Government 317: Campaigns and Elections

Fall 2005
Tuesday and Thursday 2:55–4:10 (ML 106)
Professor: Walter R. Mebane, Jr.
Office: 217 White Hall (255-3868); email wrm1@cornell.edu
Office hours: T 4:30–5:30, W 2–4 or other times by appointment.
Course web page:
http://macht.arts.cornell.edu/wrm1/gov317.html

TA: Shelley Hirsekorn
TA email: slc58@cornell.edu
TA Office: B13 White Hall
TA Office Hours: Tue 12:30–2:30 or other times by appointment.
• midterm elections and midterm loss
 – midterm loss: president’s party loses vote share at midterm
 – midterm loss was a reliable pattern through most of the 20th century, except for 1998 and 2002
 – every indication is it will be back in 2006
 – why did it happen, and why did it go away?
• midterm elections and midterm loss
 – midterm loss: president’s party loses vote share at midterm
 – midterm loss was a reliable pattern through most of the 20th century, except for 1998 and 2002
 – every indication is it will be back in 2006
 – why did it happen, and why did it go away?

• alternative possible theories
 – surge and decline (false)
 – economic performance voting (mostly false)
 – “presidential penalty” (Erikson’s term: mostly true)
• midterm loss: two reliable mechanisms seem to exist, one always, the other mostly
 – institutional balancing (based on institutional awareness and strategic voting)
 – ideological shifting
models of institutional balancing

a president and a legislature (treated as unicameral)
• models of institutional balancing
• a president and a legislature (treated as unicameral)
 – four possible policies: $\theta_{DD}, \theta_{DR}, \theta_{RD}, \theta_{RR}$
• models of institutional balancing
• a president and a legislature (treated as unicameral)
 – four possible policies: θ_{DD}, θ_{DR}, θ_{RD}, θ_{RR}
 – Fiorina’s model: voters choose the closest policy (sincere voting)
voting model example
voting model example
voting model example
Fiorina model example
• models of institutional balancing

• a president and a legislature (treated as unicameral)
 - four possible policies: θ_{DD}, θ_{DR}, θ_{RD}, θ_{RR}
 - Fiorina’s model with strategic voting: voters choose the closest policy, taking into account how others will vote
strategic model example
• models of institutional balancing
• a president and a legislature (treated as unicameral)
• a more elaborate representation of the institutions and of strategic behavior (Alesina and Rosenthal)
• models of institutional balancing
• a president and a legislature (treated as unicameral)
• a more elaborate representation of the institutions and of strategic behavior (Alesina and Rosenthal)
 – \bar{H}: expected proportion Republican in the legislature
 – \bar{P}: probability that Republican wins the presidency
 – α_D, α_R: power of president, Democrat or Republican
• models of institutional balancing
• a president and a legislature (treated as unicameral)
• a more elaborate representation of the institutions and of strategic behavior (Alesina and Rosenthal)
 – \bar{H}: expected proportion Republican in the legislature
 – \bar{P}: probability that Republican wins the presidency
 – α_D, α_R: power of president, Democrat or Republican

\[
\tilde{\theta}_D^i = \alpha_D \theta_D^i + (1 - \alpha_D)[\bar{H} \theta_R^i + (1 - \bar{H})\theta_D^i], \quad 0 \leq \alpha_D \leq 1
\]
\[
\tilde{\theta}_R^i = \alpha_R \theta_R^i + (1 - \alpha_R)[\bar{H} \theta_R^i + (1 - \bar{H})\theta_D^i], \quad 0 \leq \alpha_R \leq 1
\]

expected policy $= \bar{P}\tilde{\theta}_R^i + (1 - \bar{P})\tilde{\theta}_D^i$
- models of institutional balancing
- a president and a legislature (treated as unicameral)
- a more elaborate representation of the institutions and of strategic behavior (Alesina and Rosenthal)
 - \bar{H}: expected proportion Republican in the legislature
 - \bar{P}: probability that Republican wins the presidency
 - α_D, α_R: power of president, Democrat or Republican

\[
\tilde{\theta}_D^i = \alpha_D \theta_D^i + (1 - \alpha_D)[\bar{H}\theta_R^i + (1 - \bar{H})\theta_D^i], \quad 0 \leq \alpha_D \leq 1
\]
\[
\tilde{\theta}_R^i = \alpha_R \theta_R^i + (1 - \alpha_R)[\bar{H}\theta_R^i + (1 - \bar{H})\theta_D^i], \quad 0 \leq \alpha_R \leq 1
\]

expected policy $= \bar{P}\tilde{\theta}_R^i + (1 - \bar{P})\tilde{\theta}_D^i$

- ticket splits go only one way
Alesina-Rosenthal model: presidential year, uncertain
A-R model: pres. year with post-election policies
A-R model: pres. year with Republican victory certain
A-R model: pres. year with Democratic victory certain

\[\begin{align*}
&\text{DD} \\
&\text{DR} \\
&\text{RR}
\end{align*} \]
A-R model: pres. year, post-election policies
A-R model: midterm with Republican president
A-R model: midterm with Democratic president
• models of institutional balancing
• in addition to the structural midterm shifts of Alesina and Rosenthal which relate to uncertainty ...
• there is a pattern of midterm shifts in voters’ and nonvoters’ ideal points away from the party of the president
• models of institutional balancing

• in addition to the structural midterm shifts of Alesina and Rosenthal which relate to uncertainty ...

• there is a pattern of midterm shifts in voters’ and nonvoters’ ideal points away from the party of the president
 – Stimson’s data going back to 1960 (and earlier)
 – NES data going back to 1976
Median Absolute Difference, Self versus Winner’s Party

(a) All Voters and Nonvoters

(b) Independent Independents

(c) Strong Democrats

(d) Democrats

(e) Independent Democrats

(f) Independent Republicans

(g) Republicans

(h) Strong Republicans
Median Signed Difference, Self versus Both Parties

<table>
<thead>
<tr>
<th>Year</th>
<th>Median</th>
<th>(a) All Voters</th>
<th>(b) Independent Independents</th>
<th>(c) Strong Democrats</th>
<th>(d) Democrats</th>
<th>(e) Independent Democrats</th>
<th>(f) Independent Republicans</th>
<th>(g) Republicans</th>
<th>(h) Strong Republicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>-0.40</td>
<td>-0.40</td>
<td>-0.40</td>
<td>-0.40</td>
<td>-0.40</td>
<td>-0.40</td>
<td>-0.40</td>
<td>-0.40</td>
<td>-0.40</td>
</tr>
<tr>
<td>80</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>84</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>88</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>92</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>96</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>