Problem 1. Say that a metric space \(X \) has property (A) if the image of every continuous function \(f: X \to \mathbb{R} \) is an interval, which may be open, closed, or half-open. Prove that \(X \) has property (A) if and only if it is connected.

Solution. Assert rays are also intervals, since they are homeomorphic to them. Suppose \(X \) is not connected, so has a nontrivial separation \(X = A \sqcup B \). Let \([a, b]\) be a closed interval in \(\mathbb{R} \) such that \(a \neq b \). Urysohn’s lemma gives a continuous map \(X \to [a, b] \) such that \(f(x) = a \) for all \(x \in A \) and \(f(x) = b \) for all \(x \in B \). Then \(f(X) = \{a, b\} \) and so \(X \) cannot have property (A).

Conversely, suppose \(X \) is connected and assume \(f(X) \) is not an interval, for some continuous \(f: X \to \mathbb{R} \). In particular, \(f(X) \) is not connected, so has a nontrivial (relatively) clopen set \(Z \). Then \(f^{-1}(Z) \) is clopen in \(X \) by continuity of \(f \), and is nonempty by choice of \(Z \). Furthermore, \(f^{-1}(Z) \) is strictly contained in \(X \) or else \(f(X) = Z \), contradicting the choice of \(Z \). Conclude \(f^{-1}(Z) \) is a nontrivial clopen set in \(X \). But then that contradicts \(X \) connected. So property (A) must hold. \(\square \)

Problem 2. Consider \(\text{SL}_n \mathbb{R} \) as a group and as a topological space with the topology induced from \(\mathbb{R}^{n^2} \). Show that if \(H \subset \text{SL}_n \mathbb{R} \) is an abelian subgroup, then the closure \(\overline{H} \) of \(\text{SL}_n \mathbb{R} \) is also an abelian subgroup.

Solution. Matrix multiplication and addition are continuous functions from \(\mathbb{R}^{n^2} \times \mathbb{R}^{n^2} \to \mathbb{R}^{n^2} \). Suppose \(A \) is a limit point for \(H \). So any neighborhood of \(A \) contains a point in \(H \). In particular, for any \(\epsilon \) there exists a \(\delta \)-neighborhood of \(A \) containing \(A' \in H \) such that for \(B \in H \),

\[
\|AB - A'B\| < \frac{\epsilon}{2} \\
\|BA' - BA\| < \frac{\epsilon}{2}
\]

By the Triangle Inequality,

\[
\|AB - BA\| \leq \|AB - A'B\| + \|BA' - BA\| < \epsilon.
\]

If \(B \) is a limit point of \(H \) as well, then the same argument applies since \(A \) and \(B \) each commute with everything in \(H \). \(\square \)

Problem 3. Recall that the complex projective space \(\mathbb{C}P^d \) is the quotient space of \(\mathbb{C}^{d+1} \setminus \{0\} \) under the equivalence relation \(x \sim y \) if and only if there is \(\lambda \in \mathbb{C} \) with \(x = \lambda y \). Prove that \(\mathbb{C}P^d \) is a compact, connected, orientable manifold of dimension \(2d \).
Solution. $\mathbb{C}^{d+1} \setminus \{0\}$ is homotopy equivalent to $S^{2d+1} \subset \mathbb{R}^{2(d+1)}$, so $\mathbb{C}P^d$ is equivalently constructed as a quotient of S^{2d+1}. S^{2d+1} is compact and connected then implies $\mathbb{C}P^d$ is compact and connected.

In general, $\mathbb{C}P^n$ is obtained from $\mathbb{C}P^{n-1}$ by attaching a real $2n$-cell via the quotient map $S^{2n-1} \to \mathbb{C}P^{n-1}$. This means $\mathbb{C}P^d$ is a manifold with CW-structure consisting of exactly one cell in each even real dimension, up to $2d$. In particular, its first homology group is trivial. As the abelianization of the fundamental group, this implies $\pi_1(\mathbb{C}P^d)$ is trivial. This implies $\mathbb{C}P^d$ is its own universal cover, so must be orientable, and it is simply connected. □

Problem 4. Consider the 2-dimensional torus \mathbb{T}^2 and the topological space

$$X = \mathbb{T}^2 \times [-1, 1] / \sim$$

where $(x, t) \sim (x', t')$ if either $(x, t) = (x', t')$, or $t = t' \in \{-1, 1\}$. Compute $H_*(X; \mathbb{Z})$.

Solution. Write $X = (\mathbb{T}^2 \times [-1,0] / \sim) \cup (\mathbb{T}^2 \times [0,1] / \sim)$ and let U and V denoted the respective components. Each of U and V is homotopy equivalent to a point because of the equivalence relation in defining X. Their intersection is a torus, T. Use a Mayer-Vietoris sequence to compute the homology:

$$\cdots \to 0 \to H_3(X) \to H_2(T) \to H_2(U) \oplus H_2(V) \to H_2(X) \to H_1(T) \to \cdots \to H_1(U) \oplus H_1(V) \to H_1(X) \to H_0(T) \to H_0(U) \oplus H_0(V) \to H_0(X) \to 0.$$

Then the homology groups are

$$H_3(X) \cong H_2(T) \cong \mathbb{Z},$$

$$H_2(X) \cong H_1(T) \cong \mathbb{Z} \oplus \mathbb{Z},$$

$$H_1(X) \cong 0, \text{ and}$$

$$H_0(X) \cong \mathbb{Z},$$

because X is connected. The higher homology groups vanish. □

Problem 5. Let S^4 be the 4-dimensional sphere and suppose that $\pi : S^4 \to M$ is a local homeomorphism onto an orientable manifold. Prove that π is a homeomorphism and give an example showing that the orientability condition is necessary.

Solution. First, S^4 is compact Hausdorff, so π must be a cover. Since S^4 is simply connected, S^4 must then be the universal cover of M. S^4 is path connected and locally path connected, and the universal cover is regular, so $M \cong S^4/G$ where G acts freely and properly discontinuously on S^4. The only nontrivial free and properly discontinuous group action on S^4 is \mathbb{Z}_2 because 4 is even. But $S^4/\mathbb{Z}_2 \cong \mathbb{R}P^4$ is nonorientable. Since M is orientable, it must be the quotient of the trivial action on S^4, hence $M \cong S^4$. $\mathbb{R}P^4$ gives the desired counterexample when M is not orientable. □
Afternoon Session

Problem 1. Let G be a cyclic group, $G \acts S^1$ an effective action by rotations and endow the quotient S^1/G with the quotient topology. Prove that S^1/G is T_0 if and only if G is finite.

Solution. Suppose G is infinite. Rotation must be by $2\pi q$, where q is irrational, because G is cyclic and must act effectively on S^1. Assume S^1/G is T_0. Let $x \neq y \in S^1/G$ and $U \subset S^1/G$ open with $x \in U$, $y \notin U$. The preimage of U covers S^1, hence intersects the preimage of y. But then that implies $y \in U$, a contradiction. So S^1/G cannot be T_0.

Conversely, let $n < \infty$ denote the order of G. Choose $x, y \in S^1/G$. The preimage K of $\{x, y\}$ consists of $2n$ points. S^1 is a metric space with the induced metric d from \mathbb{R}^2. Put $\delta = \min_{x' \neq y'} d(x', y')$ and $\epsilon = \frac{2}{3} \delta$. The ϵ-balls centered at each point of K with S^1 are disjoint, as are their images in S^1/G. This means S^1/G is in fact Hausdorff, hence T_0. □

Problem 2. Consider the standard sphere $S^2 = \{x \in \mathbb{R}^3, \|x\| = 1\}$ and

$$T^1S^2 = \{(x, y) \in S^2 \times S^2, x \perp y\}$$

with the induced topology. Prove that T^1S^2 is homeomorphic to SO_3.

Solution. Let e_1, e_2 and e_3 denote the standard unit vectors in \mathbb{R}^3. Suppose $(x, y) \in T^1S^2$. Regarding x and y as vectors, there is a unique rotation $T_{x,y} \in SO_3$ such that $T_{x,y}(e_1) = x, T_{x,y}(e_2) = y$. Define $h : T^1S^2 \to SO_3$ by $h : (x, y) \mapsto T_{x,y}$. Rotation is continuous, so a neighborhood of $T \in SO_3$ maps e_1, e_2 to a neighborhood of x, y. Hence h is continuous. Define the inverse $k : SO_3 \to T^1S^2$ by $k : T \mapsto (T(e_1), T(e_2))$. By the same argument k is continuous, and by construction h and k are inverses to eachother. Therefore $T^1S^2 \cong SO_3$. □

Problem 3. Suppose that $M^d \subset \mathbb{R}^n$ is a d-dimensional smooth submanifold of n-dimensional Euclidean space. Prove that $\mathbb{R}^n \setminus M^d$ is simply connected if $n - d \geq 3$.

Solution. A loop $\gamma \subset \mathbb{R}^n$ is homotopy equivalent to $S^1 \subset P$, where P is a plane. If γ is not contractible in $\mathbb{R}^n \setminus M^d$ then P must intersect M^d in \mathbb{R}^n. If $n - d \geq 3$ then $d + 2 < n$. Therefore, if $P \cap M^d \neq \emptyset$ then at no point can the intersection be transversal. A perturbation of P makes the intersection empty. Then γ is contractible on P, so $\mathbb{R}^n \setminus M^d$ is simply connected. □

Problem 4. Let K be the image of an embedding of $S^1 \times D^2$ into S^3. Compute $H_1(S^3 \setminus K; \mathbb{Z})$.

Solution. Write $S^3 = K \cup S^3 \setminus K$; since K is the solid torus, the intersection is the boundary ∂K, which is a torus, T. Use a Mayer-Vietoris equence to find $H_1(S^3 \setminus K; \mathbb{Z})$. Note K is homotopy equivalent to S^1, hence has the same homology groups.

$$\cdots \to 0 \to H_2(S^3) \to H_1(T) \to H_1(K) \oplus H_1(S^3 \setminus K) \to H_1(S^3) \to \cdots$$
becomes
\[0 \to \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus H_1(S^3 \setminus K) \to 0 \]
and so \(H_1(S^3 \setminus K) \cong \mathbb{Z} \). \(\square \)

Problem 5. Suppose \(X \) is a connected compact CW-complex. Prove that \(H_1(X; \mathbb{Z}) \) is finite if and only if every map \(X \to S^1 \) is homotopic to a constant map.

Solution. Any map \(X \to S^1 \) induces a map on homology, \(H_i(X) \to H_i(S^1) \). Consider the double complex
\[
\begin{array}{cccc}
0 & \to & H_2(S^2) & \to & H_1(S^1) & \to & H_0(S^1) & \to & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
\ldots & \to & H_3(X) & \to & H_2(X) & \to & H_1(X) & \to & H_0(X) & \to & 0
\end{array}
\]
where the rows are exact and the squares commute (since \(H_i \) is a functor). If \(H_1(X) \) is finite then it cannot map non-trivially onto \(\mathbb{Z} \), so \(H_1(X) \to H_1(S^1) \) is the zero map. Since \(H_0(S^1) \cong H_0(X) \cong \mathbb{Z} \), by commutativity \(H_1(X) \to H_0(X) \) must be the zero map. Then every 1-ball in \(X \) has a boundary; since \(X \) is connected, it is thus contractible. So \(X \to S^1 \) factors through a point, which maps to a constant.

Conversely, if \(f : X \to S^1 \) is homotopic to a constant map, then the induced map on fundamental groups, and hence first homology groups, is trivial. Since this works for any such \(f \), \(H_1(X) \) must be either finite or trivial. \(\square \)