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Abstract 
In this work, we employed the finite element method to study various effects on a thin 
film system such as the surface energy contribution, the elastic strain energy contribution, 
and the bulk free energy contribution.  We found that the surface energy causes the film 
to remain flat while the strain energy term promotes an increase in amplitude of surface 
modulation. The elastic energy also causes evaporation and the bulk free energy term was 
introduced to model vapor deposition. With these contributions, we were able to simulate 
the quantum dot behavior during their formation.  
 
Introduction 
 
Quantum dots are nanometer-sized particles or islands of a semiconductor material 
embedded in another semiconductor material.  They have electronic properties different 
from that of the bulk due to quantum confinement, and thus hold a promise for 
nanotechnology applications such as LED’s, detectors, data memory devices, lasers, and 
single electron transistors.  However, fabricating a regular, perfectly aligned dot structure 
is still a challenging issue.  Rather than using an accurate positioning device, such as a 
focused ion beam, it is preferable to use the technique of self-organizing/assembling 
growth via a strain relaxation mechanism. This is done by depositing the vapor of a 
material onto a substrate made of a material with a different lattice parameter. It is found 
experimentally in many material systems that heteroepitaxial growth results in 
spontaneous self-organization and assembly of islands. [1,2] 
 
The driving force for the quantum dot formation is the reduction of the total energy with 
a contribution from the elastic strain energy.  The elastic strain arises by the lattice misfit 
between the film and the substrate material. Initially, the combination of the 
surface/interfacial energies and the strain energy are such that the system favors wetting.  
Therefore, the film material forms a flat wetting layer over the substrate.  As the film 
material is deposited, the thickness of the film increases and the strain relaxation 
mechanism will result in island formation, despite an increase in the surface energy. At 
the early stage of surface roughening, the material is more relaxed at the crest than at the 
valley.  In other words, the area at the crest has a lower chemical potential.  
Consequently, the film material diffuses from the valley to the crest, which eventually 
leads to island formation.[3] 
 
In this project, we examine the formation of quantum dots by employing the finite 
element method formulated by Ref. 4, 5. 
 



Formulation 
Based on method developed by Ref. 4 and Ref. 5 and Ref. 6, we used the model for 
surface diffusion and evaporation/condensation.  The weak statement can be written as 
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where J is the mass flux, I is the mass displacement, M is the mobility of atom on the 
surface, j is the volume of matter added per unit area of the solid surface per unit time, i 
is the volume of matter added per unit area and m is the evaporation-condensation rate, 
and Gδ  is the energy change due to matter relocation and exchange on the surface. The 
first term in the integral associates with surface diffusion and the second term associates 
with the condensation/evaporation process. 
The quantity Gδ can be obtained from the free energy consideration. Here we consider a) 
the surface energy, sγ , b) the elastic energy, w, due to a misfit between the film and the 
substrate, and c) free energy per unit volume of atoms in a bulk solid phase, g, to model 
deposition from the vapor phase.  The expression Gδ  is 

 
δG = γ sδl + (w + g)δrndA∫ ,     (2) 

 
where l is the length of the surface, nrδ is the normal displacement of the surface. 
 
Computational Method 

 
Fig. 1.  A strait line element 

 
Fig. 1 shows one element, with two nodes at the positions (x1, y1) and (x2, y2). The 
element has length 1 and slope θ , which relate to the nodal positions by the expression 
l*sinθ = y 2-y1 and l*cosθ  = x2-x1.  We specify a point on the element by its distance 
from the mid-point of the element, s. When the two nodes change their positions by 

1 1( , )x yδ δ and 2 2( , )x yδ δ , the element become straightened, elongated, translated, or 
rotated, according to the nodal position changes. Consequently, the element moves in the 
normal direction by distance 
 

δrn = N1δx1+N2δy1+N3δx 2+N4δy 2,     (3) 
 



with the linear interpolation coefficients being 
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Also for velocity, 
 

vn = N1 Ý x 1+N2 Ý y 1+N3 Ý x 2+N4 Ý      (5) y 2
 
However, for flux, 
 

J = Q1J1 + Q2J2 + QmJm ,     (6) 
 
where J1, J2 and Jm, are the fluxes at the two nodes and the mid-point of the element, 
respectively, we used the quadratic interpolation coefficients, 
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Writing the position and mass displacement in a column matrix qδ and the velocity and 
mass flux in a column matrix q’. 

 
δq = [δx1 δy1 δI1 δx2 δy2 δI2 δIm ]T      (8) 

 
δq' = [ Ý x 1 Ý y 1 J1 Ý x 2 Ý y 2 J2 Jm ]T     (9) 

 
We can write the integral Eq. 1 as 
 

(δq)T Hq ' ,       (10) 
 
where 
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where we have used the shorthand notation µ = (ml2 ) /(5M ), S = sinθ , C = cosθ .  
 
Since we need velocities for more than one element, we have to generate global H matrix, 
which is diagonal and includes matrix for each element. And it also has overlapped part 
for the same node of two adjacent elements. Here is the part of MATLAB code for global 
matrix. 
   
 if i==1 
        for j=1:7 
            for k=1:7 
                H(j,k)=He(j,k); 
            end 
        end 
    else 
        for j=0:2 
            for k=0:2 
                H(4*i+j-4,4*i+k-4)=He(j+1,k+1)+H(4*i+j-4,4*i+k-4); 
            end 
        end 
        for j=0:2 
            for k=4:7 
                H(4*i+j-4,4*i+k-4)=He(j+1,k); 
                H(4*i+k-4,4*i+j-4)=He(k,j+1); 
            end 
        end 
        for j=4:7 
            for k=4:7 
                H(4*i+j-4,4*i+k-4)=He(j,k); 
            end 
        end 
    end 
  
The equation (2) can be express in term of force on the element 
 

δG = (δq) f       (12) 
 
where 
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Equating Eq. 10 and Eq. 12 yields 
 

Hq' = f       (14) 
 
This equation is a set of linear algebraic equation for the generalized velocities. We use 
Matlab to solve for the velocity matrix.  Note that taking an inverse of H is not possible 
since H is close to being a singular matrix.  One way of suppressing the singularity is to 
add a small mass to the diagonal term of H matrix.  In our program we use the command 
“psudoinverse”, which also suppresses the singularity.  
 
Once solved, the nodal velocities can be used to update the nodal positions. Here we use 
Euler method for time evolution 
 

xn +1 = xn + vn∆t ,      (15) 
 
where xn is the current position and xn+1 is the new position.  The accuracy of this method 
depends on the magnitude of time step.  Since Euler method is an explicit method, the 
magnitude of time step has to be small compared with the magnitude of l. In our 
simulation we have dt/l =0.1. 

 
 
Strain Energy Density Calculation 
 
Calculating w can be a cumbersome task. Here, we use a finite element package, Abaqus, 
to automatically calculate w. We use Matlab as a main program to evolve the morphology 
and only call Abaqus when strain energy calculation is required.   
 
We model the effect of the misfit as a constant force applied at the edge of the film. This 
is equivalent to a film on a stiff and infinitely large substrate.  This assumption is 
reasonable when the substrate is much thicker than the film. 
 
The workflow is as followed. 

a) Matlab generates initial positions of the nodes on the surface and write the data to 
a position-file.  

b) Matlab automatically calls a DOS batch file. In this batch file, Abaqus was called 
to read the position-file and a pre-programmed input file. It then generates meshes 
over the entire domain and, with specified boundary force, calculates the strain 
energy. Note that we add additional two 10 10×  grids on both sides of the film so 
that the area of interest is far from the boundary. This avoids error due to edge 
effect. 



  

 
ig. 2. Calculation domain and meshes generated by Abaqus.  Our calculation domain 

Abaqus then writes the strain energy associated with the nodes in the surface to 

d) the data file and evolves the node on the surface and write the 

e) 
 
n our simulation we didn’t need to recalculate the strain energy density at every time 

is 

he command for Matlab to call batch file is: 

system('callabaq.bat') 
The command in the batch file to 

den.inp int, 
where elasden.inp is the nam

esults and Discussions 

rom Eq. 2, we have four contributions to the reduction of the free energy, which are 

coefficient in front of term of interest in Eq. 13 to be non zero 

1. Stress-free undulating surface under surface tension 

 elastic energy density
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is 60x10.  We attached additional 10x10 grid to avoid edge effect.  The color 
specifies the magnitude of the strain energy density. 
   
c) 

the data file. 
Matlab reads 
updated nodal position to the new position-file. 
Repeat step b)   

I
step. If the position doesn’t change too much, the strain energy from the previous step 
still valid.  We found that calculate strain energy at every 10 time steps is a compromise 
between speed and accuracy. 
 
T
 

call Abaqus is: 
CALL abaqus j=elas
e of the pre-programmed input file.  
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surface energy, evaporation/condensation, elastic strain energy, and bulk free energy.  
Therefore, we would like to study each effect separately and we can combine them to 
simulate the quantum dot. 
To achieve this, we set the 
while multiplying other term with zero.  However, to suppress the effect of evaporation-
condensation, we have to further set mλ2/M<<1, which make the effect of surface 
diffusion more prominent. 
 



 
 this simulation, we studied the effect of the surface energy. We set the initial In

perturbation, ( )0.03sinA kx= , no applied force, and 0g = . 

 
Fig. 3. The shape of the surface of the thin film.  The red line indicate the original pe bation and the blue 

 
ig. 3 shows that with only surface energy contribution, the lowest energy state is the flat 

2. Stressed undulating surface without surface tension 
 

 this simulation, we study the effect of stress by setting the perturbation, 

rtur
line indicate the shape after 500 iterations 

F
film.  This is expected because the flat film has the lower surface area. 
 

In
( )0.03sinA kx= . We added a constant force on the two ends and set 0g = , and 0sγ = . 

 
Fig. 4. The shape of the surface of the thin film.  The red line indicate the original rturbation and the blue 

 
rom Fig. 4, the surface moves down almost uniformly.  There exist a small amplitude 

pe
line indicate the shape after 500 iterations 

F
increase but it is small and we are not sure whether this is due to the numerical error. 



The face that the surface moves down is reasonable.  When including stress, the energy 
of atoms in the solid becomes higher relative to that in the environment. Therefore, 
evaporation becomes more significant.  
 

3. Stressed undulating surface under surface tension 
 
In this simulation, we study the competition between stress and surface tension 
contributions.  We used the same initial surface profile with both misfit and surface 
tension term non-zero. We set 0g = .  
 

 
Fig. 5. The shape of the surface of the thin film.  The red line indicate the original perturbation and the blue 

line indicate the shape after 500 iterations 
 

Fig. 5. Shows that the surface moves downward as well as reduce the amplitude, which 
come from stress effect and surface tension effect, respectively. 
  

4. Undulating surface with phase difference only 
The remaining parameter is the bulk free energy, g.  We use the same surface profile 
while setting the surface tension and stress contributions to zero. We experimented 
the value of g from negative to positive. 

 
(a)                                                                    (b) 

Fig. 6. The shape of the surface of the thin film.  The red line indicate the original perturbation and the blue 
line indicate the shape after 300 iterations. (a) g<0 (b) g>0. 



 
Fig. 6. shows that the sign of g determine the movement of the surface. When g<0, the 
surface has lower bulk energy than that of the vapor and therefore, it is energetically 
favorable for the vapor phase to condense to the solid phase as in Fig. 6(a). The situation 
is the opposite in Fig. 6(b). 
 
Recalling Eq (2), the free energy variation can be written as: 
 

( )sG w K g r dδ γ δ= + +∫ n A       (16) 

 
Because the free energy variation is associated with unit volume of solid grown on the 
surface, define a driving force: 
 

sp w K gγ= − − −     (17) 
 

Then, if , the solid gains mass from the environment, causing upward movement. If 
, the solid loses mass to the environment, resulting in downward movement. As a 

result, we can balance choose  and  to switch between cases where solid evaporates, 
vapor condensates, or no phase change occurs [6]. 

0p >
0p <

w g

 
5. Stressed undulating surface with diffusion, and phase difference, stress dominated 

movement 
 
In this simulation, we increased the magnitude of stress contribution and adjust g to 
prevent phase change. 

 
Fig. 6. The shape of the surface of the thin film.  The red line indicate the original perturbation and the blue 

line indicate the shape after 500 iterations. 
 

Fig. 6. shows the that with higher stress contribution, the amplitude of the film increases. 
The value of g was adjusted to prevent evaporation.  This is the analogous to the 
formation of quantum dots.  
 



Considering a dimensionless parameter which characterizing the relative significance of 
the elastic and surface energy: 
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If we set  large enough, the stress effect will dominate the surface movement, the 
amplitude of surface will increase.  In this simulation, s = 15. 

s

 
6. Stressed undulating surface with diffusion and phase difference, diffusion 

dominated movement: 
 
If  is small enough, the surface tension dominate the surface movement, eventually, the 
surface will become flat. In this simulation,

s
0.15s ≈ . 

 

 
Fig. 7. The shape of the surface of the thin film.  The red line indicate the original perturbation and the blue 

line indicate the shape after 900 iterations. 
 
 

7. Stressed rough surface with diffusion, and phase difference 
 
In experiments, quantum dots form by vapor depositing film material on the substrate. 
Any seemingly flat substrate is rough when looking at the atomic scale. Therefore, we 
would like to use simulate the quantum dot from a rough substrate.  We introduce random 
perturbation on the surface and use the same parameter as that of the previous simulation. 



 
Fig. 8. The shape of the surface of the thin film.  The red line indicate the original perturbation and the blue 

line indicate the shape after 500 iterations. 
 
From Fig. 8, the amplitude of the surface increase, resulting in formation of 6 dots. The 
dots still look very rough since this is still very early in the evolution.  Nevertheless, the 
simulation shows that the simulation of quantum dots is possible. 
 
We summarized the important contributions in each simulation in the table below. 
 

Runs Diffusion Stress Phase difference
1 Yes No No 
2 No Yes No 
3 Yes Yes No 
4 No No Yes 
5 Yes Yes (dominating) Yes 
6 Yes(dominating) Yes Yes 

7 (random Perturbation) Yes Yes (dominating) Yes 
Table 1. Summary of significant contribution in each simulation 

 
Summary 
 
We have employed the finite element method to study the contribution from the surface 
tension, the strain energy, and the bulk free energy as well as simulated quantum dot 
formation. With the surface tension dominating, the system will try to reduce the energy 
by reducing the surface area, which results in a flat surface.  The role of the strain energy 
is to promote an increase in the amplitude of modulation.  At the same time, the stress 
affects an evaporation rate, causing the surface to move downward.  In order to simulate 
the quantum dot formation, the downward movement is counterbalanced by the bulk 
energy term which promotes the formation the solid phase from the vapor phase.  We 
show that it is possible to simulate the quantum dot behavior although longer simulation 
time is needed. 
 
Future Work 



1) In our simulation we only study each parameter without making a connection to 
physical parameters.  It is very useful to employ non-dimensionalization scheme 
in order to better simulate experimental system. 

2) We could improve our time evolution scale by using an implicit method.  One 
efficient method is Runge-Kutta which is 4th-orderd accurate. 

3) Our program doesn’t have flexibility in eliminating note or adding node to 
properly represent the surface.  This adaptation scheme is useful when simulating 
for a long time. 

4) If there is electrical current going across the film, the currency-induced 
electromigration will change the shape of surface. Simulating surface change due 
to electromigration by using the combination of Abaqus and Matlab will be an 
interesting topic. This will help us understand the interaction effects among 
surface diffusion, elastic stressing and electrical current stressing. 

5) We could also look at the case where the surface energy is dependent on surface 
orientation.  This results in facets in which are present in many quantum dot 
systems. 
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