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Abstract

This paper proposes a three-dimensional electromigration model for void evolution in small scale

interconnects. Concurrent kinetics of creep flow and surface diffusion as well as the effect of the

surrounding material is considered to provide better understanding of the evolution process. The

multiple kinetics and energetics are incorporated into a diffusive interface model. A semi-implicit

Fourier spectral method and the preconditioned biconjugate-gradient method are proposed for the

computations to achieve high efficiency and numerical stability. We systematically studied kinetic

processes in diffusion dominated to creep dominated regime. Which process dominates, as revealed

by the analysis, is determined by a combination of viscosity, mobility, interconnect thickness, and

void radius. Previous studies on electromigration suggest that a circular void subjected to an electron

wind force and surface diffusion is always stable against any small shape perturbation. Our

simulations show that a shape that is stable in surface diffusion can become unstable in a creep

dominated process, which leads to a quite different void morphology. A spherical void can evolve

into a bowl shape and further break into smaller voids. It is also shown that the interconnect

geometry has an important effect.
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1. Introduction

Void evolution in interconnects induced by electromigration has significant effect on the
reliability of integrated circuits. Interconnects are thin wires of copper or aluminum alloy
which make electrical contact between devices on a chip. The continuous scaling down in
the dimensions of typical integrated circuits leads to increasing electric current densities in
interconnect lines. As a result, current induced directional mass transport causes
nucleation of voids. Nucleated voids in interconnects change their shape and sometimes
cause an open circuit as a result of the small dimensions, intense currents, and elevated
temperatures. This phenomenon has largely limited further device miniaturization and
needs to be addressed.

Many theoretical studies have contributed to the understanding of void morphological
evolution and its implication for electromigration induced failure (Bhate et al., 2000; Cho
et al., 2004; Fridline and Bower, 1999; Gungor and Maroudas, 1998, 1999; Wang et al.,
1996). The electron wind promotes the formation of slits while the surface energy favors
rounded voids. A spherical void becomes unstable in a large electric current. Depending on
the initial shape a void may elongate in the direction normal to or along the interconnect
line (Wang et al., 1996). Fridline and Bower (1999) studied the effect of anisotropic surface
diffusivity on the formation and growth of slit-like voids. They modeled an interconnect as
a two-dimensional electrically conducting strip containing an initially semi-circular void.
Finite element computation was applied to predict void evolution. Gungor and Maroudas
considered electromigration-induced failure due to transgranular void propagation (Cho et
al., 2004; Gungor and Maroudas, 1998, 1999). Bhate et al. (2000) investigated stress-
induced void evolution in interconnects with a phase field model.

While diffusion has been investigated as a mass transport mechanism in electromigra-
tion, recent studies suggest that creep can play an important role. Bower and Freund
considered creep deformation by dislocation and sliding motion at grain boundaries and
the interface between the interconnect and passivation (Bower and Freund, 1993; Fridline
and Bower, 2002). They investigated voids initially nucleated and grown at the grain
boundary, and showed that the inelastic slip between the interconnect and the surrounding
passivation plays a central role in developing a narrow slit or a round shape. Although in
this work the driving force for diffusion and creep was thermal residual stress rather than
electromigration, the study highlighted the importance of the creep mechanism in void
evolution. When creep occurs in grains and diffusion occurs on grain boundaries there is
no ambiguity about their distinct contributions. However, creep and diffusion occur in the
same continuum space when we consider. Suo (2004) theoretically considered the coupled
effect in a single-component material. Both convection and diffusion contributed to mass
transport. Convection was identified by the motion of imaginary markers dispersed in the
material. Creep and diffusion coupled because the markers must move to compensate for
the diffusion flux divergence. The Stokes equation and Herring model were adopted to
describe creep and diffusion, respectively. Experimentally, the effect of creep flow was
demonstrated in electromigration-induced hillocking (Glickman et al., 1997; Proost et al.,
2002).

This paper studies void evolution driven by electromigration in a small scale
interconnect. The high electric current density induces high temperature, high-pressure
gradients and low viscosity, where creep flow has a significant effect. A study considering
concurrent kinetics and small interconnect size is necessary to respond to the new demands
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of nanoscale devices. When the size of an interconnect is reduced below the grain size, the
grain boundaries no longer connect into a continuous diffusion path. Thus we focus on the
void evolution process inside the grain rather than at the grain boundary. In fact, slit voids
were commonly observed inside grains even in a micro-scale interconnect (Arzt et al., 1994;
Kraft and Arzt, 1997). We aim to reveal the dynamic void evolution process in
interconnects by studying the interplay of the electron wind, surface energy, surface
diffusion and creep. A three-dimensional model capable of describing the rich dynamics is
developed in this paper, which can provide more realistic simulations beyond existing two-
dimensional diffusion models. To overcome the computational complexity due to evolving
interfaces, multiple energetics and kinetics, a diffuse interface approach is adopted. Similar
approaches have been applied in previous studies and demonstrated its reliability and
effectiveness (Kim and Lu, 2004; Lu and Kim, 2004; Lu and Salac, 2005). In contrast to
interface tracking methods such as the boundary element method, the interfaces are not
modeled explicitly but given implicitly by a concentration field, where an interface is
represented by a thin continuous transition region. Consequently, complex interface
changes, such as void breaking or coalescence, will not cause any additional computational
difficulty.

2. A diffuse interface model for coupled diffusion and creep flow

Interconnects in current devices are made of aluminum or copper alloys, and are
typically of a rectangular cross-section with dimensions in the submicron range. They are
deposited on a silicon substrate and then encapsulated in a thick oxide layer. The
encapsulation of aluminum lines by insulating layers eliminates atomic sinks such as
hillocks. Fig. 1 shows an interconnect line subjected to an electric field. The material
surrounding the line is assumed to be much stiffer than aluminum. We consider the
migration and morphological evolution of a small void that has already nucleated, as
shown in Fig. 1. A coordinate system is attached so that the x1–x2 plane coincides with the
bottom of the interconnect line. Define a concentration C by the volume fraction of metal,
C ¼ 0 for void and C ¼ 1 for metal. Regard the concentration as a spatially continuous
and time-dependent function C(x1, x2, x3, t). We consider regions away from any possible
grain boundary in the metal line (such as the bamboo structure) so that the only mass
transport mechanism is surface diffusion and creep flow. For simplicity, we assume
isotropic surface energy and diffusivity.
x1 
x2 

x3

V

Fig. 1. An illustration of a void in a thin interconnect line subjected to an electric field. The electric current flows

in x2 direction.
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2.1. Electron wind

The metal lines or interconnects in today’s integrated circuits are subject to high current
density due to continuing miniaturization. For instance, the current density in an
aluminum interconnect can reach 1010A/m2. The electron wind exerts a force, Fe, in the
direction of the electron flow at the void surface. The force on a per unit volume basis is
given by (Wang et al., 1996).

Fe ¼ �NaZ
�jejE, (2.1)

where Na is the number of atoms per unit volume, Z* the phenomenological effective
valence of the atom and e the charge of an electron. The negative sign in Eq. (2.1) means
that the force is in the direction of the electron flow. The electric field, E, relates to the
electric potential, f, by

E ¼ �rf. (2.2)

Conservation of electric charges requires that a steady electric current density, j, satisfies

r � j ¼ 0. (2.3)

The electric field relates to the current density by Ohm’s law, namely

j ¼ sE, (2.4)

where s is the conductivity of the media. The electric field inside the void is much lower
than the electric breakdown strength of vacuum or dry air. Therefore the void can be
modeled as an insulator. Denote the conductivity of the metal by s0. We interpolate the
electric conductivity linearly by the values of metal and the void, namely, sðCÞ ¼ s0C. A
combination of Eqs. (2.1)–(2.4) shows that the electric potential obeys the Laplace
equation:

r � fsðCÞrfg ¼ 0. (2.5)

This partial differential equation, together with boundary conditions, determines the
electric potential.

2.2. Surface diffusion

Atoms diffuse on a void surface from high chemical potential regions to low chemical
potential regions, which causes the void to change its shape or drift along the metal line.
The diffusion driving force relates to the chemical potential, m0, by Fc ¼ �rm0. The
electron wind provides an additional driving force as shown in Eq. (2.1). The total driving
force can be expressed by F ¼ Fc+Fe, which leads to a mass flux of

J ¼ �Mðrm0 �NajejZ
�rfÞ, (2.6)

where M is the mobility. The bulk diffusion can be neglected since the surface diffusion on
the void surface is much faster. To consider surface diffusion, we take M to have the form
of MðCÞ ¼M0Cð1� CÞ, where M0 is a material constant. Note that M(C) vanishes
outside the interfacial region.
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The chemical potential relates to the free energy, G, by m0 ¼ dG=dC. The expression of G

is standard in the Cahn–Hilliard model (Cahn, 1958), which is

G ¼

Z
V

gðCÞ þ
1

2
hjrCj2

� �
dV . (2.7)

The first term in Eq. (2.7) represents the chemical energy that drives phase separation; it
can be any function with double wells. We use gðCÞ ¼ f 0C

2ð1� CÞ2, where f0 is a positive
constant. The second term of Eq. (2.7) accounts for the interface energy between void and
metal, where h is a material constant. These give m0 ¼ f 0ð4C3 � 6C2 þ 2CÞ � hr2C.
2.3. Creep

Both Nabarro–Herring creep and Coble creep have been modeled by linear viscous flows
(Ashby and Verrall, 1973; Dryden et al., 1989; Yang, 1997). Note that Coble creep relies on
grain boundary diffusion. Thus the application of a linear viscous constitutive equation for
Coble creep is only appropriate when a representative volume element of the solid contains
a large number of grains. Modern interconnects have a grain size around 100 nm and have
comparable or smaller dimensions. These grains form bamboo-type lines so that the effect
of Coble creep can be neglected when considering void evolution inside the grains.
Dislocation core diffusion may lead to non-linear power law creep, but the mechanism acts
at high deviatoric stresses. Experimental data suggest that interconnects deform elastically
due to the confining effect of the surrounding passivation. In this paper we model small
scale interconnects at relative high temperature due to large currents. The bulk diffusion-
controlled Nabarro–Herring creep will be considered and modeled by a linear viscous
constitutive equation. The study aims to reveal several key aspects of concurrent kinetics.
From this point of view the result is also instructive for nonlinear creep, though the latter
implies a different convective rate and will be studied in future work.
To consider diffusive interfaces we apply a modified Navier–Stokes equation with a

phase field dependent surface force (Gurtin et al., 1996),

�rpþ r � ðZrvÞ þ mrC ¼ 0, (2.8)

where v is the velocity, Z the viscosity, and p the pressure to enforce the incompressibility
constraint, r � v ¼ 0. The viscosity is dependent on the concentration, Z ¼ Z0C, where Z0 is
the metal viscosity. The term mrC accounts for the force at the interface. This modified
Navier–Stokes equation takes into account the hydrodynamic interaction between the
concentration field and the velocity field.
Creep flow adds a convection term to the mass flux, which is given by Cv. In the

concurrent kinetic process the net flux is the sum of this convection flux and the diffusion
flux in Eq. (2.6). This combined with the mass conservation relation, qC=qtþ r � J ¼ 0,
gives a convective Cahn–Hilliard equation, namely

qC

qt
þ v � rC ¼ r � ðMðCÞrmÞ, (2.9)

where m ¼ m0 �NajejZ
�f.
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3. Numerical procedure

3.1. Normalization

We normalize the governing equations with a characteristic velocity Vc, length Lc and
time tc ¼ Lc=V c. The choice of the magnitudes of the characteristic quantities depends on
the physical detail to resolve and computational convenience. The normalized equations
are given by

qC

qt
þ v � rC ¼

1

Pe
r � ðMrmÞ, (3.1)

m ¼ 4C3 � 6C2 þ 2C � C2
hr

2C � f, (3.2)

�rpþ r � ðZrvÞ þ
1

Ca
mrC ¼ 0. (3.3)

The mobility M and viscosity Z are dimensionless numbers normalized by those of the
metal, M0 and Z0. The potential field f is normalized by fc ¼ f 0=ðNajejZ

�Þ. The Péclet
number, Pe ¼ V cLc=ðM0f 0Þ, reflects the ratio of the diffusive time scale and the convective
time scale. The significance of the interface energy is described by the Cahn number,
Ch ¼

ffiffiffiffiffiffiffiffiffiffi
h=f 0

p
=Lc. The capillary number, Ca ¼ Z0V c=ðLcf 0Þ, affects the relative magnitude

of the viscous force and the interface force.

3.2. Semi-implicit spectral method

Eqs. (3.1)–(3.3) and the electric field need to be solved simultaneously to obtain the
evolution sequence. The coupled system requires a numerical approach with a high spatial
resolution to resolve the high order derivatives in the diffusion equation. An efficient and
stable time integration method should be adopted to perform three-dimensional
simulations. Here we implement a semi-implicit special method, which treats the linear
term implicitly and the nonlinear term explicitly to allow larger time step without losing
numerical stability (Lu and Suo, 2001; Zhu et al., 1999). In contrast, fully implicit
treatment yields an expensive scheme while explicit discretization quickly leads to
numerical instability or needs impractical time-step constraints.

We treat the passivation and the interconnect uniformly to avoid the need to explicitly
prescribe the diffusion and flow boundary conditions at the interface between the
passivation and the line. The uniform treatment also enables the application of an efficient
spectral method in three dimensions. We consider the passivation as part of the film, but
ensure by kinetics that this part does not flow or diffuse. In other words, we assign M ¼ 0
and Zb1 in the passivation region so that it keeps C ¼ 1. In the interconnect line,
according to the normalization, we have M ¼ 1 and Z ¼ 1. This leads to position
dependent M and Z in Eqs. (3.1) and (3.3).

To deal with the variable mobility, we rewrite the right hand side of Eq. (3.1) by

r � ðMrmÞ ¼ Ar2mlr þ sm, (3.4)

where A is a constant, mlr is a linear component of m, and sm ¼ r � ðMrmÞ � Ar2mlr.
The idea is to treat the linear term, Ar2mlr, implicitly and treat the sm term explicitly. This
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semi-implicit approach can significantly alleviate the time step constraint. There are
different choices for mlr (Douglas and Dupont, 1971; Zhu et al., 1999). We have obtained
numerical stability in all our simulations by taking mlr ¼ C � C2

hr
2C and A ¼ 1. Note that

the stability is achieved in conjunction with the extrapolated gear (SBDF) scheme for time
integration. SBDF has the strongest high modal decay among the second order multi-step
methods (Ascher et al., 1995). This provides the required damping for the very high
frequencies in the diffusion equation without a severe time-step constraint. The convective
term, v � rC, is treated explicitly. Applying the semi-implicit method and the SBDF time
integration scheme, we obtain the following discrete form for Eq. (3.1),

3

2
Cnþ1 � 2Cn þ

1

2
Cn�1 ¼

ADt

Pe
ðr2Cnþ1 � C2

hr
4Cnþ1Þ þ 2Qn �Qn�1, (3.5)

where

Qn ¼
Dt

Pe
ðr �Mrmn � Ar2Cn þ AC2

hr
4CnÞ � Dtvn � rCn. (3.6)

Eq. (3.5) can be solved with high spatial resolution efficiently in Fourier space. Applying
Fourier transform to Eqs. (3.5) and (3.6), we obtain

Ĉ
nþ1
¼

4Ĉ
n
� Ĉ

n�1
þ 4Q̂

n
� 2Q̂

n�1

3þ ð2ADt=PeÞðk
2
þ C2

hk4
Þ
, (3.7)

Q̂
n
¼

Dt

Pe
½ik � fMðikm̂n

Þrgk þ Ak2Ĉ
n
þ Ak4C2

hĈ
n
� � Dtfvn � ðikĈ

n
Þrgk, (3.8)

where the caret ‘4’ and the subscript k stand for Fourier transform. The vector k denotes
the wave vector in Fourier space with k2

¼ k2
1 þ k2

2 þ k2
3. The subscript r denotes inverse

Fourier transform.
The velocity field is solved by Eq. (3.3) and the incompressibility condition. To treat the

variable viscosity, we rewrite

r � ðZrvÞ ¼ Br2vþ rðvÞ, (3.9)

where rðvÞ ¼ r � ðZrvÞ � Br2v and B is a constant. We treat the linear term Br2v implicitly
and the r(v) term explicitly. Numerical stability has been achieved in all our simulations by
taking B ¼ max(Z). Applying the divergence on both sides of Eq. (3.3) and substituting the
incompressibility constraint r � v ¼ 0, we obtain the pressure at the nth time step

r2pn ¼ r � rðvn�1Þ þ
1

Ca
r � ðmnrCnÞ. (3.10)

The velocity field is given by reorganizing Eq. (3.3), namely

r2vn ¼
1

B
rpn � rðvn�1Þ �

1

Ca
ðmnrCnÞ

� �
. (3.11)

The corresponding equations in Fourier space are given by

p̂n
¼ �

1

k2
ik � r̂ðvn�1Þ þ

1

Ca
ik � fmnðikĈ

n
Þrgk

� �
. (3.12)
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v̂
n
¼ �

1

Bk2
ikp̂n
� r̂ðvn�1Þ �

1

Ca
fmnðikĈ

n
Þrgk

� �
. (3.13)

Eqs. (3.12) and (3.13) are solved iteratively.
The electric field is calculated by Eq. (2.5) with a standard second-order finite difference

scheme. We adopt the preconditioned biconjugate gradient method with the Jacobi
preconditioner to solve the matrix (Golub and Loan, 1989). This approach allows efficient
computation of large matrices, which are typical in three-dimensional problems.

The following outlines the procedure to compute Cn+1 from Cn. First compute the
electric potential field, fn, that corresponds to the concentration distribution Cn. The
computed fn is used to solve mn by Eq. (3.2). With Cn, fn, and mn, the pressure and velocity
of viscous flow in Fourier space, p̂n and v̂

n, can be calculated by Eqs. (3.12) and (3.13).
After computing Ĉ

nþ1
with Eqs. (3.7) and (3.8), we obtain an updated concentration Cn+1

by the inverse Fourier transform. The procedure repeats until a prescribed time.
3.3. Scale

Take the widely used aluminum interconnects as an example. They generally carry high
electric current and operate at near half of aluminum’s melting temperature, T�500K. To
resolve the interface, we choose the characteristic length Lc to be

ffiffiffiffiffiffiffiffiffiffi
h=f 0

p
. This gives

Ch ¼
ffiffiffiffiffiffiffiffiffiffi
h=f 0

p
=Lc ¼ 1. The interface energy scales with

ffiffiffiffiffiffiffi
hf 0

p
�1 J=m2. We estimate

Lc�1 nm. This gives f0�10
9 J/m3. The characteristic time tc ¼ Lc=V c is the time required

for the fluid to be convected a distance on the order of the interface thickness,
tc ¼ Lc=V c�10

�5 s. To relate M0 to an experimentally accessible quantity, one may
linearize Eqs. (3.1) and (3.2) around the equilibrium concentration (Roths et al., 2002).
This gives a common diffusion equation with the corresponding diffusion coefficient being
D ¼ 2M0f 0. Surface diffusivity of pure aluminum at a specific temperature can be
estimated by D ¼ 10�5 exp½�0:7ðeVÞ=kT�m2=s, where k ¼ 1:38065� 10�23 m2kg=s2K is
Boltzmann’s constant and 1 eV ¼ 1:6021� 10�19 J (Wohlbier, 1986). With a typical
interconnect operating temperature of T ¼ 500K, the Péclet number,
Pe ¼ V cLc=ðM0f 0Þ ¼ 2V cLc=D, is around 1–10. The effective valence of aluminum is
about Z� ¼ 20. With Na�2� 1029 1/m3, we have fc ¼ f 0=ðNajejZ

�Þ�10�3 V.
To provide a rough estimation of the relative significance of surface diffusion and creep,

consider a two-dimensional interconnect line in the x2–x3 plane, as shown in Fig. 2. The
line has a thickness of H, with a void of radius R in the center. Due to symmetry, we only
x3 

x2 

H/2 
R 

Metal Void

v2(x3) 

E0 

J 

B

A

Fig. 2. Schematic of a void positioned at the center of a two-dimensional interconnect.
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need to treat half of interconnect from x3 ¼ 0 to x3 ¼ H=2. For simplicity we consider a
steady-state condition, where the electron wind force is balanced by the pressure gradient,
Fe þrp ¼ 0 (Blech and Herring, 1976; Suo, 2004). In the steady flow the only nonzero
component of velocity is in the flux direction, and varies along the thickness, i.e. u1 ¼
u3 ¼ 0 and u2 ¼ u2ðx3Þ. Compare the amount of mass passing the dashed line A–B by creep
and diffusion. With qC=qx2 ¼ 0 and assuming a constant viscosity, Eq. (2.8) reduces to
Zq2u2=qx2

3 ¼ qp=qx2. This is an ordinary differential equation for the velocity profile u2(x3).
Applying the no-slip boundary condition at x3 ¼ 0 and zero shear force at the free surface,
x3 ¼ H=2� R, gives the velocity profile from x3 ¼ 0 to x3 ¼ H=2� R:
u2 ¼ ðqp=qx2Þ½x

2
3=2� ðH=2� RÞx3�=Z. The mass transport by creep flow is

QC ¼
RH=2�R

0 u2dx3 ¼ �ðqp=qx2ÞðH=2� RÞ3=3Z, and that by surface diffusion is
QD ¼ LcJx2

¼ LcMF e. The ratio gives

QC

QD

¼
H2

24MZ
H

Lc

� �
1�

2R

H

� �3

. (3.14)

The rough estimation of Eq. (3.14) suggests that whether creep or diffusion dominates is
determined by mobility, viscosity, interconnect thickness, and void radius. Fig. 3 shows
that the QC ¼ QD curve separates the space into two regions with different dominating
kinetics. In both graphs a void with a radius of 10 nm is considered as an example. Fig. 3(a)
shows the relation in a viscosity–temperature space for an interconnect with a thickness of
30 nm. When temperature increases a lower viscosity is needed to induce creep dominated
void evolution due to enhanced mobility. The curve shows that at 500K creep becomes
important when the viscosity is below 105 Pa s. Fig. 3(b) shows the effect of film thickness,
which varies from 30 nm to 1 mm. The temperature is T ¼ 500K. The curve suggests that
the creep mechanism dominates when the interconnect thickness increases. Eq. (3.14) can
be rewritten with the capillary number and Péclet number, which gives

b ¼
QC

QD

¼
1

24

H

Lc

� �3

1�
2R

H

� �3
Pe

Ca

� �
. (3.15)

The ratio b is proportional to Pe/Ca. A creep dominated process corresponds to b much
greater than 1.
Fig. 3. Plots of dominating kinetics regions in (a) viscosity-temperature space for a 30 nm interconnect thickness,

and (b) viscosity-interconnect thickness space for T ¼ 500K.
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4. Results and discussions

This section presents simulation results of void evolution in a three-dimensional
interconnect. We aim to demonstrate how the creep mechanism, which is coupled with
diffusion and electron wind, changes the void evolution in a small-scale interconnect. The
Péclet number, Pe, and the capillary number, Ca are chosen based on Eq. (3.15) to consider
different dominated kinetics. A thin layer in the calculation domain close to the
interconnect surface is treated as the passivation. We find that assigning M ¼ 0 and Z ¼
500 in the passivation region is sufficient to keep it unchanged. The results are visualized
by three-dimensional surface plots. The void surface is defined by the concentration of 0.5.
The aluminum has a resistance of r ¼ 2:74� 10�8 Om. When the current is up to 1012A/
m2, the electric field is around 104V/m. When considering a length of 100Lc (say 100 nm)
the normalized electric potential is about 1.

4.1. The effect of creep flow

Fig. 4 shows a comparison of three evolution sequences. The calculation domain size is
30� 100� 30. A spherical void with a radius of 10 is initially positioned at (15, 15, 15).
Following the previous discussions, we take the applied normalized electric potential to be
1 and the Cahn number to be Ch ¼ 1. Eq. (3.15) gives b�10Pe/Ca. Sequence (a) has
Pe ¼ 10 and Ca ¼ 10000, which gives b ¼ 0:01. This is a diffusion dominated situation.
Fig. 4. A comparison of three evolution sequences with different dominating kinetics indicated by b. (a) Pe ¼ 10

and Ca ¼ 10000 give b ¼ 0:01. Surface diffusion dominated. (b) Pe ¼ 10 and Ca ¼ 100 give b ¼ 1. Comparable

kinetics. (c) Pe ¼ 100 and Ca ¼ 1 give b ¼ 1000. Creep dominated.
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Sequence (b) has Pe ¼ 10 and Ca ¼ 100, which gives b ¼ 1. It is estimated that the effect of
creep and diffusion are comparable. Sequence (c) has Pe ¼ 100 and Ca ¼ 1, which gives
b ¼ 1000. This is a creep dominated situation.
The simulations show that the void migrates in the direction of the electric current, i.e.

from right to left. The electron wind induces material to diffuse and flow from one side of
the void to the other so that the void appears to migrate along the interconnect line. The
kinetic process in Fig. 4(a) is mainly surface diffusion, where the viscosity is 100 times of
that in Fig. 4(b). The high viscosity reduces any possible mass transport by creep flow. We
find that the random small shape perturbation at t ¼ 0 quickly decays away. After a long
evolution time, t ¼ 60000, the void remains spherical. This is consistent with other work.
Linear stability analysis has shown that subjected to an electron wind force and surface
diffusion a circular void is always stable against any small shape perturbation (Mahadevan
and Bradley, 1996). In other words, a stronger electric field only causes a circular void to
drift faster, but does not change its shape. However, when creep exists, the situation is
fundamentally different. Fig. 4(b) has already shown observable shape change. The effect
is even more noticeable and interesting when creep dominates, as shown in Fig. 4(c). A
spherical void evolves into a bowl shape and further breaks into two smaller voids. This
dynamic process is captured from t ¼ 1000 to 5000. These simulations suggest that surface
diffusion alone may not accurately account for all electromigration phenomena.
Previous studies on surface diffusion-controlled electromigration have suggested a

relation between the initial void shape and its evolution. A void with an uncritical shape
evolves to elongate along the interconnect line direction, while a void with a critical shape
evolves to elongate normal to the line direction (Wang et al., 1996). The situation is more
complicated for concurrent kinetics. Fig. 5 compares the void shape in the x2�x3 plane at
t ¼ 104 for three cases. All the simulations start from the same spherical shape as those in
Fig. 4. Fig. 5(a) is taken from the sequence in Fig. 4(b), where Pe ¼ 10 and Ca ¼ 100 give
b ¼ 1. Fig. 5(b) shows the case for smaller surface energy, which is half of that in Fig. 5(a),
Fig. 5. Comparison of the void shape in the x2–x3 plane at t ¼ 104 for three cases. (a) b ¼ 1 (Pe ¼ 10, Ca ¼ 100),

Ch ¼ 1. (b) b ¼ 1 (Pe ¼ 10, Ca ¼ 100), Ch ¼ 0:5. (c) b ¼ 10 (Pe ¼ 10, Ca ¼ 10), Ch ¼ 1.
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i.e. Ch ¼ 0:5. All other parameters are the same. The void evolves to a critical shape. Fig.
5(c) shows a case with smaller viscosity, where Pe ¼ 10 and Ca ¼ 10 give b ¼ 10. Other
parameters are the same as those in Fig. 5(a). The void evolves to an uncritical shape.
When creep becomes more prominent a bowl-shaped void appears, e.g. Fig. 4(c). Shape
instability due to creep flow may eventually cause a large void to break into smaller ones.

4.2. The effect of electric field strength

Two competing actions influence the void evolution: the electric field promotes the
formation of slits, while the surface energy favors rounded voids. Our simulations
demonstrate the same trend in the creep-dominated process. Fig. 6 shows void evolution
similar to Fig. 4(c), except that a weaker electric field is applied with f ¼ 0:5. The weak
electron wind force leads to surface energy domination, which makes the void remain in a
round shape when it migrates along the interconnect line. Fig. 7 compares two other
simulations, where Pe ¼ 10 and Ca ¼ 10 give b ¼ 10. The potential applied in Fig. 7(b) is
f ¼ 2, which is twice of that in Fig. 7(a). The strong electric field changes a round shape to
the bowl shape.

4.3. The effect of interconnect line thickness

Fig. 8 demonstrates the effect of interconnect geometry. The interconnect has a larger
thickness compared to that in previous simulations. The calculation domain size is now
30� 100� 50. The void is initially positioned at (15, 15, 25). All other parameters are the
same as those in Fig. 4(c). It is observed that a thicker line leads to less flow constraint by
the boundary, and the void drifts at a higher velocity. Thus the creep mechanism becomes
more important in a thick line. The void shape is also affected by the interconnect
geometry. While the void in Fig. 4(c) breaks into two voids in the x2 direction, the void in
Fig. 8 breaks into two voids in the x3 direction. This can be understood in the following
manner. The interconnect has a rectangular cross-section with a long side along the x3 axis.
Face the cross-section with x3 up and imagine the mass transport occurs toward you. We
can expect faster flow at regions close to the top and bottom of the void compared with the
regions close to the left and right hand side of the void. This is because the top and bottom
points are farther from the boundary compared to the left and right points and therefore
the flow is less constrained. Then the void elongates in the x3 direction to compensate the
mass flow difference. The simulations suggest that properly designing the interconnect
geometry may help prevent failure due open circuits.
Fig. 6. An evolution similar to Fig. 4(c), except that a weaker electric field is applied, f ¼ 0:5. The void remains in

a round shape when it migrates along the interconnect line.



ARTICLE IN PRESS

Fig. 7. The effect of electric field strength for Pe ¼ 10 and Ca ¼ 10, which gives b ¼ 10, (a) f ¼ 1 and (b) f ¼ 2.

Fig. 8. Void evolution in an interconnect line with increased thickness. The domain size is 30� 100� 50. All other

parameters are the same as those in Fig. 4(c).
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4.4. The effect of initial void geometry

Here, we discuss the effect of initial void geometry in a creep-dominated process, such as
the initial void position and shape. Fig. 9 shows the effect of initial void position. Except
for positioning the voids closer to one edge, all the parameters are the same as those in
Figs. 4(c) and 8. The initial position is (15, 13, 13) in Fig. 9(a) instead of (15, 15, 15) as in
Fig. 4(c), and (15, 15, 15) in Fig. 9(b) instead of (15, 15, 25) as in Fig. 8. Our three-
dimensional model makes it possible to study this edge effect. The simulations show that
creep flow drives a void from the initially shifted position to the centerline of an
interconnect. This is presumably due to asymmetric mass transport. Consider a void
shifted from the centerline. We can expect that the flow is faster on the side of the void that
is further from the boundary due to less constrained flow. Then the void moves toward the
centerline to compensate for the mass flow difference. Fig. 10 shows a simulation for a void
with an initial ellipsoidal shape. All other parameters are the same as those in Fig. 4(c). The
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Fig. 10. A simulation for a void with an initial ellipsoidal shape. All other parameters are the same as those in Fig.

4(c).

Fig. 9. The effect of initial void position. (a) The parameters are the same as those in Fig. 4(c) except that the

initial void position is shifted from the center to (15, 13, 13). (b) The parameters are the same as those in Fig. 8

except that the initial void position is shifted from the center to (15, 15, 15).
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comparison shows that the void morphologies at t ¼ 5000 are quite similar to the result
shown in Fig. 4(c).
5. Conclusion

In a small scale interconnect both creep and diffusion contribute to the mass transport
of a void. We model the coupled mechanism in electromigration in a continuum space. The
three-dimensional model and computational approach proposed in this paper allow for a
detailed study of the void evolution process. An approximate estimation of mass transport
suggests that whether creep or diffusion dominates is determined by mobility, viscosity,
interconnect thickness and void radius. The simulations show that different dominating
kinetics lead to quite different morphologies. A void shape stable with surface diffusion
can become unstable with creep dominated evolution. This suggests that considering the
coupled mechanism may be necessary to provide reliable predictions in some situations.
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