FORM 4.0 (Jun 30 2012) 64-bits Run: Sat Aug 3 17:46:03 2013 * Title: Elastic force density * File: elasforce.frm * Author: David N. Williams * License: Creative Commons Attribution-Share Alike * Started: July 23, 2012 * Revised: July 23-31, 2012 * August 1-4, 2012 * October 17, 2012 improved comments * March 25, 2013 renamed F as U * March 26, 2013 removed canonicalization experiment * July 3, 2013 * August 2, 2013 renamed kappa and zeta as kap and zet * August 3, 2013 renamed [dL.dU/dzet] and [dR.dU/dzet] as * [d2U/dalp.dzet] and [d2U/dzet.dalp] * * Copyright (C) 2012, 2013 David N. Williams * * This work is licensed under the Creative Commons Attribution- * Share Alike 2.5 License. To view a copy of this license, visit * http://creativecommons.org/licenses/by-sa/2.5/ or send a letter * to Creative Commons, 543 Howard Street, 5th Floor, San * Francisco, California, 94105, USA. * * Purely cosmetic changes may not be reflected in the revision * dates above. * * Input: none * Output: divE in elasforce.sav, missing factor 1/Jγ * elasforce.log #if 0 This program works out the four-divergence of the relativistic elastic energy-momentum tensor E for a continuous matter distribution, for a general proper potential energy density function U = U(ζ,α). Here α is the invariant reference three-position of an elastic body point, and ζ is the invariant 3x3 proper strain tensor, defined below. See elasemPE.frm for the use of the results to calculate the compensation of the elastic part of the Lorentz force density on a small charge. The world line four-position y is assumed to be given as a function of α and proper time τ. Everything else is expressed in terms of y by the formulas below. Page numbers refer to handwritten notes from September, 2007, which follow our pedagogical article, "The Elastic Energy-Momentum Tensor in Special Relativity," Ann. Phys. 196, 345–360 (1989), with a few changes in notation. y ≡ y(τ,α), u ≡ ∂y(τ,α)/∂τ, a ≡ ∂u(τ,α)/∂τ ηᵢ ≡ ηᵢ(τ,α) = ∂ᵢy - uu⋅∂ᵢy/c² ∂ᵢ ≡ ∂/∂αⁱ u⋅u = c², u⋅a = 0, u⋅ηᵢ = 0, u⋅∂ᵢu = 0 ζᵢⱼ ≡ -ηᵢ⋅ηⱼ Jγ E = uu/c² U - (ηᵢηⱼ + ηⱼηᵢ)∂U/∂ζᵢⱼ (p. 29) Jγ div E = a/c² U + ∂U/∂ζᵢⱼ ( u/c² ∂ζᵢⱼ/∂τ + ηᵢ/c ∂κⱼ/∂τ + η /c ∂κᵢ/∂τ - Dᵢ ηⱼ - Dⱼ ηᵢ ) - ηᵢ Dⱼ ∂U/∂ζᵢⱼ - ηⱼ Dᵢ ∂U/∂ζᵢⱼ (p. 29) κᵢ ≡ u⋅∂ᵢy/c ∂κᵢ/∂τ = a⋅∂ᵢy/c = a⋅ηᵢ/c (p. 8) Dᵢ ≡ ∂ᵢ - κᵢ/c ∂/∂τ ηᵢ = ∂ᵢy - u/c κᵢ ∂ζᵢⱼ/∂τ = κᵢ∂κⱼ/∂τ + κⱼ∂κᵢ/∂τ - ∂ᵢu⋅∂ y - ∂ⱼu⋅∂ᵢy (p. 9, cf. p. 10) ∂ζᵢⱼ/∂αʳ = ∂ᵣζᵢⱼ = - ∂ᵣηᵢ⋅ηⱼ - ∂ᵣηⱼ⋅ ᵢ ∂ᵢκⱼ = ∂ᵢu⋅∂ⱼy/c + u⋅∂ᵢ∂ⱼy/c = ∂ᵢu⋅ηⱼ/c + u⋅∂ᵢ∂ⱼy/c ∂ᵢηⱼ = ∂ᵢ∂ⱼy - ∂ᵢu u⋅∂ⱼy/c² - u ∂ᵢu⋅∂ⱼy/c - uu⋅∂ᵢ∂ⱼy/c² ∂ηᵢ/∂τ = ∂ᵢu - au⋅∂ᵢy/c² - ua⋅∂ᵢy/c² Dᵢηⱼ = ∂ᵢ∂ⱼy - ∂ᵢκⱼ u/c - κᵢ∂ⱼu/c - κⱼ∂ᵢ u/c + κᵢ∂κⱼ/∂τ u/c² + κᵢκⱼ a/c² (p. 30) Dᵢ ∂U/∂ζᵢⱼ = ∂²U/∂ζᵢⱼ∂ζᵤᵥ ∂ᵢζᵤᵥ - κᵢ/c ∂²U/∂ζᵢⱼ∂ζᵤᵥ ∂ζᵤᵥ/∂τ + ∂²U/∂ζᵢⱼ∂αᵢ (left div, p. 12) Dⱼ ∂U/∂ζᵢⱼ = ∂²U/∂ζᵢⱼ∂ζᵤᵥ ∂ⱼζᵤᵥ - κⱼ/c ∂²U/∂ζᵢⱼ∂ζᵤᵥ ∂ζᵤᵥ/∂τ + ∂²U/∂ζᵢⱼ∂αⱼ (right div) The invariant Jγ is the Jacobian of the four-dimensional transformation from (τ,α) to y. The α in the proper potential energy density U(ζ,α) corresponds to explicit α dependence. U has no explicit τ dependence, but has implicit dependence on both α and τ through ζ. The derivatives of U with respect to ζ are to be understood as generic matrix derivatives evaluated at the symmetric matrix ζ. Neither the first nor the second derivative is necessarily a symmetric function of ζ. Being a symmetric function implies symmetry of the derivatives in the index pairs, but there are counterexamples to index symmetry when the function is not symmetric in ζ. The index pairs do get explicitly symmetrized in the result for the four-divergence. The correspondence between Form names and mathematical quantities is the following: eta(mu,i) ηᵢ etadot(mu,i) ∂ηᵢ/∂τ zet(i,j) ζᵢⱼ zetdot(i,j) ∂ζᵢⱼ/∂τ dzet(i,j,r) ∂ᵣζᵢⱼ = ∂ζᵢⱼ/∂αᵣ kap(i) κᵢ kapdot(i) ∂κᵢ/∂τ dkap(i,j) ∂κᵢ/∂αⱼ = ∂ⱼκᵢ deta(mu,i,j) ∂ⱼηᵢ = ∂ηᵢ/∂αⱼ Deta(mu,i,j) Dⱼηᵢ [dU/dzet](i,j) ∂U/∂ζᵢⱼ [d2U/dalp.dzet](i) ∂²U/∂ζⱼᵢ∂αⱼ [d2U/dzet.dalp](i) ∂²U/∂ζᵢⱼ∂αⱼ [DL.dU/dzet](i) Dⱼ∂U/∂ζⱼᵢ [DR.dU/dzet](i) Dⱼ∂U/∂ζᵢⱼ [d2U/dzet2](i,j,u,v) ∂²U/∂ζᵢⱼ∂ζᵤᵥ #endif *** DECLARATIONS OFF statistics; S c,U,L,T,p; I mu,nu,la,i,j,r,s; V y,u,a; T d1y,d2y,d3y,d1u,d2u,d1a; T eta,etadot; T [dU/dzet],zetdot(symmetric),Deta,deta; CF [DL.dU/dzet],[DR.dU/dzet],[d2U/dalp.dzet],[d2U/dzet.dalp]; T dkap,dzet; CF kap,kapdot,[d2U/dzet2]; *** DEBUGGING #procedure try B u,a,eta,d1y,d1u,d2y; print +s; .end #endprocedure *** MODULES #if 0 * Work out zet derivatives. L [zetdot](i,j) = zetdot(i,j); L [dzet](i,j,r) = dzet(i,j,r); * ∂ζᵢⱼ/∂τ = κᵢ∂κⱼ/∂τ + κⱼ∂κᵢ/∂τ - ∂ᵢu⋅∂ y - ∂ⱼu⋅∂ᵢy Id zetdot(i?,j?) = kap(i)*kapdot(j) + kap(j)*kapdot(i) - d1u(nu,i)*d1y(nu,j) - d1u(nu,j)*d1y(nu,i); Sum nu; * ∂ζᵢⱼ/∂αᵣ = ∂ᵣζᵢⱼ = - ∂ᵣηᵢ⋅ηⱼ - ∂ᵣηⱼ⋅ ηᵢ Id dzet(i?,j?,r?) = - deta(nu,i,r)*eta(nu,j) - deta(nu,j,r)*eta(nu,i); Sum nu; * ∂ᵢηⱼ = ∂ᵢ∂ⱼy - ∂ᵢu u⋅∂ⱼy/c² - u ∂ᵢu⋅∂ⱼy/c - uu⋅∂ᵢ∂ⱼy/c² Id deta(nu?,j?,i?) = d2y(nu,i,j) - d1u(nu,i)*d1y(u,j)/c^2 - u(nu)*d1u(la,i)*d1y(la,j)/c^2 - u(nu)*d2y(u,i,j)/c^2; Sum la; Id eta(u,i?) = 0; Id eta(mu?,i?) = d1y(mu,i) -u(mu)*d1y(u,i)/c^2; Id d1u(u,i?) = 0; #call try #endif #if 0 Jγ div E = a/c² U + ∂U/∂ζᵢⱼ ( u/c² ∂ζᵢⱼ/∂τ + ηᵢ/c ∂κⱼ/∂ τ + ηⱼ/c ∂κᵢ/∂τ - Dᵢηⱼ - Dⱼηᵢ ) - ηᵢ Dⱼ∂U/∂ζᵢⱼ - ηⱼ Dᵢ∂U/∂ζᵢⱼ #endif * This leaves out the overall factor 1/Jγ. G divE(mu) = a(mu)/c^2*U + [dU/dzet](i,j)* ( u(mu)/c^2*zetdot(i,j) + eta(mu,i)*kapdot(j)/c + eta(mu,j)*kapdot(i)/c - Deta(mu,j,i) - Deta(mu,i,j) ) - eta(mu,i)*[DR.dU/dzet](i) - eta(mu,i)*[DL.dU/dzet](i) ; Sum i,j; * Dᵢηⱼ = ∂ᵢ∂ⱼy - ∂ᵢκⱼ u/c - κᵢ∂ⱼu/c + κᵢ∂κⱼ/ τ u/c² + κᵢκⱼ a/c² * Dᵢηⱼ = ∂ᵢ∂ⱼy - ∂ᵢκⱼ u/c - κᵢ∂ⱼu/c - κⱼ∂ᵢu/c + κᵢ∂κⱼ/∂τ u/c² * + κᵢκⱼ a/c² (p. 30) Id Deta(mu?,i?,j?) = d2y(mu,i,j) - dkap(j,i)*u(mu)/c - kap(i)*d1u(mu,j)/c - kap(j)*d1u(mu,i)/c + kap(i)*kapdot(j)*u(mu)/c^2 + kap(i)*kap(j)*a(mu)/c^2; * ∂ζᵢⱼ/∂τ = κᵢ∂κⱼ/∂τ + κⱼ∂κᵢ/∂τ - ∂ᵢu⋅η - ∂ⱼu⋅ηᵢ Id zetdot(i?,j?) = kap(i)*kapdot(j) + kap(j)*kapdot(i) - d1u(la,i)*eta(la,j) - d1u(la,j)*eta(la,i); Sum la; * ∂ᵢκⱼ = ∂ᵢu⋅∂ⱼy/c + u⋅∂ᵢ∂ⱼy/c = ∂ᵢu⋅ηⱼ/c + u⋅∂ᵢ∂ⱼy/c Id dkap(j?,i?) = d1u(la,i)*eta(la,j)/c + d2y(u,i,j)/c; Sum la; .sort * Inspection of the result so far shows that it is manifestly * orthogonal to u. Nevertheless, check the conservation law, * dot product should vanish. L [u.divE1] = u(mu)*divE(mu); Id u.u = c^2; Id u.a = 0; Id eta(u,i?) = 0; Id d1u(u,i?) = 0; .sort Hide [u.divE1]; * Work out D derivatives. * Dᵢ∂U/∂ζᵢⱼ = ∂²U/∂ζᵢⱼ∂ζᵤᵥ ∂ᵢζᵤᵥ - κᵢ/c ∂²U/∂ζᵢⱼ∂ζᵤᵥ ∂ζᵤᵥ/∂τ * + ∂²U/∂ζᵢⱼ∂αᵢ Id [DL.dU/dzet](j?) = [d2U/dzet2](i,j,r,s)*dzet(r,s,i) - kap(i)/c*[d2U/dzet2](i,j,r,s)*zetdot(r,s) + [d2U/dalp.dzet](j); * Dⱼ∂U/∂ζᵢⱼ = ∂²U/∂ζᵢⱼ∂ζᵤᵥ ∂ⱼζᵤᵥ - κⱼ/c ∂²U/∂ζᵢⱼ∂ζᵤᵥ ∂ζᵤᵥ/∂τ * + ∂²U/∂ζᵢⱼ∂αⱼ (right div) Id [DR.dU/dzet](i?) = [d2U/dzet2](i,j,r,s)*dzet(r,s,j) - kap(j)/c*[d2U/dzet2](i,j,r,s)*zetdot(r,s) + [d2U/dzet.dalp](i); Sum i,j; .sort * Work out zet derivatives. * ∂ζᵢⱼ/∂τ = κᵢ∂κⱼ/∂τ + κⱼ∂κᵢ/∂τ - ∂ᵢu⋅∂ y - ∂ⱼu⋅∂ᵢy Id zetdot(i?,j?) = kap(i)*kapdot(j) + kap(j)*kapdot(i) - d1u(nu,i)*d1y(nu,j) - d1u(nu,j)*d1y(nu,i); Sum s,r,nu; * ∂ζᵢⱼ/∂αᵣ = ∂ᵣζᵢⱼ = - ∂ᵣηᵢ⋅ηⱼ - ∂ᵣηⱼ⋅ ηᵢ Id dzet(i?,j?,r?) = - deta(nu,i,r)*eta(nu,j) - deta(nu,j,r)*eta(nu,i); Sum nu; * ∂ᵢηⱼ = ∂ᵢ∂ⱼy - ∂ᵢu u⋅∂ⱼy/c² - u ∂ᵢu⋅∂ⱼy/c - uu⋅∂ᵢ∂ⱼy/c² Id deta(nu?,j?,i?) = d2y(nu,i,j) - d1u(nu,i)*d1y(u,j)/c^2 - u(nu)*d1u(la,i)*d1y(la,j)/c^2 - u(nu)*d2y(u,i,j)/c^2; Sum la; * Eliminate kap and kapdot. * κᵢ ≡ u⋅∂ᵢy/c Id kap(i?) = d1y(u,i)/c; * ∂κᵢ/∂τ = a⋅∂ᵢy/c Id kapdot(i?) = d1y(a,i)/c; Id u.u = c^2; Id u.a = 0; Id eta(u,i?) = 0; Id d1u(u,i?) = 0; Id d1a(u,i?) = -d1u(a,i); .sort * Check conservation law, should vanish. L [u.divE2] = divE(mu)*u(mu); Id u.u = c^2; Id a(u) = 0; Id d1u(u,i?) = 0; Id eta(u,i?) = 0; .sort Hide [u.divE2]; Hide divE; * Check consistent units, (if no cancellations). L units = divE(mu); Id c^p? = (L/T)^p; Id a(mu) = L/T^2; Id u(mu) = L/T; Id eta(a,i?) = L/T^2; Id eta(mu?,i?) = 1; Id d1y(u,i?) = L/T; Id d1y(a,i?) = L/T^2; Id d1y(mu?,i?) = 1; Id d1u(mu?,i?) = 1/T; Id d2y(u,i?,j?) = 1/T; Id d2y(mu?,i?,j?) = 1/L; Id [d2U/dalp.dzet](i?) = U/L; Id [d2U/dzet.dalp](i?) = U/L; Id [dU/dzet](i?,j?) = U; .sort * Write results. Unhide [u.divE1]; Unhide [u.divE2]; Unhide divE; B u,a,eta,d1y,d1u,d2y; Print +s; .store divE(mu) = + a(mu) * ( + c^-2*U ) + d1y(u,N1_?)*d1y(u,N2_?)*a(mu) * ( - 2*[dU/dzet](N1_?,N2_?)*c^-4 ) + d1y(u,N1_?)*d1y(u,N2_?)*d1y(a,N3_?)*eta(mu,N4_?) * ( + [d2U/dzet2](N2_?,N4_?,N1_?,N3_?)*c^-4 + [d2U/dzet2](N2_?,N4_?,N3_?,N1_?)*c^-4 + [d2U/dzet2](N4_?,N2_?,N1_?,N3_?)*c^-4 + [d2U/dzet2](N4_?,N2_?,N3_?,N1_?)*c^-4 ) + d1y(u,N1_?)*d1y(N2_?,N3_?)*d1u(N2_?,N4_?)*eta(mu,N5_?) * ( - [d2U/dzet2](N1_?,N5_?,N3_?,N4_?)*c^-2 - [d2U/dzet2](N1_?,N5_?,N4_?,N3_?)*c^-2 - [d2U/dzet2](N5_?,N1_?,N3_?,N4_?)*c^-2 - [d2U/dzet2](N5_?,N1_?,N4_?,N3_?)*c^-2 ) + d1y(u,N1_?)*d1u(mu,N2_?) * ( + 2*[dU/dzet](N1_?,N2_?)*c^-2 + 2*[dU/dzet](N2_?,N1_?)*c^-2 ) + d1y(u,N1_?)*d1u(N2_?,N3_?)*eta(mu,N4_?)*eta(N2_?,N5_?) * ( - [d2U/dzet2](N3_?,N4_?,N1_?,N5_?)*c^-2 - [d2U/dzet2](N3_?,N4_?,N5_?,N1_?)*c^-2 - [d2U/dzet2](N4_?,N3_?,N1_?,N5_?)*c^-2 - [d2U/dzet2](N4_?,N3_?,N5_?,N1_?)*c^-2 ) + d1y(a,N1_?)*eta(mu,N2_?) * ( + [dU/dzet](N1_?,N2_?)*c^-2 + [dU/dzet](N2_?,N1_?)*c^-2 ) + d2y(u,N1_?,N2_?)*u(mu) * ( + [dU/dzet](N1_?,N2_?)*c^-2 + [dU/dzet](N2_?,N1_?)*c^-2 ) + d2y(mu,N1_?,N2_?) * ( - [dU/dzet](N1_?,N2_?) - [dU/dzet](N2_?,N1_?) ) + d2y(N1_?,N2_?,N3_?)*eta(mu,N4_?)*eta(N1_?,N5_?) * ( + [d2U/dzet2](N2_?,N4_?,N3_?,N5_?) + [d2U/dzet2](N2_?,N4_?,N5_?,N3_?) + [d2U/dzet2](N4_?,N2_?,N3_?,N5_?) + [d2U/dzet2](N4_?,N2_?,N5_?,N3_?) ) + eta(mu,N1_?) * ( - [d2U/dalp.dzet](N1_?) - [d2U/dzet.dalp](N1_?) ); [u.divE1] = 0; [u.divE2] = 0; units = + 3*U*L^-1 ; Save elasforce.sav; .end 0.00 sec out of 0.00 sec