polling place votes but do not

include information about paper absentee votes.
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Table 1: Precinct, Machine and Ballot Statistics

Election Day Broward Miami-Dade Pasco
Precincts 775 757 152
Machines 5,306 5,323 1,338
Precinct-machines 10,614 14,128 2,676
Ballots 431,488 435,902 127,526

Early Voting Broward Miami-Dade Pasco
Sites 20 14 3
Styles 150 100 16
Site-days 110 — 4
Style-site-days — 4,429 —
Machines 190 726 36
Site-day-machines 380 — 72
S-s-d-machines — 24,374 —
Ballots 176,743 242,344 29,584

Table 2: Event Transaction Counts and Ballot Counts

Early Voting Election Day
Excess Counts Excess Excess Counts Excess
Ballots Match Events Ballots Match Events

Broward 0 190 0 15 5,290 1
Miami-Dade 2 724 0 14 5,309 0
Pasco 0 36 0 0 1,338 0

Note: Entries show the number of voting machines having each described relationship between
the number of “Normal ballot cast” or “Super ballot cast” events in the event log files and the
number of ballots in the ballot image files.
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Table 3: Florida Constitutional Amendments on the Ballot in 2004

Yes No
Am. 1 Parental Notification of a Minor’s Termination of Pregnancy 4,639,635 2,534,910
Am. 2 Constitutional Amendments Proposed by Initiative 4,574,361 2,109,013
Am. 3 The Medical Liability Claimant’s Compensation Amendment 4,583,164 2,622,143
Am. 4 Authorizes Miami-Dade and Broward County Voters to Ap-

prove Slot Machines in Parimutuel Facilities
3,631,261 3,512,181

Am. 5 Florida Minimum Wage Amendment 5,198,514 2,097,151
Am. 6 Repeal of High Speed Rail Amendment 4,519,423 2,573,280
Am. 7 Patients’ Right to Know About Adverse Medical Incidents 5,849,125 1,358,183
Am. 8 Public Protection from Repeated Medical Malpractice 5,121,841 2,083,864

Note: Yes and No vote counts show statewide results.
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Table 4: Miami-Dade Machine Randomization False Discovery Rate Tests

Election Day Early Voting
precinct- style- s-s-day-

item precincts machines rejects site-days machines rejects

Bush 734 6,976 1 1,175 7,545 1
Kerry 735 6,991 4 1,180 7,564 0
Martinez 734 6,983 0 1,205 7,690 1
Castor 736 7,001 5 1,224 7,809 2
Am. 1 yes 743 7,034 6 1,302 8,159 0
Am. 1 no 737 7,010 4 1,272 8,039 0
Am. 2 yes 742 7,031 6 1,295 8,144 4
Am. 2 no 737 7,009 1 1,228 7,901 2
Am. 3 yes 740 7,019 8 1,290 8,078 1
Am. 3 no 741 7,027 0 1,290 8,072 0
Am. 4 yes 741 7,026 2 1,313 8,209 0
Am. 4 no 739 7,017 0 1,297 8,136 0
Am. 5 yes 736 6,994 0 1,168 7,587 1
Am. 5 no 727 6,928 0 1,082 7,139 0
Am. 6 yes 742 7,031 1 1,308 8,197 0
Am. 6 no 742 7,031 0 1,271 8,061 0
Am. 7 yes 732 6,983 0 1,144 7,522 0
Am. 7 no 720 6,906 0 1,018 6,906 1
Am. 8 yes 739 7,017 0 1,272 8,043 0
Am. 8 no 735 7,000 0 1,219 7,839 2

Note: Each statistic is based on 50,000 Monte Carlo replications to compute the tail probability
estimate ĝjl.
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Table 5: Broward Machine Randomization False Discovery Rate Tests

Election Day Early Voting
precinct- site-day-

item precincts machines rejects site-days machines rejects

Bush 764 5,286 1 30 110 0
Kerry 765 5,289 0 30 110 0
Martinez 765 5,289 7 30 110 0
Castor 764 5,286 5 30 110 0
Am. 1 yes 767 5,293 0 30 110 0
Am. 1 no 766 5,290 0 30 110 0
Am. 2 yes 764 5,286 0 30 110 0
Am. 2 no 763 5,283 0 30 110 0
Am. 3 yes 765 5,288 2 30 110 0
Am. 3 no 765 5,288 5 30 110 0
Am. 4 yes 766 5,292 6 30 110 0
Am. 4 no 766 5,292 1 30 110 0
Am. 5 yes 757 5,266 7 30 110 1
Am. 5 no 756 5,263 1 30 110 1
Am. 6 yes 764 5,287 1 30 110 0
Am. 6 no 764 5,287 0 30 110 0
Am. 7 yes 759 5,272 4 30 110 1
Am. 7 no 757 5,266 0 30 110 6
Am. 8 yes 761 5,278 1 30 110 0
Am. 8 no 760 5,275 3 30 110 0

Note: Each statistic is based on either 10,000 or 50,000 Monte Carlo replications to compute the
tail probability estimate ĝjl.
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Table 6: Pasco Machine Randomization False Discovery Rate Tests

Election Day Early Voting
precinct- site-day-

item precincts machines rejects site-days machines rejects

Bush 152 1,338 2 3 35 0
Kerry 152 1,338 4 3 35 0
Martinez 152 1,338 0 3 35 0
Castor 152 1,338 2 3 35 0
Am. 1 yes 152 1,338 1 3 35 0
Am. 1 no 152 1,338 0 3 35 0
Am. 2 yes 152 1,338 0 3 35 0
Am. 2 no 152 1,338 0 3 35 0
Am. 3 yes 152 1,338 0 3 35 0
Am. 3 no 152 1,338 0 3 35 0
Am. 4 yes 152 1,338 0 3 35 0
Am. 4 no 152 1,338 0 3 35 0
Am. 5 yes 152 1,338 0 3 35 1
Am. 5 no 152 1,338 0 3 35 0
Am. 6 yes 152 1,338 0 3 35 0
Am. 6 no 152 1,338 0 3 35 0
Am. 7 yes 152 1,338 0 3 35 0
Am. 7 no 152 1,338 1 3 35 1
Am. 8 yes 152 1,338 0 3 35 0
Am. 8 no 152 1,338 0 3 35 0

Note: Each statistic is based on 10,000 Monte Carlo replications to compute the tail probability
estimate ĝjl.
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Table 7: Frequency of Digits according to Benford’s Law

digit 0 1 2 3 4 5 6 7 8 9
first — .301 .176 .124 .097 .079 .067 .058 .051 .046
second .120 .114 .109 .104 .100 .097 .093 .090 .088 .085

Table 8: Miami-Dade Election Day First-digit Benford’s Law Tests

item Benf. equal item Benf. equal

Bush 29.3 292.5 Am. 4 Yes 144.8 367.0
Kerry 39.9 287.0 Am. 4 No 119.6 605.6
Martinez 35.6 273.8 Am. 5 Yes 115.4 122.2
Castor 22.0 304.7 Am. 5 No 27.6 623.4
Am. 1 Yes 86.2 290.5 Am. 6 Yes 98.8 395.0
Am. 1 No 80.5 636.2 Am. 6 No 84.0 532.9
Am. 2 Yes 95.6 362.5 Am. 7 Yes 130.3 112.7
Am. 2 No 60.0 722.7 Am. 7 No 49.9 582.8
Am. 3 Yes 60.5 401.3 Am. 8 Yes 123.0 210.6
Am. 3 No 51.5 496.5 Am. 8 No 102.6 831.1

Note: n = 757 precincts. Each statistic is the Pearson chi-squared statistic, with eight degrees of
freedom.
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Table 9: Miami-Dade Election Day Second-digit Benford’s Law Tests

precinct-
precincts machines machines
(n = 757) (n = 5, 326) (n = 7, 064)

item Benf. equal Benf. equal Benf. equal

Bush 7.9 10.8 28.0 20.5 17.2 39.5
Kerry 9.5 14.4 61.8 10.0 44.0 13.1
Martinez 8.9 10.8 33.4 11.9 11.5 29.2
Castor 12.0 12.8 44.5 15.6 12.7 43.5
Am. 1 Yes 2.5 8.0 72.4 10.3 43.6 12.6
Am. 1 No 5.5 15.5 73.9 9.2 19.8 31.9
Am. 2 Yes 16.7 23.6 68.5 3.5 38.7 27.3
Am. 2 No 7.2 16.4 49.5 17.3 11.9 48.8
Am. 3 Yes 3.3 8.5 98.4 9.2 78.0 5.5
Am. 3 No 12.9 12.7 76.9 9.0 25.7 26.8
Am. 4 Yes 3.3 9.0 49.1 5.8 43.5 14.4
Am. 4 No 5.7 15.4 89.5 5.4 25.4 15.3
Am. 5 Yes 17.9 19.6 81.4 3.9 57.6 2.9
Am. 5 No 5.8 23.3 5.9 56.8 25.6 135.6
Am. 6 Yes 4.3 10.2 50.3 5.8 29.7 16.3
Am. 6 No 9.1 11.3 47.3 6.5 15.3 30.8
Am. 7 Yes 17.1 16.0 51.7 21.0 53.2 21.1
Am. 7 No 8.4 16.5 78.9 220.0 136.7 318.7
Am. 8 Yes 12.7 25.3 69.6 1.5 54.2 8.3
Am. 8 No 6.5 10.6 67.8 13.9 23.2 29.1

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom.
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Table 10: Second-digit Benford’s Law Tests with Simulated Vote Counts

Mean 500 precincts 750 precincts 1,000 precincts
Size Split Votes Benf. equal Benf. equal Benf. equal

250 0.1 54.2 14.6 31.9 17.8 43.7 20.0 54.0
0.2 62.5 13.9 30.8 17.9 43.2 19.8 52.3
0.3 70.8 14.8 32.1 17.9 42.5 20.7 54.0
0.4 79.2 16.0 33.0 19.6 46.0 21.5 56.1
0.5 87.5 17.4 34.3 20.0 44.7 23.8 56.4
0.6 95.8 13.5 24.7 14.8 29.3 17.6 36.9

500 0.1 108.3 9.4 12.4 9.8 14.9 10.0 16.4
0.2 125.0 9.2 15.2 8.9 15.8 8.8 18.4
0.3 141.7 10.3 13.2 10.0 13.7 10.9 17.4
0.4 158.3 10.8 10.1 11.4 10.6 12.2 12.2
0.5 175.0 11.1 10.5 11.0 10.7 13.1 11.8
0.6 191.7 12.3 10.5 13.1 9.8 14.4 10.1

750 0.1 162.5 10.3 11.0 10.8 11.6 11.0 12.0
0.2 187.5 9.6 11.3 10.2 12.1 12.4 14.2
0.3 212.5 11.8 9.9 11.4 10.1 14.3 10.4
0.4 237.5 12.4 9.2 12.7 9.4 15.5 9.4
0.5 262.5 12.2 8.6 14.7 9.3 17.2 9.5
0.6 287.5 13.1 9.3 14.2 9.1 17.0 9.3

1000 0.1 216.7 10.4 11.4 10.6 11.9 12.8 13.0
0.2 250.0 12.3 9.8 12.9 9.6 14.7 10.7
0.3 283.3 12.2 9.7 15.5 9.6 17.1 9.4
0.4 316.7 13.2 8.9 15.2 9.4 16.6 8.9
0.5 350.0 13.4 8.6 16.4 8.4 18.9 9.4
0.6 383.3 13.5 9.5 15.3 8.5 17.5 9.1

1250 0.1 270.8 9.8 15.7 10.5 18.2 10.1 23.1
0.2 312.5 9.1 12.3 10.5 13.9 10.9 17.1
0.3 354.2 10.1 11.3 11.2 14.3 12.0 16.1
0.4 395.8 11.2 13.2 12.2 15.2 13.1 16.5
0.5 437.5 11.6 14.4 12.7 18.1 14.1 19.2
0.6 479.2 11.6 15.9 13.5 20.8 14.9 22.0

1500 0.1 325 9.7 17.0 8.9 19.8 9.8 25.7
0.2 375 9.1 16.1 9.9 19.1 9.9 23.0
0.3 425 9.3 16.9 10.0 21.4 10.7 26.5
0.4 475 11.2 22.1 11.0 25.3 12.1 31.4
0.5 525 14.7 29.9 18.6 42.6 21.0 52.0
0.6 575 27.2 52.7 33.9 70.3 43.7 93.2

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom, averaged
over 100 Monte Carlo replications.
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Table 11: Second-digit Benford’s Law Tests with Simulated Vote Counts

Mean 500 precincts 750 precincts 1,000 precincts
Size Split Votes Benf. equal Benf. equal Benf. equal

1750 0.1 379.2 9.2 18.0 9.7 23.6 10.2 28.1
0.2 437.5 9.8 19.7 11.1 27.5 11.3 33.8
0.3 495.8 12.8 28.1 14.8 38.1 15.6 44.1
0.4 554.2 16.2 35.5 20.6 50.9 26.0 66.0
0.5 612.5 27.0 54.6 35.9 77.3 41.0 94.1
0.6 670.8 41.2 76.9 55.4 107.2 75.8 148.0

2000 0.1 433.3 10.3 21.1 11.3 28.0 12.2 34.9
0.2 500.0 12.2 26.6 15.7 38.7 17.9 48.4
0.3 566.7 15.0 33.8 20.5 50.2 24.3 63.9
0.4 633.3 20.5 43.6 25.2 58.6 30.4 75.0
0.5 700.0 26.3 53.1 34.9 74.7 45.2 99.8
0.6 766.7 35.2 64.7 48.2 91.9 63.1 121.8

2250 0.1 487.5 14.9 31.8 17.3 43.2 23.0 60.0
0.2 562.5 17.1 36.4 19.1 47.6 23.3 61.5
0.3 637.5 17.9 39.1 21.4 51.5 27.2 68.8
0.4 712.5 19.8 41.7 26.6 60.2 28.9 71.0
0.5 787.5 23.5 47.5 31.0 67.5 42.8 93.1
0.6 862.5 23.4 41.3 29.6 55.9 36.2 72.9

2500 0.1 541.7 17.4 37.0 20.0 48.3 25.9 64.1
0.2 625.0 17.4 36.7 20.4 47.4 24.9 62.5
0.3 708.3 17.2 35.2 20.5 47.4 28.2 66.3
0.4 791.7 17.4 35.9 22.6 50.6 26.7 63.7
0.5 875.0 18.7 36.6 23.9 50.5 28.8 64.5
0.6 958.3 14.6 24.0 17.5 31.0 20.5 39.0

2750 0.1 595.8 14.9 30.7 18.4 41.5 21.4 50.8
0.2 687.5 15.6 28.8 19.3 40.5 22.6 50.2
0.3 779.2 16.3 30.2 18.3 37.4 21.2 47.3
0.4 870.8 13.7 27.7 16.4 36.2 19.3 47.6
0.5 962.5 12.6 21.4 15.9 30.6 19.5 38.7
0.6 1054.2 11.0 14.8 12.3 18.7 13.9 21.1

3000 0.1 650 13.5 23.3 14.7 29.7 16.4 36.1
0.2 750 12.2 19.7 14.6 27.5 16.2 32.4
0.3 850 11.8 18.0 12.2 21.9 15.1 26.6
0.4 950 10.6 19.5 11.4 23.9 11.4 29.1
0.5 1050 12.0 17.0 11.4 18.6 11.6 21.0
0.6 1150 11.1 12.6 11.5 13.4 11.7 16.0

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom, averaged
over 100 Monte Carlo replications.
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Table 12: Miami-Dade Early Voting Second-digit Benford’s Law Tests

site- site-style-
style-days machines day-machines

(n = 5, 186) (n = 727) (n = 33, 126)
item Benf. equal Benf. equal Benf. equal

Bush 10.1 44.9 23.5 20.9 130.3 391.4
Kerry 17.3 60.4 61.7 12.1 115.5 387.3
Martinez 14.8 48.6 32.6 17.3 107.6 357.9
Castor 9.1 42.1 43.3 18.6 93.0 336.2
Am. 1 Yes 14.1 59.9 69.6 9.8 119.7 415.4
Am. 1 No 8.7 44.1 64.8 9.8 86.3 295.7
Am. 2 Yes 17.7 65.4 58.3 2.6 83.4 334.7
Am. 2 No 20.2 71.1 41.9 16.9 92.0 292.8
Am. 3 Yes 8.2 41.4 90.8 7.6 122.7 394.8
Am. 3 No 15.3 56.7 66.1 7.8 104.8 342.1
Am. 4 Yes 7.7 40.6 47.1 11.0 87.3 338.0
Am. 4 No 14.4 60.7 83.6 5.3 108.9 351.4
Am. 5 Yes 21.9 78.3 69.2 4.6 58.4 307.5
Am. 5 No 11.0 44.8 5.7 71.6 84.4 237.8
Am. 6 Yes 12.9 56.9 55.3 11.0 105.2 368.5
Am. 6 No 9.0 37.8 44.4 9.6 126.6 374.1
Am. 7 Yes 24.6 85.0 47.8 14.9 134.2 468.3
Am. 7 No 12.0 33.9 77.4 236.4 64.5 192.7
Am. 8 Yes 13.9 61.7 68.9 2.4 96.3 377.7
Am. 8 No 6.7 28.9 63.5 15.5 79.2 261.2

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom.
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Table 13: Broward Second-digit Benford’s Law Tests

Election Day Early Voting
precincts machines styles machines
(n = 775) (n = 5, 307) (n = 150) (n = 190)

item Benf. equal Benf. equal Benf. equal Benf. equal

Bush 9.6 6.6 23.4 25.6 9.1 12.2 8.4 9.5
Kerry 21.2 12.4 79.7 6.5 21.4 24.8 10.5 17.6
Martinez 10.7 8.3 28.2 20.1 6.6 9.8 5.2 8.6
Castor 13.6 5.9 69.7 11.4 9.2 6.7 11.4 17.5
Am. 1 Yes 24.1 16.3 31.2 8.5 10.1 12.2 14.9 10.0
Am. 1 No 17.1 18.1 60.3 8.4 7.0 3.7 7.0 7.2
Am. 2 Yes 12.2 7.3 47.5 21.7 13.6 11.7 19.4 16.8
Am. 2 No 11.6 22.4 47.6 18.8 8.7 9.8 4.8 3.9
Am. 3 Yes 7.4 6.4 65.8 9.1 8.1 11.8 11.0 14.9
Am. 3 No 24.9 6.7 40.5 11.7 11.9 17.7 5.4 4.6
Am. 4 Yes 9.8 7.7 61.3 5.8 14.4 15.5 14.2 22.7
Am. 4 No 8.6 16.2 55.8 10.1 4.7 10.1 10.5 8.2
Am. 5 Yes 7.9 8.8 76.9 17.5 13.8 13.0 15.6 20.9
Am. 5 No 7.4 20.6 24.8 113.4 5.2 4.1 9.7 8.4
Am. 6 Yes 19.4 9.9 84.9 10.3 4.4 4.4 11.9 16.8
Am. 6 No 6.2 10.9 43.7 5.6 7.8 10.1 16.6 16.4
Am. 7 Yes 13.1 16.7 72.1 6.6 5.0 8.6 44.0 64.2
Am. 7 No 14.3 44.3 157.7 346.9 8.9 9.6 5.7 8.7
Am. 8 Yes 7.1 3.8 74.6 6.3 4.3 6.2 27.9 42.9
Am. 8 No 13.9 26.1 15.9 21.7 6.7 7.3 4.0 7.7

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom. In
Broward, on election day each machine recorded votes for only one precinct. In the early voting
data the number of votes on each style-machine combination was too small (mean = 16.7, median
= 2) to support analysis for those combinations.
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Table 14: Pasco Second-digit Benford’s Law Tests

Early Voting
Election Day machine-

precincts machines precincts
(n = 152) (n = 1, 338) (n = 372)

item Benf. equal Benf. equal Benf. equal

Bush 6.9 5.6 16.4 16.2 14.6 23.8
Kerry 4.0 3.5 22.9 21.7 19.0 25.2
Martinez 6.5 3.7 30.6 6.4 13.4 24.3
Castor 11.2 10.5 40.5 7.7 14.7 20.7
Am. 1 Yes 9.0 10.4 24.1 11.3 5.4 10.5
Am. 1 No 7.0 5.1 9.8 5.0 18.6 28.3
Am. 2 Yes 5.4 4.8 28.6 10.3 9.6 16.2
Am. 2 No 8.6 12.7 15.8 1.9 10.4 17.7
Am. 3 Yes 10.4 9.3 34.6 11.0 12.5 18.6
Am. 3 No 8.5 4.4 10.1 16.2 13.1 19.2
Am. 4 Yes 6.0 8.4 20.7 2.8 8.6 14.7
Am. 4 No 8.6 5.2 19.8 9.3 21.5 33.4
Am. 5 Yes 3.6 9.4 16.6 8.2 11.9 20.9
Am. 5 No 3.8 6.4 10.2 19.1 10.3 17.2
Am. 6 Yes 12.8 15.5 33.5 7.7 10.5 18.7
Am. 6 No 4.4 4.7 20.1 10.0 14.4 16.4
Am. 7 Yes 29.5 43.3 20.5 18.3 14.1 22.3
Am. 7 No 5.1 7.2 19.9 10.7 5.2 6.9
Am. 8 Yes 8.0 13.8 16.5 7.7 6.3 8.6
Am. 8 No 8.0 14.6 29.9 6.6 11.1 18.1

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom. In Pasco,
on election day each machine recorded votes for only one precinct. In Pasco there were only 16
early voting “precincts,” too few to support analysis for those units.
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Table 15: Simulated Repeaters

500 precincts 1,000 precincts
Size Add Benf. equal Benf. equal

500 0.05 9.1 12.0 8.7 12.3
0.10 8.8 13.7 9.9 19.0
0.15 9.2 18.0 9.9 28.0
0.20 14.5 17.8 19.5 21.6
0.25 29.6 16.2 43.4 18.9

1000 0.05 11.4 12.6 10.7 13.3
0.10 11.5 7.9 16.7 10.3
0.15 15.2 11.6 18.7 12.1
0.20 12.3 10.9 13.3 11.4
0.25 12.5 14.8 16.5 18.3

1500 0.05 9.7 17.8 10.6 24.7
0.10 7.8 15.7 11.4 28.2
0.15 9.8 21.2 13.4 35.7
0.20 18.1 39.1 25.4 66.0
0.25 26.4 54.0 52.7 111.9

2000 0.05 12.6 26.2 23.0 57.2
0.10 18.3 39.4 31.0 74.8
0.15 22.0 44.1 29.5 70.9
0.20 21.2 41.8 31.8 71.1
0.25 20.2 35.8 33.3 68.7

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom, averaged
over 25 Monte Carlo replications. Split = .1. For each size, the mean number of votes for the
candidate before the repeaters are added is: 500, 108.3; 1000, 216.7; 1500, 325; 2000, 433.3.
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Table 16: Simulated Repeaters with Thresholds

500 precincts 1,000 precincts
Below Above Below Above

Threshold Threshold Threshold Threshold
Size Add Benf. equal Benf. equal Benf. equal Benf. equal

500 0.05 13.2 24.3 19.4 13.0 19.5 43.2 25.8 16.1
0.10 17.5 30.5 18.9 13.4 25.9 53.5 34.4 22.3
0.15 17.5 27.7 16.3 18.7 29.5 50.5 24.0 27.7
0.20 14.6 15.3 8.6 12.3 18.9 20.1 9.5 17.5
0.25 15.5 11.6 16.7 12.2 24.2 15.9 23.0 14.0

1000 0.05 12.8 15.3 13.0 11.5 18.1 22.3 17.6 16.3
0.10 13.1 7.3 10.5 11.3 18.6 9.0 11.9 18.1
0.15 12.3 8.4 13.8 15.1 19.6 9.6 20.0 26.5
0.20 15.1 8.4 10.3 16.4 22.3 10.4 13.5 28.2
0.25 15.2 10.5 15.2 21.8 19.7 12.8 21.9 36.4

1500 0.05 9.3 11.4 11.9 26.8 10.5 14.1 13.5 38.9
0.10 11.0 12.6 11.0 25.6 10.7 13.2 16.3 44.0
0.15 7.6 11.4 13.8 31.1 11.3 17.4 20.0 54.6
0.20 9.4 13.3 22.4 47.7 8.4 16.6 42.6 96.2
0.25 10.3 12.3 41.8 77.8 10.3 15.7 72.6 142.9

2000 0.05 9.5 19.0 15.8 34.7 10.8 26.6 24.3 60.8
0.10 8.1 14.6 21.5 46.0 10.9 29.1 29.6 74.4
0.15 8.8 17.6 24.5 48.2 11.7 29.4 38.4 87.1
0.20 7.9 14.8 21.9 42.9 9.5 26.4 42.3 88.0
0.25 11.4 20.9 23.1 42.4 10.3 25.5 38.7 75.9

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom, averaged
over 25 Monte Carlo replications. Split = .1. For each size, the mean number of votes for the
candidate before the repeaters are added is: 500, 108.3; 1000, 216.7; 1500, 325; 2000, 433.3.
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Table 17: Simulated Proportional Adjustments

500 precincts 1,000 precincts
Size Prop. Benf. equal Benf. equal

500 0.8 12.9 18.0 18.0 29.5
0.85 10.7 14.4 9.3 18.2
0.9 7.7 13.0 7.7 16.0
0.95 9.4 11.4 8.6 13.0
1.05 10.4 11.1 10.1 14.8
1.1 9.6 14.8 10.2 15.4
1.15 9.7 10.3 13.7 13.2
1.2 11.3 14.4 13.2 16.5

1000 0.8 16.2 18.0 15.6 19.6
0.85 10.3 10.0 12.7 11.8
0.9 10.9 10.7 11.3 10.1
0.95 10.7 12.1 11.4 11.9
1.05 9.9 10.6 10.9 11.7
1.1 10.3 14.2 10.4 19.2
1.15 11.0 14.6 10.6 15.2
1.2 9.9 15.2 10.0 19.4

1500 0.8 10.5 15.0 13.7 27.7
0.85 10.0 15.7 10.0 23.2
0.9 9.5 17.0 10.0 24.1
0.95 10.1 17.7 10.1 24.9
1.05 9.2 16.9 8.1 23.1
1.1 9.6 18.4 9.5 27.0
1.15 10.6 19.5 9.1 25.6
1.2 10.1 20.6 10.2 28.8

2000 0.8 10.5 20.5 11.1 29.7
0.85 8.6 16.3 9.6 27.4
0.9 9.5 20.0 12.3 31.2
0.95 8.4 17.8 10.3 30.4
1.05 12.9 26.8 16.0 45.2
1.1 15.5 33.1 23.2 59.8
1.15 16.8 34.3 27.3 69.2
1.2 18.3 39.5 23.5 61.8

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom, averaged
over 25 Monte Carlo replications. Split = .1. For each size, the mean number of votes for the
candidate before the repeaters are added is: 500, 108.3; 1000, 216.7; 1500, 325; 2000, 433.3.
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Table 18: Simulated Proportional Adjustments with Thresholds

500 precincts 1,000 precincts
Below Above Below Above

Threshold Threshold Threshold Threshold
Size Prop. Benf. equal Benf. equal Benf. equal Benf. equal

500 0.8 17.9 18.3 10.1 14.4 23.6 24.4 12.3 22.3
0.85 10.7 10.4 7.1 11.5 11.3 10.6 8.4 16.8
0.9 10.9 9.8 9.5 15.1 12.0 10.3 9.5 21.0
0.95 12.5 10.2 11.3 15.4 17.3 13.5 10.5 19.0
1.05 15.3 20.8 14.2 12.5 21.4 30.8 22.5 18.1
1.1 22.3 33.0 15.5 11.6 33.7 53.8 26.0 18.3
1.15 17.9 26.2 17.8 12.2 22.1 36.3 23.5 13.4
1.2 21.5 31.1 16.6 10.7 33.6 52.0 26.5 15.4

1000 0.8 17.2 23.3 14.3 10.1 23.3 34.2 22.6 13.8
0.85 11.9 14.1 11.5 9.5 16.0 22.2 17.9 11.9
0.9 10.4 10.7 9.4 10.5 10.8 12.1 11.8 10.0
0.95 9.1 9.7 10.3 9.8 10.9 12.0 13.0 11.3
1.05 11.2 17.4 14.0 8.3 16.5 28.5 21.4 11.2
1.1 14.5 23.1 11.9 8.4 19.1 35.9 20.7 12.4
1.15 12.1 17.8 13.4 10.6 14.7 25.2 17.5 12.6
1.2 14.0 21.8 11.7 10.9 17.2 29.3 17.4 14.4

1500 0.8 13.9 20.8 12.4 12.7 17.9 30.7 19.4 17.2
0.85 11.3 15.6 11.9 14.1 12.9 20.5 14.9 20.7
0.9 10.3 12.5 11.6 17.3 10.2 12.5 11.5 21.4
0.95 10.0 10.9 8.7 13.2 11.4 15.2 11.6 22.2
1.05 8.9 11.8 9.6 14.3 10.2 17.7 9.0 19.3
1.1 9.8 13.2 8.3 14.3 11.6 18.2 11.9 24.6
1.15 10.2 10.3 10.9 18.8 13.0 13.9 12.5 30.7
1.2 10.8 11.2 12.8 22.9 14.3 12.1 15.4 36.6

2000 0.8 11.0 13.8 11.2 17.0 14.9 21.2 10.7 22.1
0.85 11.3 13.2 10.4 19.1 11.7 14.5 12.4 25.4
0.9 11.0 10.1 13.6 24.9 12.6 10.8 15.4 34.9
0.95 12.2 9.8 10.7 20.3 11.4 10.6 13.4 32.7
1.05 11.1 11.4 16.5 30.3 9.8 11.9 25.0 51.9
1.1 10.3 11.1 21.4 39.1 9.5 11.2 34.6 68.6
1.15 12.3 10.2 25.3 46.4 15.3 10.5 50.0 95.2
1.2 12.4 12.8 23.2 42.7 8.7 9.2 38.2 76.9

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom, averaged
over 25 Monte Carlo replications. Split = .1. For each size, the mean number of votes for the
candidate before the repeaters are added is: 500, 108.3; 1000, 216.7; 1500, 325; 2000, 433.3.
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Table 19: Simulated Counts for Miami-Dade Precincts and Machines

precincts machines
Split Benf. equal Benf. equal

0.1 9.5 14.5 9.5 69.5
0.2 9.4 14.3 10.3 61.0
0.3 9.6 15.9 12.6 45.2
0.4 9.1 13.5 16.8 35.1
0.5 8.8 12.6 21.8 26.6
0.6 11.1 12.3 29.2 25.0
0.7 9.4 13.1 33.0 18.9

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom, averaged
over 25 Monte Carlo replications.

Table 20: Calibrated Simulated Counts for Miami-Dade Precincts and Machines

Bush Kerry
Calibrated precincts machines precincts machines
Parameters Benf. equal Benf. equal Benf. equal Benf. equal

actual precincts 7.9 10.8 16.3 35.7 9.5 14.4 36.7 19.1
splits 10.4 18.2 19.4 109.3 9.2 18.6 16.0 103.0
splits and betas 9.8 15.2 11.1 48.6 9.4 14.8 12.2 49.1

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom. The
simulated statistics are averaged over 100 Monte Carlo replications.
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Figure 1: Times (Resolved to the Second and Shown on a 24-Hour Clock) When Votes Were Cast
on Machines in Selected Precincts on Election Day, Miami-Dade County
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Figure 2: Miami-Dade Election Day Voting Machine Randomization Test Tail Probabilities
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Figure 3: Miami-Dade Election Day Precinct Vote Count Distributions
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