Navigation


Journal

111. Roy, A. M., Guha, S., Sundararaghavan, V. and Arroyave, R., Physics-infused Deep Neural Network for Solution of Non-associative Drucker Prager Elastoplastic Model, Journal of the Mechanics and Physics of Solids, 2024 (in press).[PDF]

110. Duran, A.V., Ramazani, A. and Sundararaghavan, V., 2023. Multi-scale modeling of shock wave propagation in energetic solid-state composites, International Journal of Solids and Structures, Volume 285, 112535.[PDF]

109. Roy, A.M., Ganesan, S., Acar, P., Arroyave, R. and Sundararaghavan, V., 2024. Combining crystal plasticity and phase field model for predicting texture evolution and the influence of nuclei clustering on recrystallization path kinetics in Ti-alloys. Acta Materialia, 266, p.119645. [PDF].

108. Roy, A.M., Arroyave, R. and Sundararaghavan, V., 2023. Incorporating dynamic recrystallization into a crystal plasticity model for high-temperature deformation of Ti-6Al-4V. Materials Science and Engineering: A, p.145211.[PDF]

107. Sundararaghavan, V., Shah, M.N. and Simmons, J.P., 2023. Methodology for estimation of intrinsic dimensions and state variables of microstructures. Physical Review E, 108(3), p.035001.[PDF]

106. Andani, M.T., Sundararaghavan, V. and Misra, A., 2023. Novel Approach to Grain Boundary Modification in Stainless and Duplex Steel L-PBF Components through In Situ Heat Treatment. Crystals, 13(9), p.1314.[PDF]

105. Lakshmanan, A., Andani, M.T., Yaghoobi, M., Allison, J., Misra, A. and Sundararaghavan, V., 2023. A combined experimental and crystal plasticity study of grain size effects in magnesium alloys. Journal of Magnesium and Alloys, 11(12), pp.4445-4467. [PDF].

104. Srivastava, S. and Sundararaghavan, V., 2023. Generative and discriminative training of Boltzmann machine through quantum annealing. Scientific Reports, 13(1), p.7889. [PDF].

103. Singh, G., Varshney, V. and Sundararaghavan, V., 2023. Understanding Creep in Vitrimers: Insights from Molecular Dynamics Simulations. arXiv:2304.05518. [PDF].

102. Sundararaghavan, V., Shah, M.N. and Simmons, J.P., 2023. Towards Microstructural State Variables in Materials Systems. arXiv:2301.04261. [PDF].

101. Roy, A.M., Bose, R., Sundararaghavan, V. and Arroyave, R., 2023. Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity. Neural Networks, 162, pp.472-489. [PDF].

100. Sundararaghavan, V., Varshney, V. and Simone, D., 2023. Computational study of optical absorption spectra of helicenes as applied to strain sensing. arXiv:2303.03490. [PDF].

99. Chen, Z., Yaghoobi, M., Sundararaghavan, V., Allison, J. and Daly, S., 2022. The effects of microstructure on deformation twinning in Mg WE43. Materials Science and Engineering: A, 859, p.144189.[PDF].

98. Yaghoobi, M., Allison, J.E. and Sundararaghavan, V., 2022. PRISMS-Plasticity TM: An open-source rapid texture evolution analysis pipeline. Integrating Materials and Manufacturing Innovation, 11(4), pp.479-496. [PDF].

97. A Senthilnathan, I Javaheri, H Zhao, V Sundararaghavan, M De Graef, P Acar, Uncertainty Quantification of Metallic Microstructures Using Principal Image Moments, Computational Materials Science, Volume 215, 111775, 2022. [PDF].

96. Srivastava, S. and Sundararaghavan, V., 2022. Bandgap optimization in combinatorial graphs with tailored ground states: application in quantum annealing. Optimization and Engineering, pp.1-19. [PDF].

95. Lakshmanan, A., Yaghoobi, M., Stopka, K.S. and Sundararaghavan, V., 2022. Crystal plasticity finite element modeling of grain size and morphology effects on yield strength and extreme value fatigue response. Journal of Materials Research and Technology, 19, pp.3337-3354. [PDF].

94. Yaghoobi, M., Chen, Z., Murphy-Leonard, A.D., Sundararaghavan, V., Daly, S. and Allison, J.E., 2022. Deformation twinning and detwinning in extruded Mg-4Al: in-situ experiment and crystal plasticity simulation. International Journal of Plasticity, p.103345. [PDF].

93. Javaheri, I., Luo, J., Lakshmanan, A. and Sundararaghavan, V., 2022. Higher-Order Approximations for Stabilizing Zero-Energy Modes in Non-Ordinary State-Based Peridynamics Models. AIAA Journal, pp.1-17. [PDF].

92. Javaheri, I., Andani, M.T. and Sundararaghavan, V., 2022. Large-Scale Synthesis of Metal Additively-Manufactured Microstructures Using Markov Random Fields. Computational Materials Science, 206, p.111228. (Article named Editor's choice). [PDF].

91. Andani, M.T., Lakshmanan, A., Sundararaghavan, V., Allison, J. and Misra, A., 2021. Estimation of micro-Hall-Petch coefficients for prismatic slip system in Mg-4Al as a function of grain boundary parameters. Acta Materialia, p.117613. [PDF].

90. Yaghoobi, M., Chen, Z., Sundararaghavan, V., Daly, S. and Allison, J.E., Crystal Plasticity Finite Element Modeling of Extension Twinning in WE43 Mg Alloys: Calibration and Validation. Integrating Materials and Manufacturing Innovation, 10(3), pp.488-507, 2021. [PDF].

89. Singh, G., Waas, A.M. and Sundararaghavan, V., Understanding defect structures in nanoscale metal additive manufacturing via molecular dynamics. Computational Materials Science, 200, p.110807, 2021. [PDF].

88. F. Abdi, A. Eftekharian, D. Huang, R.B. Rebak, M. Rahmane, V. Sundararaghavan, A. Kanyuck, S. K. Gupta, S. Arul, V. Jain, Y. Hu, K. Nikbin, Grain Boundary Engineering of New Additive Manufactured Polycrystalline Alloys, Forces in Mechanics, vol 4, 100033, 2021.[PDF].

87. M Yaghoobi, G.Z. Voyiadjis , V. Sundararaghavan, Crystal Plasticity Simulation of Magnesium and Its Alloys: A Review of Recent Advances, Crystals, 11, 435, 2021 [PDF].

86. Ganesan, S., Javaheri, I. and Sundararaghavan, V., Constrained Voronoi models for interpreting surface microstructural measurements. Mechanics of Materials, 159, p.103892, 2021. [PDF].

85. Lakshmanan, A., Luo, J., Javaheri, I. and Sundararaghavan, V., 2021. Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison. International Journal of Plasticity, 142, p.102991. [PDF].

84. M. Yaghoobi, Stopka, K.S., Lakshmanan, A., Sundararaghavan, V., Allison, J.E. and McDowell, D.L., PRISMS-Fatigue computational framework for fatigue analysis in polycrystalline metals and alloys. npj Computational Materials, 7(1), pp.1-12, 2021. [PDF].

83. S Srivastava, V Sundararaghavan, Bandgap optimization in combinatorial graphs with tailored ground states: Application in Quantum annealing, arXiv:2102.00551, 2021.[PDF]

82. Ganesan, S., Yaghoobi, M., Githens, A., Chen, Z., Daly, S., Allison, J.E. and Sundararaghavan, V., The effects of heat treatment on the response of WE43 Mg alloy: crystal plasticity finite element simulation and SEM-DIC experiment. International Journal of Plasticity, 137, p.102917, 2021. [PDF].

81. Srivastava, S., Yaghoobi, M. and Sundararaghavan, V., A graph-theoretic approach for multiscale modeling and prediction of crack propagation in polycrystalline materials. Engineering Fracture Mechanics, 241, p.107406, 2021. [PDF].

80. Singh, G. and Sundararaghavan, V., Modeling self-healing behavior of vitrimers using molecular dynamics with dynamic cross-linking capability. Chemical Physics Letters, 760, p.137966, 2020. [PDF].

79. Andani, M.T., Lakshmanan, A., Sundararaghavan, V., Allison, J. and Misra, A., Quantitative study of the effect of grain boundary parameters on the slip system level Hall-Petch slope for basal slip system in Mg-4Al. Acta Materialia, 200, pp.148-161, 2020. [PDF].

78. S. Srivastava, V. Sundararaghavan, Machine learning in quantum computers via general boltzmann machines: generative and discriminative training through annealing, Arxiv (preprint) 2020 [PDF].

77. S. Sundar, V. Sundararaghavan, Database development and exploration of process-microstructure relationships using variational autoencoders, Materials Today Communications, Volume 25, 101201, 2020. [PDF].

76. M. T. Andani, A. Lakshmanan, J. E. Allison, V. Sundararaghavan, A. Misra, A quantitative study of stress fields ahead of a slip band blocked by a grain boundary in unalloyed magnesium, Scientific Reports, volume 10, Article: 3084 (2020) [PDF].

75. M. Yaghoobi, J. Allison, V. Sundararaghavan, Multiscale modeling of twinning and detwinning behavior of HCP polycrystals, International Journal of Plasticity, Volume 127, 102653, 2020 [PDF].

74. I. Javaheri, V Sundararaghavan, Polycrystalline Microstructure Reconstruction Using Markov Random Fields and Histogram Matching, Computer Aided Design, Volume 120, 102806 (2020) [PDF].

73. A. Githens, S. Ganesan, Z.Chen, J. Allison, V. Sundararaghavan, S. Daly, Characterizing Microscale Deformation Mechanisms and Macroscopic Tensile Properties of a High Strength Magnesium Rare-Earth Alloy: A Combined Experimental and Crystal Plasticity Approach, Acta Materialia , Vol 186, Pages 77-94, 2020 [PDF].

72. D Greeley, M Yaghoobi, D Pagan, V Sundararaghavan and J Allison, Using synchrotron radiation to improve understanding of deformation of polycrystalline metals by measuring, modelling and publishing 4D information, IOP Conf. Ser.: Mater. Sci. Eng. 580, p. 012017, 2019 [PDF].

71. S. Srivastava, V. Sundararaghavan. Graph Coloring Approach to Mesh Generation in Multiphase Media with Smooth Boundaries, AIAA Journal, Vol. 58, No. 1, 2020. [PDF].

70. M. Yaghoobi, S. Ganesan, S. Sundar, A. Lakshmanan, S. Rudraraju, J. E. Allison, V. Sundararaghavan, PRISMS-Plasticity: An open-source crystal plasticity finite element software, Computational Materials Science, 169, 109078 (2019). [PDF]

69. S. Srivastava, V. Sundararaghavan. Box algorithm for the solution of differential equations on a quantum annealer, Physical Review A, 99, 052355(1-10) (2019) [PDF][Keynote talk at PACAM].

68. A. Paul, P. Acar, W-K. Liao, A. Choudhary, V. Sundararaghavan, A. Agrawal, Microstructure Optimization with Constrained Design Objectives using Machine Learning-Based Feedback-Aware Data-Generation, Computational materials science, 160, pp. 334-351 (2019).[PDF]

67. E.L.S. Solomon, A R Natarajan, A M Roy, V Sundararaghavan, A. Van der Ven, E. A. Marquis, Stability and strain-driven evolution of beta prime precipitate in Mg-Y alloys, Acta Materialia, 166, 148-157 (2019). [PDF]

66. P. Acar, V. Sundararaghavan, Do Epistemic Uncertainties Allow for Replacing Microstructural Experiments with Reconstruction Algorithms?, AIAA Journal, 57(3), 1078-1091, (2019).[PDF]

65. N. Habibi, V. Sundararaghavan, U. Prahl and A. Ramazani,Experimental and Numerical Investigations into the Failure Mechanisms of TRIP700 Steel Sheets, Metals 8(12), 1073, (2018).[PDF]

64. L.K. Aagesen, J.F. Adams, J.E. Allison et al. PRISMS: An Integrated, Open-Source Framework for Accelerating Predictive Structural Materials Science, JOM, Volume 70, Issue 10, pp 2298-2314, (2018).[PDF]

63. A. Reihani, A. Soleimani, S. Kargar, V. Sundararaghavan, A. Ramazani, Graphyne Nanotubes: Materials with Ultralow Phonon Mean Free Path and Strong Optical Phonon Scattering for Thermoelectric Applications, J. Phys. Chem. C, 122 (39), pp 22688--22698, 2018.[PDF]

62. P. Acar, V. Sundararaghavan, Stochastic Design Optimization of Microstructural Features using Linear Programming for Robust Material Design, AIAA Journal,Vol. 57(1), 2019.[PDF]

61. P. Acar, V. Sundararaghavan, M De Graef, Computational modeling of crystallographic texture evolution over cubochoric space, Modelling and Simulation in Materials Science and Engineering 26 (6), 065012, 2018.[PDF]

60. P. Acar, V. Sundararaghavan, Reduced Order Modeling Approach for Materials Design with a Sequence of Processes, AIAA Journal, AIAA Journal, Vol. 56, No. 12 , pp. 5041-5044 (2018).[PDF]

59. J. Luo, V. Sundararaghavan, Stress point method for stabilizing zero energy modes in non ordinary state based peridynamics, International Journal of Solids and Structures Volume 150, Pages 197-207, 2018.[PDF]

58. S. Panwar, J.F. Adams, J.E. Allison, J.W. Jones, V. Sundararaghavan, A grain boundary interaction model for microstructurally short fatigue cracks, International Journal of Fatigue, Volume 113, Pages 401-406, 2018.[PDF]

57. A. Lakshmanan, S. Srivastava, A. Ramazani, V. Sundararaghavan, Thermal conductivity of pillared graphene-epoxy nanocomposites using molecular dynamics, Appl. Phys. Lett. 112, 151902 (2018).[PDF]

56. P. Acar, N. Fasanella, V. Sundararaghavan, Multi-Scale Optimization of Nanocomposites with Probabilistic Feature Descriptors, AIAA Journal, Vol. 56, No. 7 pp. 2936-2941. 2018.[PDF]

55. P. Acar, A. Ramazani, V. Sundararaghavan, Crystal Plasticity Modeling and Experimental Validation with an Orientation Distribution Function for Ti-7Al Alloy, Metals, 7(11), p.459, 2017.[PDF]

54. J. Luo, A. Ramazani, V. Sundararaghavan, Simulation of Micro-Scale Shear Bands Using Peridynamics with an Adaptive Dynamic Relaxation Method, International Journal of Solids and Structures, 130, pp.36-48, 2018.[PDF]

53. S. Panwar, V. Sundararaghavan, Dislocation theory-based cohesive model for microstructurally short fatigue crack growth, Materials Science and Engineering A, 708, pp. 395-404, 2017.[PDF]

52. A. Paul, P. Acar, R. Liu, W-K. Liao, A. Choudhary, V. Sundararaghavan, A. Agrawal, Data Sampling Schemes for Microstructure Design with Vibrational Tuning Constraints, AIAA Journal, Vol. 56, No. 3 (2018), pp. 1239-1250.[PDF]

51. S. Sun, A. Ramazani, V. Sundararaghavan, A hybrid multi-scale model of crystal plasticity for handling stress concentrations, Metals, 7(9), 345, 2017. [PDF]

50. A. Ramazani, A. Reihani, A. Soleimani, R. Larson, V. Sundararaghavan, Molecular Dynamics Study of Phonon Transport in Graphyne Nanotubes, Carbon, 123, p. 635-644, 2017.[PDF]

49. N. Habibi, A. Ramazani, V. Sundararaghavan and U. Prahl, Failure predictions of DP600 steel sheets using various uncoupled fracture criteria. Engineering Fracture Mechanics, Vol 190, pp 367-381, 2018.[PDF]

48. G. Moeini, A. Ramazani, S. Myslicki, V. Sundararaghavan, C. Koenke, Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation, Metals, 7(7), p. 265(1--13) ,2017.[PDF]

47. P. Acar, S. Srivastava, V. Sundararaghavan, Stochastic Design Optimization of Microstructures with Utilization of a Linear Solver, AIAA Journal, Vol. 55(9), pp. 3161-3168, 2017.[PDF]

46. V. Sundararaghavan, S. Srivastava, MicroFract: An Image based code for microstructural crack path prediction, SoftwareX, Volume 6, pp. 94-97, 2017.[Code Download] [PDF]

45. P. Acar, V. Sundararaghavan, Uncertainty Quantification of Microstructural Properties due to Experimental Variations, AIAA Journal, Vol. 55, No. 8 (2017), pp. 2824-2832.[PDF]

44. C. Heinrich, V. Sundararaghavan, A method to predict fatigue crack initiation in metals using dislocation dynamics, Corrosion reviews, 35 (4-5), pp. 325-341, 2017.[PDF]

43. A. Kumar, V. Sundararaghavan, Simulation of magnetostrictive properties of Galfenol under thermomechanical deformation, Finite Elements in Analysis and Design, v. 127, p.1-5, 2017.[PDF]

42. G. Moeini, A. Ramazani, V. Sundararaghavan, C. Koenke, Micromechanical modeling of fatigue behavior of DP steels, Materials Science and Engineering: A, Vol 689, pp. 89-95, 2017 [PDF]

41. P. Acar, V. Sundararaghavan, Uncertainty Quantification of Microstructural Properties due to Variability in Measured Pole Figures, Acta Materialia, v. 124, p. 100-108, 2017.[PDF]

40. P. Acar, V. Sundararaghavan, A Markov Random Field Approach for Modeling Spatio-Temporal Evolution of Microstructures, Modelling Simul. Mater. Sci. Eng. 24 (2016) 075005 (15pp)[PDF]

39. S. Panwar, S.Sun, V.Sundararaghavan, Modelling fatigue failure using variational multiscale method, Engineering Fracture Mechanics, 162, p. 290--308, 2016.[PDF]

38. P. Acar, V Sundararaghavan, A linear solution scheme for microstructure design with process constraints, AIAA Journal, 54(12), pp. 4022-4031 (2016).[PDF]

37. A.V. Duran, V Sundararaghavan, Modeling the mechanics of HMX detonation using Taylor Galerkin Scheme, Theoretical and Applied Mechanics Letters, 6(3), 2016, 143--147.[PDF]

36. N. Fasanella, V Sundararaghavan, Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites, JOM, 68(5), pp 1396-1410, 2016.[PDF]

35. A. Kumar, V. Sundararaghavan, M. DeGraef, L. Nguyen, A Markov Random Field Approach for Microstructure Synthesis, Modelling Simul. Mater. Sci. Eng. 24 035015(1-13), 2016 [PDF]

34. P. Acar, A. Vijayachandran, V. Sundararaghavan, A.M. Waas, Fiber Path Optimization of Symmetric Laminates with Cutouts for Thermal Buckling, Journal of Aircraft, Vol. 54, No. 1 (2017), pp. 54-61.[PDF].

33. P. Acar, V. Sundararaghavan, Utilization of a Linear Solver for Multiscale Design and Optimization of Microstructures, AIAA Journal, Vol. 54, No. 5 (2016), pp. 1751-1759. [PDF]..

32. S. Sun, V. Sundararaghavan, Modeling Crack Propagation in Polycrystalline Microstructure Using Variational Multiscale Method, Mathematical Problems in Engineering, Vol. 2016, Article ID 4715696, 14 pages, 2016. [PDF].

31. P. Acar, A. Vijayachandran, V. Sundararaghavan, A.M. Waas, M. Rassaian, Optimization of Spatially Varying Fiber Paths for a Symmetric Laminate with a Circular Cutout under Remote Uniaxial Tension, SAE Int. J Materials and Manufacturing, v.9 (2015-01-2609), 2015.[PDF].

30. N. Fasanella, V. Sundararaghavan, Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites, Modelling and Simulation in Materials Science, 23, 065003 (16pp) 2015. [PDF].

29. R. Liu, A. Kumar, Z. Chen, A. Agrawal, V. Sundararaghavan and A. Choudhary, A predictive machine learning approach for microstructure optimization and materials design, Nature Scientific Reports, 5(11551),2015 [PDF]..

28. V. Sundararaghavan, A. Kumar, S. Sun, Crystal plasticity simulations using nearest neighbor orientation correlation function, Acta Materialia, 93, p. 12-23, 2015 [PDF].

27. S. Ganesan, V. Sundararaghavan, An Atomistically-informed Energy Based Theory of Environmentally Assisted Failure, Corrosion Reviews, 33(6), p. 455-466, 2015. [PDF].

26. A.V. Duran, N.Fasanella, V. Sundararaghavan, A.M. Waas, Thermal buckling of composite plates with spatial varying fiber orientations, Composite structures, 124, p. 228--235, 2015. [PDF].

25. S. Sun and V. Sundararaghavan, A Peridynamic Implementation of Crystal Plasticity, International Journal of Solids and Structures, International Journal of Solids and Structures 51, p. 3350-3360, 2014. [PDF].

24. V. Sundararaghavan, Reconstruction of three-dimensional anisotropic microstructures from two-dimensional micrographs imaged on orthogonal planes, Integrating Materials and Manufacturing Innovation, 3:19, p.1-11, 2014. [PDF].

23. S. Ghosh, V. Sundararaghavan and A.M. Waas, "Construction of multi-dimensional isotropic kernels for nonlocal elasticity based on phonon dispersion data", Int J Solids and Structures, vol 51(2), 392-401, 2014. [PDF].

22. A. Kumar and V Sundararaghavan and A R Browning, Study of temperature dependence of thermal conductivity in cross-linked epoxies using molecular dynamics simulations with long range interactions, Modelling and Simulation in Materials Science and Engineering, 22(2), 025013 (pp.1-15),[PDF], 2014.

21. S. Ghosh, A. Kumar, V. Sundararaghavan, A. M. Waas, Non-local modeling of epoxy using an atomistically-informed kernel, International Journal of Solids and Structures, 50(19), pp. 2837-2845, [PDF], 2013.

20. A. Kumar and V. Sundararaghavan, Molecular dynamics simulations of compressive yielding in cross-linked epoxies in the context of Argon theory, Int Journal of Plasticity, 47, pp 111--125 [PDF], 2013.

19. S. Sun and V. Sundararaghavan, A probabilistic crystal plasticity model for modeling grain shape effects based on slip geometry, Acta Materialia, Vol 60, p. 5233-5244 [PDF], 2012.

18. V. Sundararaghavan and A. Kumar, "Probabilistic modeling of microstructure evolution using finite element representation of statistical correlation functions", Int J Plasticity, Vol 30-31, pp. 62-80, 2012.[PDF]..

17. V. Sundararaghavan and A. Waas, "Non-local continuum modeling of carbon nanotubes: physical interpretation of non-local kernels using atomistic simulations", Journal of Mechanics and Physics of Solids,Vol 59(6), pp. 1191-1203, 2011. [PDF].

16. A. Rangarajan, R. J. D'Mello, V. Sundararaghavan and A. M. Waas, Minimization of thermal expansion of symmetric, balanced, angle ply laminates by optimization of fiber path configurations, Composites Science and Technology, Vol. 71(8), pp. 1105-1109, 2011. [PDF].

15. S. Lee and V. Sundararaghavan, "Multi-scale modeling of moving interface problems with flux and field jumps: Application to oxidative degradation of ceramic matrix composites", Int J Numerical Methods in Engineering, Vol 85(6), pp. 784--804, 2011 [PDF].

14. V. Sundararaghavan and K Balasubramaniam, "On the conversion of multifrequency apparent conductivity data to actual conductivity gradients on peened samples", Journal of non destructive testing and evaluation, Vol 10(2), pp. 57--64, 2011 [PDF].

13. S. Lee and V. Sundararaghavan, "Calibration of Nanocrystal Grain Boundary Model Based on Polycrystal Plasticity Using Molecular Dynamics Simulations", Int J Multiscale Comput Engg, Vol 8(5), pp. 509-522, 2010. [PDF].

12. S. Lee and V. Sundararaghavan, "Multiscale modeling of moving interface problems with flux jumps: Application to solidification", Computational Mechanics, vol. 44(3), pp. 297-307, 2009. [PDF].

11. V. Sundararaghavan and N. Zabaras, "A statistical learning approach for the design of polycrystalline materials", Statistical Analysis and Data Mining, Vol. 1, Issue 5, pp. 306--321, 2009 (invited paper for the special issue on `Materials Informatics: Data-Driven Discovery in Materials Science', Krishna Rajan and Patricio Mendez, edts.). [PDF].

10. V. Sundararaghavan and N. Zabaras, "A multi-length scale sensitivity analysis for the control of texture-dependent properties in deformation processing", International Journal of Plasticity, Vol. 24, pp. 1581-1605, 2008 [PDF]

9. V. Sundararaghavan and N. Zabaras, "Weighted multi-body expansions for computing stable structures of multi-atom systems", Physical Review B,  Vol. 77 (6) pp. 064101-1--064101-10, 2008.[PDF]

8. V. Sundararaghavan and N. Zabaras, "Linear analysis of texture-property relationships using process-based representations of Rodrigues space" Acta Materialia, Vol. 55, Issue 5, pp. 1573-1587, 2007.[PDF]

7. V. Sundararaghavan and N. Zabaras, "Design of microstructure-sensitive properties in elasto-viscoplastic polycrystals using multi-scale homogenization" International Journal of Plasticity, Vol. 22, pp. 1799-1824, 2006.(Figured in TOP25 articles in ScienceDirect)[PDF]

6. N. Zabaras, V. Sundararaghavan, S Sankaran, "An information theoretic approach for obtaining property PDFs from macro specifications of microstructural uncertainty" TMS letters, Vol 3 , Issue 1, pp.1, 2006.[PDF]

5. V. Sundararaghavan and N. Zabaras, "On the synergy between texture classification and deformation process sequence selection for the control of texture-dependent properties" Acta Materialia, Vol. 53(4), pp.1015-1027, 2005.[PDF]

4. V. Sundararaghavan, N. Zabaras, "Classification and reconstruction of three-dimensional microstructures using support vector machines", Computational Materials Science, Vol. 32, pp. 223-239, 2005.[PDF]

3. V. Sundararaghavan, K. Balasubramaniam, NR. Babu, N. Rajesh," A multi-frequency eddy current inversion method for characterizing conductivity gradients on water jet peened components."  NDT&E International Journal. Vol. 38(7), 541-547, 2005. (Figured in TOP25 articles in ScienceDirect) [PDF]

2. V. Sundararaghavan, N. Zabaras, "A dynamic material library for the representation of single phase polyhedral microstructures", Acta Materialia, Vol. 52/14, pp. 4111-4119, 2004.[PDF]

1. N. Rajesh, V Sundararaghavan, NR. Babu, A novel method for modeling water jet peening, International Journal for Machine tools and Manufacture, International Journal of Machine Tools and Manufacture, Vol 44(7-8), 855-863, 2004.[PDF]

Thesis

V. Sundararaghavan,  "Multi-scale Computational Techniques for Design of Polycrystalline Materials", Ph.D. Dissertation (defended on May 18, 2007), Sibley School of Mechanical and Aerospace Engineering, Cornell University, August 2007.[ Materials Process Design and Control Laboratory]. [PhD Thesis]

Sangmin Lee, "Multi-scale Homogenization of Moving Interface Problems with Flux and Field Jumps", PhD (Mechanical Engineering), University of Michigan, 2011. [PDF]

Shang Sun, Multiscale modeling of fracture in polycrystalline materials, PhD (Naval Architecture and Marine Engineering), University of Michigan, May 2014.[PDF]

Abhishek Kumar, Probabilistic Modeling of Polycrystalline Alloys for Optimized Properties, PhD (Aerospace Engineering), University of Michigan, July 2014.[PDF]

Nicholas Fasanella, Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites, PhD (Aerospace Engineering), University of Michigan, May 2016.[PDF]

Adam Duran, Multiscale Modeling of Shock Wave Propagation through High Energetic Composites, PhD (Aerospace Engineering), University of Michigan, 2017.[PDF]

Sriram Ganesan, Microstructural Response of Magnesium Alloys: 3D Crystal Plasticity and Experimental Validation, PhD (Aerospace Engineering), University of Michigan, 2017.[PDF]

Pinar Acar, Multi-Scale Design and Optimization of Microstructures under Uncertainties, PhD (Aerospace Engineering), University of Michigan, 2017.[PDF]

Shardul Panwar, Numerical and Analytical Multiscale Modeling of High Cycle Fatigue in Advanced Materials, PhD (Aerospace Engineering), University of Michigan, 2018.[PDF]

Jiangyi Luo, Peridynamic Modeling of Crystal Plasticity withan Adaptive Dynamic Relaxation Solver, PhD (Mechanical Engineering), University of Michigan, 2019.[PDF]

Siddhartha Srivastava, Graph Theoretic Algorithms Adaptable to Quantum Computing, PhD (Aerospace Engineering), University of Michigan, 2020.[PDF]

Aaditya Lakshmanan, Crystal Plasticity Constitutive Modeling of Grain Size-Texture Coupling with Application to Mg-4Al, PhD (Aerospace Engineering), University of Michigan, 2021.[PDF]

Gurmeet Singh, Computational Studies of Vitrimers, Semicrystalline Polymers and Metals: Deformation, Actuation and Fabrication, PhD (Aerospace Engineering), University of Michigan, 2023.[PDF]

Iman Javaheri, Advancing Graph-Theoretic Techniques for Microstructure Reconstructions, Evolutions, and Property Evaluations, PhD (Aerospace Engineering), University of Michigan, 2023.[PDF]