92. Javaheri, I., Andani, M.T. and Sundararaghavan, V., Large-Scale Synthesis of Metal Additively-Manufactured Microstructures Using Markov Random Fields. Computational materials science, in press, 2021 (Article named Editor's choice). [PDF].

91. Andani, M.T., Lakshmanan, A., Sundararaghavan, V., Allison, J. and Misra, A., 2021. Estimation of micro-Hall-Petch coefficients for prismatic slip system in Mg-4Al as a function of grain boundary parameters. Acta Materialia, p.117613. [PDF].

90. Yaghoobi, M., Chen, Z., Sundararaghavan, V., Daly, S. and Allison, J.E., Crystal Plasticity Finite Element Modeling of Extension Twinning in WE43 Mg Alloys: Calibration and Validation. Integrating Materials and Manufacturing Innovation, 10(3), pp.488-507, 2021. [PDF].

89. Singh, G., Waas, A.M. and Sundararaghavan, V., Understanding defect structures in nanoscale metal additive manufacturing via molecular dynamics. Computational Materials Science, 200, p.110807, 2021. [PDF].

88. F. Abdi, A. Eftekharian, D. Huang, R.B. Rebak, M. Rahmane, V. Sundararaghavan, A. Kanyuck, S. K. Gupta, S. Arul, V. Jain, Y. Hu, K. Nikbin, Grain Boundary Engineering of New Additive Manufactured Polycrystalline Alloys, Forces in Mechanics, vol 4, 100033, 2021.[PDF].

87. M Yaghoobi, G.Z. Voyiadjis , V. Sundararaghavan, Crystal Plasticity Simulation of Magnesium and Its Alloys: A Review of Recent Advances, Crystals, 11, 435, 2021 [PDF].

86. Ganesan, S., Javaheri, I. and Sundararaghavan, V., Constrained Voronoi models for interpreting surface microstructural measurements. Mechanics of Materials, 159, p.103892, 2021. [PDF].

85. Lakshmanan, A., Luo, J., Javaheri, I. and Sundararaghavan, V., 2021. Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison. International Journal of Plasticity, 142, p.102991. [PDF].

84. M. Yaghoobi, Stopka, K.S., Lakshmanan, A., Sundararaghavan, V., Allison, J.E. and McDowell, D.L., PRISMS-Fatigue computational framework for fatigue analysis in polycrystalline metals and alloys. npj Computational Materials, 7(1), pp.1-12, 2021. [PDF].

83. S Srivastava, V Sundararaghavan, Bandgap optimization in combinatorial graphs with tailored ground states: Application in Quantum annealing, arXiv:2102.00551, 2021.[PDF]

82. Ganesan, S., Yaghoobi, M., Githens, A., Chen, Z., Daly, S., Allison, J.E. and Sundararaghavan, V., The effects of heat treatment on the response of WE43 Mg alloy: crystal plasticity finite element simulation and SEM-DIC experiment. International Journal of Plasticity, 137, p.102917, 2021. [PDF].

81. Srivastava, S., Yaghoobi, M. and Sundararaghavan, V., A graph-theoretic approach for multiscale modeling and prediction of crack propagation in polycrystalline materials. Engineering Fracture Mechanics, 241, p.107406, 2021. [PDF].

80. Singh, G. and Sundararaghavan, V., Modeling self-healing behavior of vitrimers using molecular dynamics with dynamic cross-linking capability. Chemical Physics Letters, 760, p.137966, 2020. [PDF].

79. Andani, M.T., Lakshmanan, A., Sundararaghavan, V., Allison, J. and Misra, A., Quantitative study of the effect of grain boundary parameters on the slip system level Hall-Petch slope for basal slip system in Mg-4Al. Acta Materialia, 200, pp.148-161, 2020. [PDF].

78. S. Srivastava, V. Sundararaghavan, Machine learning in quantum computers via general boltzmann machines: generative and discriminative training through annealing, Arxiv (preprint) 2020 [PDF].

77. S. Sundar, V. Sundararaghavan, Database development and exploration of process-microstructure relationships using variational autoencoders, Materials Today Communications, Volume 25, 101201, 2020. [PDF].

76. M. T. Andani, A. Lakshmanan, J. E. Allison, V. Sundararaghavan, A. Misra, A quantitative study of stress fields ahead of a slip band blocked by a grain boundary in unalloyed magnesium, Scientific Reports, volume 10, Article: 3084 (2020) [PDF].

75. M. Yaghoobi, J. Allison, V. Sundararaghavan, Multiscale modeling of twinning and detwinning behavior of HCP polycrystals, International Journal of Plasticity, Volume 127, 102653, 2020 [PDF].

74. I. Javaheri, V Sundararaghavan, Polycrystalline Microstructure Reconstruction Using Markov Random Fields and Histogram Matching, Computer Aided Design, Volume 120, 102806 (2020) [PDF].

73. A. Githens, S. Ganesan, Z.Chen, J. Allison, V. Sundararaghavan, S. Daly, Characterizing Microscale Deformation Mechanisms and Macroscopic Tensile Properties of a High Strength Magnesium Rare-Earth Alloy: A Combined Experimental and Crystal Plasticity Approach, Acta Materialia , Vol 186, Pages 77-94, 2020 [PDF].

72. D Greeley, M Yaghoobi, D Pagan, V Sundararaghavan and J Allison, Using synchrotron radiation to improve understanding of deformation of polycrystalline metals by measuring, modelling and publishing 4D information, IOP Conf. Ser.: Mater. Sci. Eng. 580, p. 012017, 2019 [PDF].

71. S. Srivastava, V. Sundararaghavan. Graph Coloring Approach to Mesh Generation in Multiphase Media with Smooth Boundaries, AIAA Journal, Vol. 58, No. 1, 2020. [PDF].

70. M. Yaghoobi, S. Ganesan, S. Sundar, A. Lakshmanan, S. Rudraraju, J. E. Allison, V. Sundararaghavan, PRISMS-Plasticity: An open-source crystal plasticity finite element software, Computational Materials Science, 169, 109078 (2019). [PDF]

69. S. Srivastava, V. Sundararaghavan. Box algorithm for the solution of differential equations on a quantum annealer, Physical Review A, 99, 052355(1-10) (2019) [PDF][Keynote talk at PACAM].

68. A. Paul, P. Acar, W-K. Liao, A. Choudhary, V. Sundararaghavan, A. Agrawal, Microstructure Optimization with Constrained Design Objectives using Machine Learning-Based Feedback-Aware Data-Generation, Computational materials science, 160, pp. 334-351 (2019).[PDF]

67. E.L.S. Solomon, A R Natarajan, A M Roy, V Sundararaghavan, A. Van der Ven, E. A. Marquis, Stability and strain-driven evolution of beta prime precipitate in Mg-Y alloys, Acta Materialia, 166, 148-157 (2019). [PDF]

66. P. Acar, V. Sundararaghavan, Do Epistemic Uncertainties Allow for Replacing Microstructural Experiments with Reconstruction Algorithms?, AIAA Journal, 57(3), 1078-1091, (2019).[PDF]

65. N. Habibi, V. Sundararaghavan, U. Prahl and A. Ramazani,Experimental and Numerical Investigations into the Failure Mechanisms of TRIP700 Steel Sheets, Metals 8(12), 1073, (2018).[PDF]

64. L.K. Aagesen, J.F. Adams, J.E. Allison et al. PRISMS: An Integrated, Open-Source Framework for Accelerating Predictive Structural Materials Science, JOM, Volume 70, Issue 10, pp 2298-2314, (2018).[PDF]

63. A. Reihani, A. Soleimani, S. Kargar, V. Sundararaghavan, A. Ramazani, Graphyne Nanotubes: Materials with Ultralow Phonon Mean Free Path and Strong Optical Phonon Scattering for Thermoelectric Applications, J. Phys. Chem. C, 122 (39), pp 22688--22698, 2018.[PDF]

62. P. Acar, V. Sundararaghavan, Stochastic Design Optimization of Microstructural Features using Linear Programming for Robust Material Design, AIAA Journal,Vol. 57(1), 2019.[PDF]

61. P. Acar, V. Sundararaghavan, M De Graef, Computational modeling of crystallographic texture evolution over cubochoric space, Modelling and Simulation in Materials Science and Engineering 26 (6), 065012, 2018.[PDF]

60. P. Acar, V. Sundararaghavan, Reduced Order Modeling Approach for Materials Design with a Sequence of Processes, AIAA Journal, AIAA Journal, Vol. 56, No. 12 , pp. 5041-5044 (2018).[PDF]

59. J. Luo, V. Sundararaghavan, Stress point method for stabilizing zero energy modes in non ordinary state based peridynamics, International Journal of Solids and Structures Volume 150, Pages 197-207, 2018.[PDF]

58. S. Panwar, J.F. Adams, J.E. Allison, J.W. Jones, V. Sundararaghavan, A grain boundary interaction model for microstructurally short fatigue cracks, International Journal of Fatigue, Volume 113, Pages 401-406, 2018.[PDF]

57. A. Lakshmanan, S. Srivastava, A. Ramazani, V. Sundararaghavan, Thermal conductivity of pillared graphene-epoxy nanocomposites using molecular dynamics, Appl. Phys. Lett. 112, 151902 (2018).[PDF]

56. P. Acar, N. Fasanella, V. Sundararaghavan, Multi-Scale Optimization of Nanocomposites with Probabilistic Feature Descriptors, AIAA Journal, Vol. 56, No. 7 pp. 2936-2941. 2018.[PDF]

55. P. Acar, A. Ramazani, V. Sundararaghavan, Crystal Plasticity Modeling and Experimental Validation with an Orientation Distribution Function for Ti-7Al Alloy, Metals, 7(11), p.459, 2017.[PDF]

54. J. Luo, A. Ramazani, V. Sundararaghavan, Simulation of Micro-Scale Shear Bands Using Peridynamics with an Adaptive Dynamic Relaxation Method, International Journal of Solids and Structures, 130, pp.36-48, 2018.[PDF]

53. S. Panwar, V. Sundararaghavan, Dislocation theory-based cohesive model for microstructurally short fatigue crack growth, Materials Science and Engineering A, 708, pp. 395-404, 2017.[PDF]

52. A. Paul, P. Acar, R. Liu, W-K. Liao, A. Choudhary, V. Sundararaghavan, A. Agrawal, Data Sampling Schemes for Microstructure Design with Vibrational Tuning Constraints, AIAA Journal, Vol. 56, No. 3 (2018), pp. 1239-1250.[PDF]

51. S. Sun, A. Ramazani, V. Sundararaghavan, A hybrid multi-scale model of crystal plasticity for handling stress concentrations, Metals, 7(9), 345, 2017. [PDF]

50. A. Ramazani, A. Reihani, A. Soleimani, R. Larson, V. Sundararaghavan, Molecular Dynamics Study of Phonon Transport in Graphyne Nanotubes, Carbon, 123, p. 635-644, 2017.[PDF]

49. N. Habibi, A. Ramazani, V. Sundararaghavan and U. Prahl, Failure predictions of DP600 steel sheets using various uncoupled fracture criteria. Engineering Fracture Mechanics, Vol 190, pp 367-381, 2018.[PDF]

48. G. Moeini, A. Ramazani, S. Myslicki, V. Sundararaghavan, C. Koenke, Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation, Metals, 7(7), p. 265(1--13) ,2017.[PDF]

47. P. Acar, S. Srivastava, V. Sundararaghavan, Stochastic Design Optimization of Microstructures with Utilization of a Linear Solver, AIAA Journal, Vol. 55(9), pp. 3161-3168, 2017.[PDF]

46. V. Sundararaghavan, S. Srivastava, MicroFract: An Image based code for microstructural crack path prediction, SoftwareX, Volume 6, pp. 94-97, 2017.[Code Download] [PDF]

45. P. Acar, V. Sundararaghavan, Uncertainty Quantification of Microstructural Properties due to Experimental Variations, AIAA Journal, Vol. 55, No. 8 (2017), pp. 2824-2832.[PDF]

44. C. Heinrich, V. Sundararaghavan, A method to predict fatigue crack initiation in metals using dislocation dynamics, Corrosion reviews, 35 (4-5), pp. 325-341, 2017.[PDF]

43. A. Kumar, V. Sundararaghavan, Simulation of magnetostrictive properties of Galfenol under thermomechanical deformation, Finite Elements in Analysis and Design, v. 127, p.1-5, 2017.[PDF]

42. G. Moeini, A. Ramazani, V. Sundararaghavan, C. Koenke, Micromechanical modeling of fatigue behavior of DP steels, Materials Science and Engineering: A, Vol 689, pp. 89-95, 2017 [PDF]

41. P. Acar, V. Sundararaghavan, Uncertainty Quantification of Microstructural Properties due to Variability in Measured Pole Figures, Acta Materialia, v. 124, p. 100-108, 2017.[PDF]

40. P. Acar, V. Sundararaghavan, A Markov Random Field Approach for Modeling Spatio-Temporal Evolution of Microstructures, Modelling Simul. Mater. Sci. Eng. 24 (2016) 075005 (15pp)[PDF]

39. S. Panwar, S.Sun, V.Sundararaghavan, Modelling fatigue failure using variational multiscale method, Engineering Fracture Mechanics, 162, p. 290--308, 2016.[PDF]

38. P. Acar, V Sundararaghavan, A linear solution scheme for microstructure design with process constraints, AIAA Journal, 54(12), pp. 4022-4031 (2016).[PDF]

37. A.V. Duran, V Sundararaghavan, Modeling the mechanics of HMX detonation using Taylor Galerkin Scheme, Theoretical and Applied Mechanics Letters, 6(3), 2016, 143--147.[PDF]

36. N. Fasanella, V Sundararaghavan, Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites, JOM, 68(5), pp 1396-1410, 2016.[PDF]

35. A. Kumar, V. Sundararaghavan, M. DeGraef, L. Nguyen, A Markov Random Field Approach for Microstructure Synthesis, Modelling Simul. Mater. Sci. Eng. 24 035015(1-13), 2016 [PDF]

34. P. Acar, A. Vijayachandran, V. Sundararaghavan, A.M. Waas, Fiber Path Optimization of Symmetric Laminates with Cutouts for Thermal Buckling, Journal of Aircraft, Vol. 54, No. 1 (2017), pp. 54-61.[PDF].

33. P. Acar, V. Sundararaghavan, Utilization of a Linear Solver for Multiscale Design and Optimization of Microstructures, AIAA Journal, Vol. 54, No. 5 (2016), pp. 1751-1759. [PDF]..

32. S. Sun, V. Sundararaghavan, Modeling Crack Propagation in Polycrystalline Microstructure Using Variational Multiscale Method, Mathematical Problems in Engineering, Vol. 2016, Article ID 4715696, 14 pages, 2016. [PDF].

31. P. Acar, A. Vijayachandran, V. Sundararaghavan, A.M. Waas, M. Rassaian, Optimization of Spatially Varying Fiber Paths for a Symmetric Laminate with a Circular Cutout under Remote Uniaxial Tension, SAE Int. J Materials and Manufacturing, v.9 (2015-01-2609), 2015.[PDF].

30. N. Fasanella, V. Sundararaghavan, Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites, Modelling and Simulation in Materials Science, 23, 065003 (16pp) 2015. [PDF].

29. R. Liu, A. Kumar, Z. Chen, A. Agrawal, V. Sundararaghavan and A. Choudhary, A predictive machine learning approach for microstructure optimization and materials design, Nature Scientific Reports, 5(11551),2015 [PDF]..

28. V. Sundararaghavan, A. Kumar, S. Sun, Crystal plasticity simulations using nearest neighbor orientation correlation function, Acta Materialia, 93, p. 12-23, 2015 [PDF].

27. S. Ganesan, V. Sundararaghavan, An Atomistically-informed Energy Based Theory of Environmentally Assisted Failure, Corrosion Reviews, 33(6), p. 455-466, 2015. [PDF].

26. A.V. Duran, N.Fasanella, V. Sundararaghavan, A.M. Waas, Thermal buckling of composite plates with spatial varying fiber orientations, Composite structures, 124, p. 228--235, 2015. [PDF].

25. S. Sun and V. Sundararaghavan, A Peridynamic Implementation of Crystal Plasticity, International Journal of Solids and Structures, International Journal of Solids and Structures 51, p. 3350-3360, 2014. [PDF].

24. V. Sundararaghavan, Reconstruction of three-dimensional anisotropic microstructures from two-dimensional micrographs imaged on orthogonal planes, Integrating Materials and Manufacturing Innovation, 3:19, p.1-11, 2014. [PDF].

23. S. Ghosh, V. Sundararaghavan and A.M. Waas, "Construction of multi-dimensional isotropic kernels for nonlocal elasticity based on phonon dispersion data", Int J Solids and Structures, vol 51(2), 392-401, 2014. [PDF].

22. A. Kumar and V Sundararaghavan and A R Browning, Study of temperature dependence of thermal conductivity in cross-linked epoxies using molecular dynamics simulations with long range interactions, Modelling and Simulation in Materials Science and Engineering, 22(2), 025013 (pp.1-15),[PDF], 2014.

21. S. Ghosh, A. Kumar, V. Sundararaghavan, A. M. Waas, Non-local modeling of epoxy using an atomistically-informed kernel, International Journal of Solids and Structures, 50(19), pp. 2837-2845, [PDF], 2013.

20. A. Kumar and V. Sundararaghavan, Molecular dynamics simulations of compressive yielding in cross-linked epoxies in the context of Argon theory, Int Journal of Plasticity, 47, pp 111--125 [PDF], 2013.

19. S. Sun and V. Sundararaghavan, A probabilistic crystal plasticity model for modeling grain shape effects based on slip geometry, Acta Materialia, Vol 60, p. 5233-5244 [PDF], 2012.

18. V. Sundararaghavan and A. Kumar, "Probabilistic modeling of microstructure evolution using finite element representation of statistical correlation functions", Int J Plasticity, Vol 30-31, pp. 62-80, 2012.[PDF]..

17. V. Sundararaghavan and A. Waas, "Non-local continuum modeling of carbon nanotubes: physical interpretation of non-local kernels using atomistic simulations", Journal of Mechanics and Physics of Solids,Vol 59(6), pp. 1191-1203, 2011. [PDF].

16. A. Rangarajan, R. J. D'Mello, V. Sundararaghavan and A. M. Waas, Minimization of thermal expansion of symmetric, balanced, angle ply laminates by optimization of fiber path configurations, Composites Science and Technology, Vol. 71(8), pp. 1105-1109, 2011. [PDF].

15. S. Lee and V. Sundararaghavan, "Multi-scale modeling of moving interface problems with flux and field jumps: Application to oxidative degradation of ceramic matrix composites", Int J Numerical Methods in Engineering, Vol 85(6), pp. 784--804, 2011 [PDF].

14. V. Sundararaghavan and K Balasubramaniam, "On the conversion of multifrequency apparent conductivity data to actual conductivity gradients on peened samples", Journal of non destructive testing and evaluation, Vol 10(2), pp. 57--64, 2011 [PDF].

13. S. Lee and V. Sundararaghavan, "Calibration of Nanocrystal Grain Boundary Model Based on Polycrystal Plasticity Using Molecular Dynamics Simulations", Int J Multiscale Comput Engg, Vol 8(5), pp. 509-522, 2010. [PDF].

12. S. Lee and V. Sundararaghavan, "Multiscale modeling of moving interface problems with flux jumps: Application to solidification", Computational Mechanics, vol. 44(3), pp. 297-307, 2009. [PDF].

11. V. Sundararaghavan and N. Zabaras, "A statistical learning approach for the design of polycrystalline materials", Statistical Analysis and Data Mining, Vol. 1, Issue 5, pp. 306--321, 2009 (invited paper for the special issue on `Materials Informatics: Data-Driven Discovery in Materials Science', Krishna Rajan and Patricio Mendez, edts.). [PDF].

10. V. Sundararaghavan and N. Zabaras, "A multi-length scale sensitivity analysis for the control of texture-dependent properties in deformation processing", International Journal of Plasticity, Vol. 24, pp. 1581-1605, 2008 [PDF]

9. V. Sundararaghavan and N. Zabaras, "Weighted multi-body expansions for computing stable structures of multi-atom systems", Physical Review B,  Vol. 77 (6) pp. 064101-1--064101-10, 2008.[PDF]

8. V. Sundararaghavan and N. Zabaras, "Linear analysis of texture-property relationships using process-based representations of Rodrigues space" Acta Materialia, Vol. 55, Issue 5, pp. 1573-1587, 2007.[PDF]

7. V. Sundararaghavan and N. Zabaras, "Design of microstructure-sensitive properties in elasto-viscoplastic polycrystals using multi-scale homogenization" International Journal of Plasticity, Vol. 22, pp. 1799-1824, 2006.(Figured in TOP25 articles in ScienceDirect)[PDF]

6. N. Zabaras, V. Sundararaghavan, S Sankaran, "An information theoretic approach for obtaining property PDFs from macro specifications of microstructural uncertainty" TMS letters, Vol 3 , Issue 1, pp.1, 2006.[PDF]

5. V. Sundararaghavan and N. Zabaras, "On the synergy between texture classification and deformation process sequence selection for the control of texture-dependent properties" Acta Materialia, Vol. 53(4), pp.1015-1027, 2005.[PDF]

4. V. Sundararaghavan, N. Zabaras, "Classification and reconstruction of three-dimensional microstructures using support vector machines", Computational Materials Science, Vol. 32, pp. 223-239, 2005.[PDF]

3. V. Sundararaghavan, K. Balasubramaniam, NR. Babu, N. Rajesh," A multi-frequency eddy current inversion method for characterizing conductivity gradients on water jet peened components."  NDT&E International Journal. Vol. 38(7), 541-547, 2005. (Figured in TOP25 articles in ScienceDirect) [PDF]

2. V. Sundararaghavan, N. Zabaras, "A dynamic material library for the representation of single phase polyhedral microstructures", Acta Materialia, Vol. 52/14, pp. 4111-4119, 2004.[PDF]

1. N. Rajesh, V Sundararaghavan, NR. Babu, A novel method for modeling water jet peening, International Journal for Machine tools and Manufacture, International Journal of Machine Tools and Manufacture, Vol 44(7-8), 855-863, 2004.[PDF]


V. Sundararaghavan,  "Multi-scale Computational Techniques for Design of Polycrystalline Materials", Ph.D. Dissertation (defended on May 18, 2007), Sibley School of Mechanical and Aerospace Engineering, Cornell University, August 2007.[ Materials Process Design and Control Laboratory]. [PhD Thesis]

Sangmin Lee, "Multi-scale Homogenization of Moving Interface Problems with Flux and Field Jumps", PhD (Mechanical Engineering), University of Michigan, 2011. [PDF]

Shang Sun, Multiscale modeling of fracture in polycrystalline materials, PhD (Naval Architecture and Marine Engineering), University of Michigan, May 2014.[PDF]

Abhishek Kumar, Probabilistic Modeling of Polycrystalline Alloys for Optimized Properties, PhD (Aerospace Engineering), University of Michigan, July 2014.[PDF]

Nicholas Fasanella, Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites, PhD (Aerospace Engineering), University of Michigan, May 2016.[PDF]

Adam Duran, Multiscale Modeling of Shock Wave Propagation through High Energetic Composites, PhD (Aerospace Engineering), University of Michigan, 2017.[PDF]

Sriram Ganesan, Microstructural Response of Magnesium Alloys: 3D Crystal Plasticity and Experimental Validation, PhD (Aerospace Engineering), University of Michigan, 2017.[PDF]

Pinar Acar, Multi-Scale Design and Optimization of Microstructures under Uncertainties, PhD (Aerospace Engineering), University of Michigan, 2017.[PDF]

Shardul Panwar, Numerical and Analytical Multiscale Modeling of High Cycle Fatigue in Advanced Materials, PhD (Aerospace Engineering), University of Michigan, 2018.[PDF]

Jiangyi Luo, Peridynamic Modeling of Crystal Plasticity withan Adaptive Dynamic Relaxation Solver, PhD (Mechanical Engineering), University of Michigan, 2019.[PDF]

Siddhartha Srivastava, Graph Theoretic Algorithms Adaptable to Quantum Computing, PhD (Aerospace Engineering), University of Michigan, 2020.[PDF]

Aaditya Lakshmanan, Crystal Plasticity Constitutive Modeling of Grain Size-Texture Coupling with Application to Mg-4Al, PhD (Aerospace Engineering), University of Michigan, 2021.[PDF]