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Abstract
A mixed-integer linear programming (MILP) formulation is presented for param-
eter estimation of the Potts model. Two algorithms are developed; the first method 
estimates the parameters such that the set of ground states replicate the user-pre-
scribed data set; the second method allows the user to prescribe the ground states 
multiplicity. In both instances, the optimization process ensures that the bandgap is 
maximized. Consequently, the model parameter efficiently describes the user data 
for a broad range of temperatures. This is useful in the development of energy-based 
graph models to be simulated on Quantum annealing hardware where the exact sim-
ulation temperature is unknown. Computationally, the memory requirement in this 
method grows exponentially with the graph size. Therefore, this method can only 
be practically applied to small graphs. Such applications include learning of small 
generative classifiers and spin-lattice model with energy described by Ising hamilto-
nian. Learning large data sets poses no extra cost to this method; however, applica-
tions involving the learning of high dimensional data are out of scope.

Keywords Potts model · Ising model · Parameter estimation · Mixed integer linear 
programming · Boltzmann machines
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�  Set of parameters for potts model
S  A state of the graph
ΔE  Band gap
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C  Set of graph’s connection
S  Set of all possible states
SD  Set of the data states
S
�

E
  Set of all Excited states

S
�

G
  Set of all Ground states

V  Set of graph’s vertices
E  Potts Energy
E0  Energy of ground state
E1  Energy of 1st excited state
G  Simple undirected weighted Graph
NC  Number of graph connections
NDS  Number of data states
NES  Number of excited states
NGS  Number of ground states
NL  Number of labels
NTS  Number of total states
NV  Number of graph vertices
p(S)  Probability of a state, S
si  Label of Vertex with index i
vi  Vertex with index i

1 Introduction

Potts energy model was initially developed to describe interacting spins on a crystal-
line lattice. Since then, it has become an archetypal model in other fields involving 
operations research, network theory, and physics of phase transition. The motion of 
biological cells was described by Graner and Glazier (1992) using a large-Q Potts 
model. A similar approach was used in Miodownik (2007) to study grain bound-
ary motion in polycrystalline microstructures during thermally induced grain growth 
and recrystallization process. In such studies, the system’s dynamics is represented 
as a transition probability governed by the model’s energy description. These prob-
lems can be simulated using Monte Carlo based simulations. On the other hand, 
there are problems where the equilibrium solutions are required, for instance, in 
computer vision, Potts model is often used to describe the cut energy of a segmen-
tation problem (c.f.Boykov et  al. 2001). These problems are usually solved using 
the Graph-cut method. The computation of this process becomes exceedingly chal-
lenging as more generality is introduced. Bagon’s thesis (Bagon 2012) provides an 
excellent review of these generalities and suggests practical algorithms.

Traditionally, these models are trained by considering them as Markov Ran-
dom Fields (MRFs) and using gradient-based approaches to maximize the likeli-
hood (Descombes et  al. 1999). However, analytical estimates of the gradients are 
hard to compute. Among approximate techniques, Hinton’s contrastive divergence 
method (Hinton 2002) provides an efficient way to approximate the gradients in the 
parameter optimization problem successively. An excellent review of this subject is 
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presented in Fischer and Igel (2012). Recently, the advent of Quantum annealing 
technology has made it easier to sample states from the model’s probability distri-
bution (Adachi and Henderson 2015). This development has significantly eased the 
approximation of the required gradients. However, these methods have a critical 
drawback. These techniques only work for finite temperature probability distribu-
tion. Consequently, the model trained using these techniques is often temperature-
dependent and shows disagreement with the data as the temperature is lowered 
(Srivastava and Sundararaghavan 2020). As an example, the negative log-likelihood 
of a model trained using this technique is presented in Fig. 1. It can be seen that 
the minimum is close to the training � (inverse temperature), which was chosen as 
� = 1 . A possible reason for this problem is that the training results in a locally opti-
mal solution. Using quantum annealers adds another layer of complication because 
the simulation temperature is not known and depends on the graph size (Srivastava 
and Sundararaghavan 2020).

In contrast, this work is based on the band gap’s maximization, while the ground 
states are chosen as the data states. This approach guarantees that the states’ prob-
ability distribution gets closer to that of the data set as the temperature is reduced. 
Moreover, it ensures that the model adequately represents the data set for a broad 
range of temperatures. However, the downside of this approach is that there is no 
guarantee of the existence of parameters for every data set. This fact can be easily 
motivated by noticing that the number of ground states can be more than the number 
of model parameters and may result in an over-constrained optimization problem. 
Such problems do not exist at a non-zero temperature as all the states appear with 
non-zero probability.

In this paper, a Mixed Integer Linear Programming (MILP) formulation is presented 
to estimate Potts model parameters. Two variations of the algorithm are presented. 

Fig. 1  Comparative analysis of likelihoods of models trained using the Likelihood maximization and 
band gap maximization. The predicted models are presented in Appendix B.1. A lower value of Negative 
Log likelihood signifies a better trained model



 S. Srivastava, V. Sundararaghavan 

1 3

The first algorithm assigns a prescribed data set as the model’s ground states while 
maximizing the bandgap. The second algorithm identifies a set of ground states with 
a prescribed multiplicity while maximizing bandgap. It should be noted that the com-
putational complexity of both the algorithms grows exponentially with the size of the 
problem. Therefore, these methods are only suited for small graph structures. These 
problems arise in designing energies of smaller motifs in a lattice structure.

The paper is organized as follows: The formulation for the Potts energy is reviewed 
in sect. 2. Concepts like the ground state, bandgap, and probability of a state are also 
reviewed. A theorem is presented to estimate the efficiency of the developed algorithms 
quantifiably. The problem statement is summarized in sect.  3. The developed algo-
rithms are presented in sect. 4. A case study for the Ising model is presented in Sect. 5. 
Few details on the computational complexity are also outlined. Section 6 provides a 
summary of the paper.

2  Mathematical formulation

Potts model is a type of a discrete pairwise energy model on an undirected simple 
graph. In lieu of introducing some useful terms, following definition for graph is used:

Graph: A graph, G, is a pair of sets (V, C) , where V is the set of vertices and C is the 
set of edges/connections. For each element e ∈ C there is a corresponding ordered pair 
(x, y);x, y ∈ V i.e. C ⊆ V × V . A Graph, G = (V, C) is undirected if an edge does not 
have any directionality i.e (x, y) ≡ (y, x) . A graph is simple if (x, x) ∉ C for all x ∈ V.

Also, this work requires the graph to be finite, i.e., the number of vertices is finite. 
Next, the definition of Potts energy is introduced.

2.1  Potts model

Consider a finite undirected simple graph G(V, C) . The number of vertices are denoted 
by NV = |V| and the number of edges are denoted by NC = |C| . The indices of con-
nections and vertices are related using the maps, �1 and �2 such that for a connection 
with index, k ∈ {1, ..,NC} , the index of the corresponding vertices are �1(k) and �2(k) 
with 1 ≤ 𝜋1(k) < 𝜋2(k) ≤ NV . This essentially means ek ≡ (v�1(k), v�2(k)) . Each vertex, 
vi ∈ V is assigned a state si ∈ {1, 2,… ,NL} for all i ∈ 1,… ,NV . This determines the 
complete state of the graph as an ordered tuple S = (s1,… , si,… , sn) ∈ {1,… ,NL}

NV . 
The set of all possible states is referred to as S = {1,… ,NL}

NV with the total number 
of states denoted by NTS = |S| = N

NV

L
 . The Potts energy for a particular state can be 

evaluated as follows:

where, U(s) is the energy of labeling a vertex with label s, and V(si, sj) is the energy 
of labeling two connected vertices as si and sj . The parameters Hi and Jk are referred 
to as the Field strength and Interaction strength, respectively.

(1)E(S) =

NV∑

i=1

HiU(si) +

NC∑

k=1

JkV
(
s�(k,1), s�(k,2)

)
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Since the graph is undirected, following symmetry is imposed:

The parameter set is represented as a vector, � =
[
�1,… , �Nv+NC

]T . In this work, it is 
specialized to following form:

This notation allows to describe energy as a matrix-product evaluated as 
E(S|�) = �(S)� where �(S)

2.1.1  Ground states and band gap

For a given set of parameters, � , the set of ground states ( SG(�) ⊆ S ) is the set of 
states with minimum energy, E0(�) ), i.e.

In contrast, all the non-minimal states are referred to as exited states. The set of all 
excited states, denoted by SE(�) , can be evaluated as:

The cardinalities of the set of ground states ( SG ) and excited states ( SE ) are 
denoted by NGS and NES , respectively. All excited states may or may not have the 
same energy. However, the minimum excited energy referred to as the ‘first excited 
energy’ is used in defining the band gap and is evaluated as:

It should be noted that no assumption is made on the multiplicity of states with 
energy E1(�) . The band gap(a positive quantity) defines the energy gap between SG 
and SE . It is estimated as:

2.1.2  Probability distribution

At any given temperature, T, the probability of occurrence of a state, S is described 
by the Boltzmann distribution as:

V(si, sj) = V(sj, si)

� =
[
H1,… ,HNV

, J1,… , JNC

]T

�(S) =
[
U(s1),… ,U(sNV

),V
(
s�1(1), s�2(1)

)
,… ,V

(
s�1(NC)

, s�2(NC)

)]

SG(�) = argminS∈SE(S|�), E0(�) = minS∈SE(S|�)

SE(�) = S − SG(�)

E1(�) = minS∈SE(�)
E(S|�)

ΔE(�) = E1(�) − E0(�)

(2)p(S|�, �) = 1

Z
e−�E(S)
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where � = 1∕kBT  is the inverse thermodynamic temperature, kB is the Boltzmann 
constant and Z denotes the partition function which is estimated as

2.2  Parameter estimation

Given a data set, SD ⊆ S , the parameters set, � , is optimized such that the states in 
SD have higher probability of occurrence at a prescribed � value. Mathematically, 
this procedure entails minimization of negative log-likelihood as defined below:

It can be observed that at high temperatures i.e. � → 0 , all states occur with equal 
likelihood and therefore

where NDS = |SD| . On the other hand, at low temperatures i.e. � → ∞ , only ground 
states occur with equal probability and occurrence of any other state has probability 
0. Consequently, the value of � in this limit is finite only when SD ⊆ SG . It is evalu-
ated as:

It is desirable to estimate parameters such that the ground state replicates the data 
set, and the bandgap is maximized. The reason will be apparent after the next theo-
rem (proof in Appendix A).

Theorem For a given set of parameters, �D , such that (i) SG(�D) = SD (ii) ΔE > 0 , 
following statements hold true: 

(a) �(�D, �) monotonically decreases with � and the low temperature limit 

(b) �(�D, �) is bounded as: 

(c) For any 𝜖 > 0 , there exists a �∗ such that for all 𝛽 > 𝛽∗ , 𝜂(�D, 𝛽) − 𝜂∞(�D, 𝛽) < 𝜖 
where �∗ is estimated as: 

Z =
∑

S∈S

e−�E(S)

(3)�(�, �) = −
∑

S∈SD

log p(S|�, �)

�0 = lim
�→0

(�, �) = NDS log(NTS)

�∞(�) = lim
�→∞

(�, �) = NDS log(NGS)

(4)�∞(�D) = lim
�→∞

�(�D, �) = NGS log(NGS)

(5)NGS log(NGS) < 𝜂(�D, 𝛽) ≤ NGS log
(
NGS + NESe

−𝛽ΔE
)
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The consequence of this theorem is that it guarantees that if the parameters are 
chosen appropriately, � will approach to its global minimum in the low tempera-
ture (high � ) limit. Moreover, at a finite � , � is bounded from above by a decreas-
ing function. It can be seen in Fig. 2a, that the bound gets tighter for higher values 
of ΔE . It is also shown that the trained model is efficient in the range of � deter-
mined by [�∗,∞) . Figure 2a shows that a higher bandgap allows a broader range of 
temperatures.

3  Problem statement

Given a finite undirected simple graph G(V, C) , find parameters, � that maximizes 
the band gap in following two situations:

Case 1: SD is prescribed and SG(�D) = SD.
Case 2: Ground state multiplicity, NGS , is prescribed.
To make this optimization problem well posed, it is additionally imposed that 

Hmin
i

≤ Hi ≤ Hmax
i

 and Jmin
k

≤ Jk ≤ Jmax
k

 . Moreover, the functions U(s) and V(si, sj) 
are predetermined and not calibrated in the optimization process.

4  Methods

A Mixed Integer Linear Programming (MILP) problem is formalized for parameter 
estimation of Potts model. A brief overview of the MILP formulation is presented 
below:

(6)�∗ =
1

ΔE

(
log

NES

NGS

− log
(
e�∕NGS − 1

))

Fig. 2  An illustration of bounds for a trained Potts model with N
GS

= 10 and N
V
= 10 . a The upper 

bound on � with respect to � for various values of energy gap b �∗ as a function of band gap for various 
bounds on �
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Mixed integer linear programming (MILP): An optimization problem is con-
sidered to be of MILP type when the objective function is linear in the decision 
variables and some of the decision variables are integer. A typical setup of MILP 
problem is given in Eq. (7) where x is the decision variable of size N, I is the set 
of indices of x which are integers and the matrices Aeq , beq , A and B are used to 
define linear constraints.

The MILP formulation for the two cases is presented next. In both cases, the deci-
sion variables include the parameters, � , and some auxiliary variables. These vari-
ables are introduced along with the algorithm description. Moreover, the algorithms 
do not enforce that ΔE > 0 . Therefore, the results are accepted only if this condition 
is met.

4.1  Algorithm 1: Parameter estimation for potts model with Data set (PEPDAS)

The energies of individual states can be evaluated as a matrix product operation 
(shown in Section  2 ) which works well with linear programming framework. 
However, the calculation of band gap requires calculation of a minimum of energy 
over SE . This operation introduces a non-linearity. Thus, following auxiliary vari-
ables are introduced to pose this optimization as a linear programming problem:

• E1 (real valued scalar): It represents the energy of the 1st excited state.
• m = [m1, ...,mNES

] (binary valued vector of size NE ): It is defined such that it’s 
value is 1 on exactly one index and 0 everywhere else. The index with value 1 
must correspond to one of the 1st excited state.

• M (real valued scalar): It represents a large positive number. For computa-
tional purposes it can be evaluated as: 

The decision variable in this formulation are given as:

Consider a data set, SD = {S1, ..., SNDS
} . The optimization cost ( −ΔE ) is estimated 

by substituting the E(S1) as that of ground state and E1 for the 1st excited state 
energy. Thus the cost is evaluated as:

(7)

Optimize: min
x

cx

Inequality constraints: Ax ≤ b

Equality constraints: Aeqx = beq

Bounds: lb ≤ x ≤ ub

Integer variables: xI ∈ ℤ

(8)M =
(

max
s

|U(s)|
)

NV
∑

i=1

(

|Hmax
i | + |Hmin

i |

)

+
(

max
s1,s2

|V(s1, s2)|
) NC
∑

k=1

(

|Jmax
k | + |Jmin

k |

)

x =
[
�, E1, m

]T
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The energy of all data states are explicitly equated as follows:

The 1st excited energy, E1 is estimated by bounding it from above by energies of all 
the excited states. It is bounded from below by the energy of state corresponding 
to the index at which mi = 1 . The upper bound on E1 insures that if mi = 1 , then 
E1(�) = E(Si) . Here the states, Si (written without a bar) denote all states that are not 
present in SD . These conditions can be imposed using following set of equations and 
inequality:

Most computing software only allows integer valued variables. In such a case, the 
binary value of variable m can be explicitly enforced by setting following bounds on 
integer valued m:

This formulation is presented in Box 1 in the matrix format.

Cost = E(S1) − E1

E(S1) − E(Si) = 0, ∀i ∈ {2, ...,NDS}

E(Si) − E1 +Mmi ≤ M, ∀i ∈ {1, ...,NES}

−E(Si) + E1 ≤ 0, ∀i ∈ {1, ...,NES}

NES∑

i=1

mi = 1

0 ≤ mi ≤ 1, ∀i ∈ {1, ...,NES}
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4.2  Algorithm 2: Parameter estimation for potts model with ground state 
multiplicity (PEPGSM)

In this formulation only the variable NGS is provided by the user instead of SData . 
This condition adds the complexity of locating the ground states and evaluating 
the ground state energy, E0(�) . This problem is resolved by including following 
auxiliary variables:

• E0 (real valued scalar): It represents the ground state energy.
• l = [l1, ..., lNTS

] (binary valued vector of size NTS ): It is defined such that it’s 
value is 1 on exactly NGS indices and 0 everywhere else. The index has value 1 
if and only if it corresponds to the ground state.

• E1 and M as defined in algorithm 1
• m = [m1, ...,mNTS

] (binary valued vector of size NTS ): It is same as algorithm 1, 
except that the index are now enumerated based on the set S

The decision variable in this formulation are given as:

The optimization cost is given as:

The estimation of E0 is done using the same idea of bounding E0 from above and 
below. The bound is tight only for indices where li = 1.

For the estimation of E1 , the upper bound is lifted on indices corresponding to 
ground states. This allows to estimate minimum over non-optimal states. Moreover, 
index of 1st excited state cannot coincide with ground state i.e. li = 1 and mi = 1 can-
not occur simultaneously. These conditions are imposed using following inequalities 
and equations:

The condition of binary valued variables is imposed on integer variables as follows:

x =
[
� E0 E1 l m

]

Cost = E0 − E1

−E(Si) + E0 ≤ 0, ∀i ∈ {1, ...,NTS}

E(Si) − E0 +Mli ≤ M, ∀i ∈ {1, ...,NTS}

NTS∑

i=1

li = NGS

−E(Si) + E1 −Mli ≤ 0, ∀i ∈ {1, ...,NTS}

E(Si) − E1 +Mmi ≤ M, ∀i ∈ {1, ...,NTS}

li + mi ≤ 1, ∀i ∈ {1, ...,NTS}

NTS∑

i=1

li = 1
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This formulation is presented in Box 2 in the matrix format.

5  Results and discussions

In this section, an example is presented to show the efficiency of both the algo-
rithms. It is shown by example that the predicted � decays and is bounded. More-
over, the PEPGSM method can predict ground states that provide higher bandgap 
compared to randomly picked ground states. Next, the computational cost of this 
method is discussed.

5.1  Examples

The parametric estimation of Ising model is presented as an application of this 
method. In this model, the states take a binary form i.e. NL = 2 . Traditionally the 
labels are denoted as {+1,−1} and the corresponding energy functions are defined 
as:

Therefore, the energy can be effectively written as:

0 ≤ li,mi ≤ 1, ∀i ∈ {1, ...,NES}

U(+1) = +1, U(−1) = −1

V(+1,+1) = V(−1,−1) = 1, V(+1,−1) = −1
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This model is applied on a 10-noded Peterson graph with |H| ≤ 1 and |J| ≤ 1 . First, 
the graph is trained by prescribing up to 4 data states using the PEPDAS method. 
Next, the graph is trained by prescribing the number of states from 1 to 4 using the 
PEPGSM method. The predicted band gaps are shown in Table 1. It can be observed 
that the PEPGSM method predicts the same bandgap as the PEPDAS method for 
data sets with a size up to 3. However, for 4 data points, the PEPGSM method can 

(9)E(S) =

NV∑

i=1

Hisi +

NC∑

k=1

Jks�(k,1)s�(k,2)

Fig. 3  Optimal Ising parameters of a Peterson graph with 4 ground states found using a PEPDAS 
method, and b PEPGSM method. The ground states are presented as the colored graph in the top right 
corner of each image. A green label denotes the ‘ +1 ’ state, and the red label denotes the ‘ −1 ’ state. c The 
normalized Negative log-likelihood of the optimized graphs



1 3

Bandgap optimization in combinatorial graphs with tailored…

identify ground states that provide higher bandgap. The predicted parameters for a 
graph with four ground states are shown in Fig. 3. Likelihood estimates are not well 
defined in the case of PEPGSM method as it is not trained using the data. How-
ever, for comparison, � is estimated using the set of ground states in place of the 
data set. The results for negative log-likelihood of the PEPDAS predicted model and 
PEPGSM predicted model are shown in Fig. 3c. As expected, PEPGSM predicted 
model performs better than PEPDAS predicted model in terms of the range of � 
for which they can be used. The details of the other three models are presented in 
Appendix B.2.

The models for NGS = 4 , are further used in sampling the ground states 
from the D’Wave emulator (Quantum annealing device/emulator) (John-
son et  al. 2011). A single instance of the simulation with 10000 samples 
gave a distribution of p = [0.2543, 0.2480, 0.2526, 0.2451] for PEPDAS and 
p = 0.2481, 0.2531, 0.2426, 0.2562] for PEPGSM models. In both cases, no state 
other than the prescribed ground state appeared in the samples. This effect can be 
attributed to these emulators’ typically low simulation temperature (approx. � ∼ 10 ). 
Moreover, due to the degeneracy of the ground state, the sampling probability for 
each ground state is very close to 1∕N−1

GS

5.2  Computation size

One of the limiting features of these algorithms is that it grows exponentially with 
the graph size. An exact number of variables and equations is provided in Table 2. It 
should be noted that the number of states, NTS = N

NV

L
 and is the reason for the large 

size of the decision variable. The system of equations and inequalities in both algo-
rithms have large sparse blocks which provide some computational easing. It should 
also be noted that the sparsity of graph, G, does not give considerable advantage in 
the algorithm as the size of the problem is mainly dictated by the number of labels, 
NT , and the number of vertices, NV.

Table 1  Predicted maximum 
band gap for Peterson graph

Algorithm N
GS

= 1 N
GS

= 2 N
GS

= 3 N
GS

= 4

PEPDAS 8.0 6.0 4.0 6.0
PEPGSM 8.0 6.0 4.0 4.0

Table 2  Variable size for Algorithms PEPDAS and PEPGSM

Quantity PEPDAS PEPGSM

Total variables N
V
+ N

C
+ 1 + N

ES
N
V
+ N

C
+ 2 + 2N

TS

Integer (Binary) variables N
ES

2N
TS

Inequality conditions 2N
ES

4N
TS

+ 1

Equality conditions N
DS

2
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6  Conclusions

Two algorithms were developed and analyzed for estimating parameters of Potts 
model. The functionality of each method is as follows: 

1. PEPDAS method estimates the parameters to exactly replicate the ground states 
as the prescribed data set.

2. PEPGSM method estimates the parameters to identify ground states based on 
their prescribed quantity.

Both algorithms maximize the band gap between the ground and excited states of the 
model. It was shown that models optimized in this manner have a higher probability 
of being in the ground state for a broader range of temperatures. The upper bounds 
on the optimized model’s performance are also estimated. This efficiency is measured 
in terms of the range of temperature for which ground states’ likelihood remains in 
the desired range. The examples included in the paper show promising practical results 
on small graphs. As suggested in the main body of the paper, these methods do not 
scale well with the graph size, and their usage should be restricted to small problems. A 
promising extension of this work to address larger graphs is via successively optimizing 
parameters of randomly chosen subgraphs using the proposed PEPDAS and PEPGSM 
methods. This extension, therefore, promises a heuristic method for parameter estima-
tion of large graphs.

Appendices

The codes are available at https:// github. com/ sidsr iva/ PEP.

Appendix 1: Proof of theorem

(a) Since SG(�, �) = SD , the Negative Log Likelhood, �(�D, �) , is estimated as:

The derivative is estimated as::

where

Since ΔE > 0 , the expected energy is strictly bounded below as �(E) > E0 . 
Consequently:

�(�D, �) = NGS�E0 + NGS logZ

(10)
d�

d�
= NGS

(
(E0 − �(E)

)

�(E) =
∑

S∈S

E(S)p(S|�D, �)

https://github.com/sidsriva/PEP
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In the low temperature limit, Eq. (2) estimates that the probability of all excited 
states approaches 0 while all ground states are equally likely with probability 
(NGS)

−1 . Therefore, the value of � in this limit is estimated as Eq. (4).
(b) Let SG ∈ SG and P = p(SG|�D, �) so that �(�D, �) = −NGS logP . The probabil-

ity of occurrence of a ground state is given by NGSP and occurrence of a excited state is 
given as 

(
1 − NGSP

)
 . Moreover, for any finite value of � both of these probabilities are 

finite. Therefore, the expectation of energy, � , can be bounded as

Substituting in Eq. (10),

Substituting P = e−�∕NGS gives the following differential inequality

Consider the differential equation for � ∈ [0,∞),

with initial condition �(�D, 0) = �(�D, 0) = NGS logNTS . Noting that 
NGSe

−𝜉∕NGS − 1 = NGSP − 1 > 0 , this ODE is integrated to give the following 
solution:

Using Comparison Lemma (Khalil 2002), for all 0 < 𝛽 < ∞,

This proves the upper bound. The lower bound is a direct consequence from mono-
tonicity proved in part 1.

(c) For any 𝛽 < ∞

d𝜂

d𝛽
< 0

� = NGSPE0 +
∑

S∈SE

E(S)p(S|�D, �) ≤ NGSPE0 + (1 − NGSP)E1

d�

d�
= E0 − �(E) ≤

(
NGSP − 1

)
NGSΔE

(11)
d�

d�
≤
(
NGSe

−�∕NGS − 1
)
NGSΔE

(12)
d�

d�
=
(
NGSe

−�∕NGS − 1
)
NGSΔE

(13)�(�D, �) = NGS log
(
NGS + NESe

−�ΔE
)

(14)�(�D, �) ≤ �(�D, �)

�(�D, �) − NGS logNGS ≤ NGS log

(
1 +

NES

NGS

e−�ΔE
)
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For any 𝜖 > 0 , choose a 𝛽 > 𝛽∗(𝜖) using Eq. (6) and observe that,

This proves the third statement.

Appendix 2: Optimized graphs

Appendix 2.1: K‑3 graph

A fully connected 3-noded graph is optimized for 4 data states. The energy of the graph 
is modeled using Ising model Eq. (9) with |H| ≤ 1 and |J| ≤ 1 . The optimized param-
eters using the (1) Minimization of Negative Log-likelihood, and (2) PEPDAS method 
are presented in Fig. 4

Appendix 2.2: Peterson graph

A Peterson graph is first optimized for upto 3 user prescribed data states using PEP-
DAS method. Then it is optimized for 3 ground states using PEPGSM method. The 
energy of the graph is modeled using Ising model Eq. (9) with |H| < 1 and |J| < 1 . The 
optimized graphs are presented in Fig. 5 and their respective Negative log likelhood is 
presented in Fig. 6.

NGS log

(
1 +

NES

NGS

e−𝛽ΔE
)

< 𝜖

Fig. 4  a Training data set of states with green representing a ‘+1’ state and red representing a ‘-1’ state. 
b Optimized graph using minimization of Negative Log-likelhood at � = 1 c Optimized graph using 
PEPDAS method. The field terms are mentioned in blue color and interaction terms are mentioned in red 
color
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Fig. 5  Optimal Ising parameters of a Peterson graph found using PEPDAS method (left) and PEPGSM 
method (right). The ground states are presented as the colored graph in the top right corner of each 
image. A green label denotes the ‘ +1 ’ state and the red label denotes the ‘ −1 ’ state
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