Due Wednesday, February 24, 2016

Instructions. Write up (in \LaTeX) and turn in all problems marked with an asterisks (*) at the beginning of class on the due date.

Theorem 1. \mathbb{Q} is dense in \mathbb{R} (i.e. $\overline{\mathbb{Q}} = \mathbb{R}$).

We will not prove this theorem, but you may assume it from here on out.

Exercise 1 (*). Prove that \mathbb{Q} is not locally compact. (The topology on \mathbb{Q} is the subspace topology coming from \mathbb{R} .)

Exercise 2. Let (X, d) be a metric space; let $A \subseteq X$ be nonempty.

- (a) Prove that d(x, A) = 0 if and only if $x \in \bar{A}$.
- (b) Show that if A is compact, d(x, A) = d(x, a) for some $a \in A$.
- (c) Prove that $B(A, \epsilon) = \bigcup_{a \in A} B(a, \epsilon)$.
- (d) Let $A \subseteq X$ be compact and let $U \subseteq X$ be open with $A \subseteq U$. Show that there exists $\epsilon > 0$ such that $B(A, \epsilon) \subseteq U$.
- (e) Show the result in (d) need not hold if A is closed but not compact.

Exercise 3. Prove that a connected metric space having more than one point is uncountable.

Exercise 4. Let (X,d) be a metric space. If $f: X \to X$ satisfies the condition

$$d(f(x), f(y)) = d(x, y)$$

for all $x, y \in X$, then f is called an *isometry* of X.

- (a) Prove that an isometry is a continuous injection.
- (b) Prove that an isometry $f: X \to X$ need not be surjective.
- (c) Prove that if X is compact and f is an isometry of X, then f is a homeomorphism.

Exercise 5 (*). Let (X, d) be a metric space. If $\alpha < 1$ is a real number and $f: X \to X$ satisfies

$$d(f(x), f(y)) \le \alpha d(x, y)$$

for all $x, y \in X$, then f is called a *contraction*. A *fixed point* of f is a point $x \in X$ such that f(x) = x. Prove that if X is compact and f is a contraction, then f has a unique fixed point.

HOMEOMORPHISM GROUPS

Definition 2. Let X be a topological space; let

$$\operatorname{Homeo}(X) = \{ f \colon X \to X \mid f \text{ is a homeomorphism} \}.$$

Homeo(X) is called the *homeomorphism group* of X. (You can easily check that it forms a group under function composition.) If C is a compact subspace of X and U is an open subset of X, define

$$S(C, U) = \{ f \in \text{Homeo}(X) \mid f(C) \subseteq U \}.$$

The sets S(C, U) form a subbasis for a topology on Homeo(X) called the *compact-open topology*.

- **Exercise 6** (*). (a) Recall that a compact Hausdorff space is normal. Prove that if $C \subset X$ is compact and $U \subset X$ is open such that $C \subset U$, then there exists an open set V containing C such that $\bar{V} \subset U$. (You may need this in (b).)
- (b) Prove that if X is compact and Hausdorff, then $\operatorname{Homeo}(X)$ equipped with the compactopen topology is a topological group. (For continuity arguments, recall Exercise 3 on $\operatorname{HW} 2$.)

Exercise 7. Let X be a compact Hausdorff space; let MCG(X) denote the collection of path components of Homeo(X). Given $f \in Homeo(X)$, let $C_f \in MCG(X)$ denote the path component of Homeo(X) containing f. We now define a binary operation on MCG(X) as follows: Given $C, C' \in MCG(X)$, write $C = C_f$ and $C' = C_g$ for some $f \in C$ and $g \in C'$. Define $C \cdot C' = C_{f \circ g}$.

- (a) Prove $m \colon \mathrm{MCG}(X) \times \mathrm{MCG}(X) \to \mathrm{MCG}(X)$ defined by $m(C, C') = C \cdot C'$ is well-defined, that is, it does not depend on the choose of f and g.
- (b) Prove that $(MCG(X), \cdot)$ is a group.
- (c) (Only if you are familiar with group theory) Let $\operatorname{Homeo}_0(X)$ be the path component of $\operatorname{Homeo}(X)$ containing the identity. Prove that

$$MCG(X) = Homeo(X)/Homeo_0(X)$$

(In a previous homework, you proved that $Homeo_0(X)$ is a topological group.)

Definition 3. The group MCG(X) is a called the *mapping class group*. It is a major object of study in mathematics. Many people, including myself, spend their time thinking about this group.

Exercise 8 (Extra credit). Let

$$\operatorname{Sym}(\mathbb{Z}_+) = \{ f \colon \mathbb{Z}_+ \to \mathbb{Z}_+ \mid f \text{ is a bijection} \}.$$

Equip \mathbb{Z}_+ with the subspace topology coming from \mathbb{R} . Let $\overline{\mathbb{Z}}_+$ be the one-point compactification of \mathbb{Z}_+ . Prove that $\operatorname{Homeo}(\overline{\mathbb{Z}}_+)$ is isomorphic to $\operatorname{Sym}(\mathbb{Z}_+)$ as groups, that is, there exists a bijection

$$\Phi \colon \operatorname{Homeo}(\bar{\mathbb{Z}}_+) \to \operatorname{Sym}(\mathbb{Z}_+)$$

satisfying $\Phi(fg) = \Phi(f)\Phi(g)$ for all $f, g \in \text{Homeo}(\bar{\mathbb{Z}}_+)$. (This came up in my research.)