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The non-ordinary state-based peridynamics theory combines non-local dynamic techniques with a desirable

correspondence material principle, allowing for the use of continuum mechanics constitutive models. Such

an approach presents a unique capability for solving problems involving discontinuities (e.g., fracture and

crack propagation). However, the correspondence-based peridynamics models often suffer from zero-energy

mode instabilities in numerical implementation, primarily due to the weak integral formulation in non-local

approximations of the deformation gradient tensor. This paper focuses on a computational scheme for

eliminating the zero-energy mode oscillations using a choice of influence functions that improve the

truncation error in a higher-order Taylor series expansion of the deformation gradient. The novelty here is

a tensor-based derivation of the linear constraint equations, which can be used to systematically identify the

particle interaction weight functions for various user-specified horizon radii. In this paper, the higher-order

stabilization scheme is demonstrated for multi-dimensional examples involving polycrystalline and composite

microstructures, along with comparisons against conventional finite element methods. The proposed

stabilization scheme is shown to be highly effective in suppressing the spurious zero-energy mode oscillations

in all of the numerical examples.

Nomenclature

b = body force density
F = deformation gradient tensor
f = force vector
h = particle spacing for an uniform discretization
K = symmetric positive-definite shape tensor
N = number of material particles within self-centered horizon,

Hx

P = first Piola–Kirchoff stress tensor
u = displacement vector
x = reference bond vector
Δt = incremental time step
δ = horizon size
δij = Kronecker delta

δy = deformed bond vector
ξ = bond vector
ω = weighting coefficients of neighboring particles in self-

centered horizon,Hx

I. Introduction

M ODELING mechanical performance of metallic alloys for
aerospace applications remains an ongoing area of research

in thematerial science community [1]. One of the popular numerical
techniques for modeling polycrystalline aggregates is the crystal

plasticity finite element (CPFE) technique [2,3], which describes

dislocation motions and their interactions using continuum me-

chanics principles. Finite element (FE) modeling of polycrystalline
materials using crystal plasticity (CP) theory [4–7] has allowed

for a greater understanding of mechanical behavior (e.g., stress
and strain response), texture evolution, and crystallographic slip

response. Such a capability has led to the development of high-
strength aluminum alloys [8,9], soft magnetic materials with low

hysteresis [10], and multifunctional alloys with high-field induced
strains [11–13]. Nonetheless, the standard FEmodels often run into

difficulties when modeling the local mechanical response of mate-
rials in the presence of discontinuities (e.g., voids, cracks, and soft

precipitates). The magnitude of mechanical quantities computed by
the standard finite element method (FEM) is also highly dependent

on the elemental size [1,14], necessitating costly iterative mesh

refinement procedures alongwith considerable experimental efforts
for numerical calibration [15,16]. Improvements have been pro-

posed for CPFE models to address the issue of mesh dependency.
The extended-FEM (X-FEM) and variational multiscale method

(VMM) enrich the computational space by introducing a sharp, dis-
continuous interpolating function to trigger strain localizations at

the crack tip [17]. Nevertheless, these techniques are not capable of
predicting small-scale localizations naturally as a consequence of

the underlying principles. Thus, imperfections are often imposed to
trigger the strain localizations [18]. Alternatively, the mesh-free

state-based peridynamics (PD) technique [19–22], which replaces
the traditional differential equations with an integral form of the

non-local continuum mechanics theory, has attracted significant

attention for predicting damage nucleation and propagation with
an intrinsic characteristic length scale [18,23–26]. Figure 1 com-

pares the strain fields obtained by crystal plasticity PD (CPPD) and
CPFE simulations against reference experimental imaging. While

both CPPD and CPFE capture comparable trends in the strain fields,
CPPD depicts localized patterns similar to the experiments that are

typically shown to be well-resolved, and otherwise smoothed out
by CPFE.
In the initial version of the PD as introduced in [19], a bond-based

technique was employed in which forces in-between material particles
were assumed to be pairwise, i.e., equal and direction-reversed. As a

consequence of such an assumption, the bond-based PD method is
restricted to fixed values of Poisson’s ratio [27,28]. This limits the

general applicability of the bond-based PD approach and the possibility
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for simulations of complex material deformations such as in plasticity
[29]. A more comprehensive PD scheme, commonly referred to as the
non-ordinary state-based PD, was subsequently proposed in which
force states were defined by the interactions between the material
particles [27]. This presents a generalized form of the PD, allowing
material particles to carry forces in all directions [30]. In this approach,
the non-locality is conveniently applied without the need to alter the
underlying constitutive principles and failure criteria [21,31]. Accord-
ingly, this paper employs a non-ordinary state-based version of the
PD theory to model microstructural domains consisting of material
particles (i.e., pixels in 1D/2D and voxels in 3D) with a uniform
discretization interacting across a finite horizon radius. The inter-
acting forces in-between the material particles are computed from
the stress tensors obtained by the crystal plasticity constitutive
model [29]. This approach has been proven to be advantageous
for modeling discontinuities as well as microscale localizations
when compared to the conventional continuum mechanics models
[21,22,32].
A particular drawback of the non-ordinary state-based PD using

correspondence material models is the presence of zero-energy (also
known as hourglass) instability modes, due to the weak integral for-
mulation in non-local approximations of the deformation gradient
tensor [23,33–35]. Such instability modes often worsen with enlarged
horizon interactions, interparticle spacing, and regions with high-strain
gradients. Recently, different frameworks have been proposed to mit-
igate the spurious instability oscillations by introducing fictitious bonds
between material particles [36–38]. Even though these bond-based
techniques provide an artificial stiffness for stability by introducing a
supplementary term of various forms to the force vector states, they do
not provide resolutions to the fundamental problem. They are also
highly sensitive to particle spacing and require additional parameters
that need to be calibrated on a case-by-case basis through repetitive
numerical simulations [39]. Moreover, to alleviate the zero-energy
mode oscillations, Wu and Ben [40] proposed replacement of the dis-
placement components of the center material particles with a weighted
average displacement of all neighboring particles in their respective
horizon interactions. Although this approach eliminates the need for
supplementary fictitious bonds, the issue of zero-energy mode oscil-
lations still appears to remain, particularly in the strain/stress fields.
Alternatively, in thework of Luo and Sundararaghavan [41], each finite
horizon within a nearest-neighbor PD family is assigned with a stress
point at which derivatives of field variables are computed in order to
enhance the particle connectivity. Such an approach is further enhanced
in Cui et al. [42] by introducing higher-order peridynamic derivatives,
incorporating horizon sizes beyond nearest-neighbor interactions. Sub-
sequent improvements are also presented based on higher-order oper-
ators to solve the non-local PD equations up to an arbitrary degree of
accuracy [43–48]. Although these techniques address the fundamental
problem in the correspondence formulation that leads to zero-energy
oscillations, they often require extensive computational efforts, reduc-
ing the general applicability of such stabilization procedures.

In microstructural simulations, uniform pixel- or voxel-based
structured discretizations are conveniently obtained from micros-
copy and numerical acquisition techniques [3,49,50]. As a result,
this paper primarily focuses on developing particle interaction
weight functions for uniformly structured grids based on the non-
ordinary state-based PD implementation via Newmark’s dynamic
method with artificial damping [51]. Here, a tensor formulation of
the constraint equations on discrete influence weight functions for
both 1D and higher-dimensional problems is presented based on
Taylor series expansion of the deformation gradient [30]. Four
numerical examples are subsequently studied to demonstrate the
applicability of the proposed higher-order weight functions for
mitigation of the zero-energy mode oscillations. Elasticity prob-
lems are tested first in order to understand the numerical behavior of
the algorithm comprehensively. The PD solver is compared against
the FEM for predicting the stress and strain localization, texture
development, and homogenized stress–strain response. The pro-
posed high-order formulation is demonstrated to be effective in
suppressing the zero-energy mode oscillations in materials with
long-range particle interactions, consisting of both polycrystalline
and composite microstructures.
The paper is organized as follows. A review of the non-ordinary

state-based PD is first outlined in Sec. II.A. In Sec. II.B, a brief
explanation on the origin of zero-energy modes follows. The
higher-order approximation theory of deformation gradient is then
proposed in Sec. II.C. Numerical examples are shown and dis-
cussed in Sec. III for variousmulti-dimensional problems. Notably,
in Sec. III.A, the higher-order approximation results for a number
of long-range interactions are compared against the analytical
solutions and PD methods without any stabilization control [52]
for a simple case of 1D cantilever bar. Effects of zero-energy mode
oscillations on 2D polycrystalline microstructures involving tex-
ture evolution are then introduced in Sec. III.B. Thereafter, the
CPPD numerical results are examined against conventional CPFE
techniques in modeling fine length-scale shear bands across poly-
crystalline aggregates. This follows by Secs. III.C and III.D, which,
respectively, demonstrate 3D examples of composite and polycrys-
talline microstructures subjected to Dirichlet boundary conditions.
Here, the proposed PD technique is shown to be superior to CPFE
models in simulating the sharp small-scale strain localizations
across the microstructural interface.

II. Methodology

In Sec. II.A, the non-local state-based PD theory is briefly
reviewed. Thereafter in Sec. II.A.1, the discretization process
along with an overview of the numerical implementation of the
PD algorithm is outlined. Next in Sec. II.B, the zero-energy mode
oscillation and its relationship with the material particle inter-
actions are discussed. In Sec. II.C, a novel solution for suppressing
the zero-energy instability noise for 1D, 2D, and 3D problems

SEM-DIC

Ti-Al intermetallic 
turbine blade 

60

CPFE

60

CPPD

60

Fig. 1 Experimental instrumentations such as scanning electron microscopy with the combination of digital image correlation (SEM-DIC) have shown
that microscale strain localizations on the surface of polycrystalline aggregates can act as precursors for damage nucleation and degradation in material
strength [18]. Unlike conventional CPFEmodels, CPPDmodels are shown to be capable of predicting such localizations naturally as a consequence of the

underlying physics.
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using higher-order approximations of deformation gradients is

introduced. Next, in Sec. II.D, a boundary treatment based on

constant deformation gradient is introduced that encompasses

large horizon interactions.

A. Non-Ordinary State-Based Peridynamics

The non-ordinary state-based PD theory forms the foundation of

the present work. This model was first proposed by Silling et al. [27]

and consists of a non-local integral reformulation of the classical

continuum mechanical theory. Unlike bond-based PD models

[19,53], which are restricted to a specific Poisson’s ratio, the state-

based PD theory can be generalized to include various classical

constitutive material models, enabling the integration with crystal

elastoplasticity [18].
Consider a material particle in the reference configuration at

position x, which can only interact with its neighboring points in a

self-centered horizonHx, within a finite radius δ. Given the displace-
ment field u of the material particle at x, the deformed location of the

corresponding material particle in the current configuration is repre-

sented as y � x� u. Here, as depicted in Fig. 2, the reference

configuration of the body is denoted as B0 at time t � t0 and the

deformed configuration as B1 at time t1.
Let x 0 denote the position of a particular material particle belong-

ing to Hx, and ξ � x 0 − x denote a bond between the respective

material particle at x 0 and the center particle at x. The deforma-

tion vector state, indicated as Y�x; t�hx 0 − xi, maps the bond ξ in

the reference configuration to its deformed counterpart, i.e.,

Y�x; t�hx 0 − xi � y 0 − y. The corresponding deformation gradient

tensor F�x; t� can be defined in terms of Y�x; t�hx 0 − xi as follows:

F�x; t� �
�Z

Hx

ω�Y�x; t�hx 0 − xi ⊗ ξ� dVx 0

�
K−1�x� (1)

where ω is a weight function, quantifying the impact of neighboring

particles on the center particle at x. Here, theweight functionω can be

selected as a radially symmetric parameter based on the initial bond

length, i.e., ω � ω�jξj�. Also,K�x� is a symmetric, positive-definite

shape tensor, defined as:

K�x� �
Z
Hx

ω�ξ ⊗ ξ� dVx 0 (2)

Therefore, the governing equations of state-based PD at time t can
be formulated as follows:

ρ �u�x; t� � L�x; t� � b�x; t�

L�x; t� �
Z
Hx

�T�x; t�hx 0 − xi − T�x 0; t�hx − x 0i� dVx 0 (3)

where T�x; t�hx 0 − xi is a force vector state, operating on the bond ξ
for the particle at position x and time t. Here,L�x; t� is the summation
of the forces per unit reference volume due to the interactions of the

particle at location x with its neighboring particles inside the self-

centered horizon Hx. Furthermore, vector b�x; t� denotes the body
force density corresponding to the material particle at x and time t,
while ρ refers to the material density.
In correspondence with the classical continuum theories, the force

state T�x; t�hx 0 − xi is related to the first Piola–Kirchoff (PK-I) stress
tensor, denoted as P�x; t�, via the following equation:

T�x; t�hx 0 − xi � ωP�x; t�K−1�x�ξ (4)

Hence, P�x; t� can be computed from a classical constitutive

model using the deformation gradient F�x; t�. Compared with the

governing equations of classical continuum mechanics, no spatial
derivative appears in Eq. (3). This places fewer restrictions on the

regularity properties of deformation descriptors. Furthermore, it is

worth noting that despite the current PD model being non-ordinary,

the balance of angular momentum is ensured due to the relation in
Eq. (4) [18,27].
In this paper, an explicit dynamic relaxation method with the

quasi-static assumption and a careful time-step selection, as outlined

in the Appendix, is adopted. Nonlinear problems involving static

solutions can alternatively be solved iteratively as a dynamic problem
using artificial damping.

1. Numerical Discretization Scheme and Algorithm

Assume that there are N neighboring particles surrounding the

central material particle located at x, then Eq. (3) can be discretized

for a specific time frame t � tn as in the following, while neglecting
the body force b�x�:

L�x� �
XN
i�1

�T�x�hx 0
i − xi − T�x 0

i �hx − x 0
i i�Vx 0

i
� 0 (5)

where x 0
i is the location of the ith neighboring particle in x’s horizon,

and Vx 0
i
is its corresponding volume. Next, the deformation gradient

F�x�, for the material particle at x at the specific time frame t � tn,
can be discretized as:

F�x� �
 XN

i�1

ωi�y 0
i − y� ⊗ �x 0

i − x�Vx 0
i

!
K−1�x� (6)

where y 0 and y represent the images (i.e., the deformed positions)

of material particles at x 0 and x, respectively, and ωi denotes

the weight function of the ith particle within the horizon of the

center particle at x. Similarly, the shape tensor K�x� can be
computed as

K�x� �
XN
i�1

ωi�x 0
i − x� ⊗ �x 0

i − x�Vx 0
i

(7)

Given the constitutive model, represented by an operator F , the

force states T�x�hx 0
i − xi for the particle at x and T�x 0

i �hx − x 0
i i for

the particle at x 0, as found in Eq. (5), can be obtained from

T�x�hx 0
i − xi � ωiF�F�x��K−1�x��x 0

i − x�
T�x 0

i �hx − x 0
i i � ωiF�F�x 0

i ��K−1�x 0
i ��x − x 0

i � (8)

Yet, in order to acquire F�x 0
i � and K�x 0

i � for the particle at x 0
i ,

information about the ith particle’s horizon must be determined.

Fig. 2 Kinematics of non-ordinary state-based PD. B0 denotes the

reference configuration of the body, whileB1 is the deformed configura-
tion. The particle at x is bonded to its neighboring particles, located at x 0,
x 0 0, and x 0 0 0, within a finite regionHx. The body deforms, so the particle
at x displaces to y. The mapping can be described by the corresponding
deformation gradient F�x;t�. T � T�x;t�hx 0 − xi and T 0 � T�x 0;t�hx −
x 0i are force vector states in the reference configuration for particles

locating at x and x 0, respectively. In the non-ordinary state-based PD
theory, these two force vectors are not necessarily parallel and can be
obtained from the classical stress tensor.
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Figure 3 is an illustration of interactions of one particle with its

nearest neighbors in a 2D material domain.
With all force vector states obtained, the adaptive dynamic

relaxation scheme (ADRS), as elaborated in the Appendix, is

applied to solve the equation L�x� � 0. For a 2D problem, the

global equation of motion can be organized as a vector systemwith

a size of 2 × Ntotal, where Ntotal is the total number of particles in

the simulation. Because L�x� is completely dependent on the

current field, the system can be explicitly started with an initial

guess of displacement, velocity, and acceleration fields. During

dynamic iterations in one loading step, two absolute errors,

denoted as ε1 and ε2, are calculated at each iteration with the

definitions as:

ε1 �
kL�x�k2
Ntotal

and ε2 �
kδuk2
Ntotal

(9)

where k:k2 denotes a Euclidean norm. The first error ε1 describes
the degree to which L�x� approaches zero, whereas the second

error ε2 denotes the magnitude of displacement increments

between two adjacent iteration steps. To normalize the error from

initial guesses, two corresponding relative errors e1 and e2 are then
monitored, as computed below:

e1 �
ε1
ε01

and e2 �
ε2
ε02

(10)

where ε01 and ε
0
2 are the initial absolute errors in each loading step.

Iterations stop only when both criteria are satisfied, i.e., e1;2 < el
with el � 10−6. All quantities are then updated into the next

loading step. To improve the computational performance, parallel

libraries such as OpenMP and Open MPI are adopted in the code.

Given that kinematic properties, such as the displacement u and

deformation gradient F, are known beforehand due to use of an

explicit method, the constitutive model can be applied on different

particles in parallel. In other words, the computation involved in

acquiring P�x� � F �F�x�� and P�x 0� � F �F�x 0�� corresponding
to the material particles at x and x 0, respectively, is completely

independent. The computation domain is therefore partitioned into

several groups in order to parallelize the calculation of the stress

tensors. Finally, all information is gathered in the assembly of the

vector system L�x�. The flowchart in Fig. 4 summarizes the

important numerical steps within the non-local state-based PD

scheme described above.
In the presented PD framework, a crystal elastoplasticity model

with deformation twinning is incorporated, where a generalized

Hooke’s law characterizes the elastic behavior of the microstructure

and is accompanied by a rate-independent CP formulation to model

the plastic constitutive behavior [14]. The rate-independent CP con-

stitutive model implementation is elaborated in detail in [29].

B. Zero-Energy Modes

The PD technique used in this paper incorporates a correspon-

dence material model in determining the bond forces from the PK-I

stress tensor. The inherent stability issue of zero-energy modes is

essentially the result of non-unique mapping between deformation

states and force states via the PD deformation gradient tensor

[30,40,41,47]. To better understand the origin of zero-energy numeri-

cal oscillations, a simple example is discussed next. Consider a 2D

uniform lattice as illustrated in Fig. 5, where x and x 0 indicate the
positions of the central material particle and one of its neighbors,

respectively, at the original configuration. Let Fold�x; t� denote the
initial deformation gradient, while Fnew�x� ud; t� represents the

deformation gradient after a small displacement disturbance ud,
applied to the center particle at x. The new deformation gradient

Fnew�x� ud; t� can be then calculated based on Eq. (1) as

12

3

4

5

6

7

8

9

10

11

12

13

Fig. 3 Particle interactions with closest neighbors in a 2D PD model.
Particles i � 2, 3, 4, 5 are the nearest neighbors of the particle 1 (denoted
as the center particle at x); while particles i � 1, 9, 10, 11 are the nearest
neighbors of the particle 4 (denoted as the particle at x 0

i ). In this case, all

13 particles shown above should be included in order to obtain L�x� at
particle x in Eq. (5).

Fig. 4 Flowchart for the explicit non-local state-based PD scheme using ADRS.
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Fnew�x� ud; t�

�
�Z

Hx

ω�Ynew�x� ud; t�hx 0 − x − udi ⊗ ξ� dVx 0

�
K−1�x�

�
�Z

Hx

ω��Yold�x; t�hx 0 − xi − ud� ⊗ ξ� dVx 0

�
K−1�x�

� Fold�x; t� − ud ⊗
�Z

Hx

ωξ dVx 0

�
K−1�x� (11)

With the assumption of a regular lattice discretization and a spheri-

cally symmetric influence function ω, the integration term on the

right-hand side becomes zero. This is the case of admissible displace-

ment fields producing the same deformation gradient and potential

energy, which is appropriately called the zero-energy mode. This is a

common stability issue when using correspondence material meth-

ods with mesh-free discretizations [54,55].
In Sec. II.C, a thorough discussion on the accuracy and stability of

an explicit numerical scheme, termed “higher-order approximation

theory,” toward the elimination of the zero-energy mode oscillations

is described.

C. Higher-Order Approximation Theory

The higher-order approximation method was initially proposed in

Yaghoobi and Chorzepa [30] for 2D lattice structures and later

enhanced in Javaheri et al. [56]. The basic idea is to adjust the

influence weight functions based on a Taylor series expansion to

better approximate the deformation gradient. This approach is shown

to be highly effective in suppressing spurious zero-energy mode

oscillations. In addition, higher-order approximations are easily

implementable within the state-based PD framework, where larger

horizon sizes can be used.
In the continuum mechanics, the relation between the deformed

bond δy � y 0 − y and the reference bond δx � x 0 − x, as illustrated
in Fig. 2, can be expressed via the Taylor series expansion, as follows:

y 0 − y � ∂y
∂x

�x 0 − x� �O��x 0 − x�2� (12)

where the notation O denotes the order of the leading error term.

Here, ∂y∕∂x is equivalent to the deformation gradient tensor. To

incorporate the state-based PDdeformation gradient, a tensor product

on the reference bond x 0 − x is first performed on both sides of

Eq. (12), and the result is then integrated over the initial horizon

Hx, as follows:

Z
Hx

ω��y 0 − y�⊗ �x 0 − x��dVx 0 �
Z
Hx

∂y
∂x

ω��x 0 − x�⊗ �x 0 − x��dVx 0

�O��x 0 − x�3� (13)

Therefore, the deformation gradient tensor at time t can be

approximated by:

F�x; t� � ∂y
∂x

�
�Z

Hx

ω��y 0 − y� ⊗ �x 0 − x�� dVx 0

�
K−1�x�

�O�x 0 − x� (14)

Once the error term, i.e., O�x 0 − x�, is eliminated, Eq. (14)
becomes the same as Eq. (1), where K�x� is defined as the shape
tensor in the state-based PDmodel. Note that the leading error term in
Eq. (14) is of the first order of the distance between material particles
located at x 0 and x. To achieve a more accurate deformation gradient,
appropriate influence function values ω for the required horizon can

be chosen to artificially increase the leading error order. This is
explained for multi-dimensional domains in Sec. II.C.1. The specific
contribution area of this paper is the development of a set of higher-
order tensor equations to efficiently identify the constraint formula-
tions for the influence weight functions when using higher-order

approximation method.

1. Multi-Dimensional Discrete Formulation

Hereon, the multi-dimensional Taylor series expansion is applied
for derivingweight function valuesω across 1D, 2D, and 3Dmaterial

domains with a constant particle spacing h for δ ≤ 3h, where δ
denotes the interacting horizon radius. This paper incorporates a
uniform particle discretization, i.e., equally spaced particles along a
line in 1D, quadrilateral discretizations in 2D, or cubic patterns in 3D
having a constant particle spacing hwith a fixed particle volumeΔV.
Accordingly, the influence function values ω are always assumed to
be spherically symmetric, i.e.,ω � ω�jξj�. For the sake of simplicity,
the Einstein tensor notation is adopted in the following discussion.
The shape tensorK�x� in Eq. (2) and the deformation gradient tensor
F�x; t� in Eq. (1) can alternatively be expressed in Einstein notation
as follows:

Kij �
Z
Hx

ωδxiδxj dVx 0 (15)

Fpq �
�Z

Hx

ωδypδxj dVx 0

�
K−1

jq (16)

Due to the symmetric nature of the particle discretizations, the
shape tensor in Eq. (15) can be reformulated as:

Kij �
XN
a�1

ωa�δxiδxj�aΔV � Ω�ω1;ω2;ω3; : : : �h2ΔVδij (17)

where N is the total number of neighboring material particles within

the horizon Hx, δij is the Kronecker delta function, and Ω is a

function of all independent ω1;ω2; : : : ;ωN in the horizon. For
instance, consider a 2D quadrilateral particle discretization as
depicted in Fig. 6, with a horizon size δ � 2h. While there are a total
of 12 neighboring material particles within the given horizon radius
δ � 2h, due to the radially symmetric nature of discretization pattern,

only three independent weight function values are labeled, i.e.,

ω1 � ω�h�, ω2 � ω� ���
2

p
h�, and ω3 � ω�2h�.

x x +udud

at center

Fold Fnew

Fig. 5 An illustration of zero-energy modes in a 2D regular lattice. A small disturbance applied to the center particle has no impact on the calculation of
the deformation gradient.
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Consequently, by substituting Eq. (17) into Eq. (16), the deforma-

tion gradient can be reformulated as:

Fpq � δjq
h2ΩΔV

Z
Hx

ωδypδxj dVx 0 � 1

h2Ω

XN
a�1

ωa�δypδxq�a (18)

Accordingly, a multi-dimensional Taylor series expansion of the

deformed bond δy on the reference bond δx is required. The first three
leading terms are shown here without showing the derivations:

δyp � Fpiδxi �
1

2!
Gpijδxiδxj �

1

3!
Hpijkδxiδxjδxk �O�h4�

(19)

where Fpi � �∂δyp∕∂δxi� is the deformation gradient; Gpij �
�∂2δyp∕∂δxiδxj� and Hpijk � �∂3δyp∕∂δxiδxjδxk� are the second-

order and third-order derivatives, respectively.
Finally, by substituting Eq. (19) into Eq. (18), the deformation

gradient then turns into:

Fpq � Fpq �
1

2!h2Ω
Gpij

XN
a�1

ωa�δxiδxjδxq�a

� 1

3!h2Ω
Hpijk

XN
a�1

ωa�δxiδxjδxkδxq�a �O�h3� (20)

Accordingly, it is possible to achieve higher-order approximations

by selecting explicit weight functions in Eq. (20). It is worth noting

that in a spherically symmetric and intact discretization, for every

bond �δx�m, there is another bond �δx�n symmetric about the origin

such that �δx�m � −�δx�n. Hence, when there are odd δx products,

the summation terms in Eq. (20) become:

XN
a�1

ωa�δxiδxj : : : δxm�a � 0 (21)

As odd δx-product summations vanish, symmetric particle patterns

with intact horizons always lead to accuracy order equal or greater than

O�h2�. One additional equation, as formulated below, needs to be

satisfied to obtain a higher truncation error in the order of O�h4�:

Aijkl �
XN
a�1

ωa�δxiδxjδxkδxl�a � 0 (22)

Furthermore, the satisfaction of the following two equations leads to

higher accuracy, in the order of O�h6�:

(
Aijkl �

P
N
a�1 ωa�δxiδxjδxkδxl�a � 0

Bijklrs �
P

N
a�1 ωa�δxiδxjδxkδxlδxrδxs�a � 0

(23)

Criteria outlined in Eqs. (22) and (23) hold true regardless of the

material dimensions, i.e., 1D line, 2D quadrilateral, or 3D cubic

patterns. The final selection of weight function values should satisfy

the constraint inequality Ω�ω1;ω2;ω3; : : : � ≠ 0 to ensure that the

shape tensorK�x� obtained in Eq. (17) is invertible. It is worth noting
that larger horizon sizeswithmore independentweight functionvalues

often lead to increased orders of truncation error.
The weight function values for a 1D particle-discretized bar with a

constant spacing h and horizon sizes up to δ � 4h are tabulated in

Table 1. For the sake of simplicity and unity, the weight function

value corresponding to the particle closest to the center particle is set

to be 1, i.e., ω1 � 1. Additionally, the order of leading truncation

error increases when the horizon size δ grows, providing a more

accurate deformation gradient. For a 1D bar with a horizon δ � 2h as
depicted in Fig. 7, there are five material particles at xi�j for j � 0,

�1, �2 with only two independent weight functions ω1 and ω2,

pertaining to particles at xi�1 and xi�2, respectively. Hence, setting

ω1 � 1 andω2 � −1∕16 produces a fourth-order leading error of the
form O�h4� in the Taylor series expansion of the deformation gra-

dient in Eq. (20) when δ � 2h.
Next is a brief discussion on the number of nontrivial components

in the fourth-order tensor Aijkl for a 2D quadrilateral discretization

pattern. First of all, it is worth noting that the subscript indices can be

swapped as follows:

Aijkl � Ajikl � Aijlk (24)

Consequently, in the case of 2D quadrilateral particle pattern,

where subscript indices can only take on values 1 and 2, only six

components of tensor Aijkl are independent. These independent

elements are A1111, A2111, A2211, A2221, and A2222.
Secondly, due to the axis symmetry of the horizon and particle

discretization, the coordinate index 1 and 2 can be swapped, yielding

to the following two constraints:

A1111 � A2222 and A2111 � A1112 (25)

Thirdly, assume that there is a bond with rectangular coordinates

(x, y) and aweight functionω1. Owing to the symmetry of coordinate

axes, three other bondswith respective coordinates �−x; y�, �−x;−y�,
and �x;−y� are expected to be in the same horizon as well. Hence,

based on the definition in Eq. (22), the A2221 entry becomes:

A2221 � ω1y
2�xy − xy� xy − xy� � 0 (26)

ω1

ω2

ω3

center

ω1 ω h

ω2 ω 2h

ω3 ω 2h

h

h

Fig. 6 Independent weight function values on a 2D quadrilateral par-
ticle pattern. Here, ω is a radially symmetric weight function on neigh-

boring material particles. The horizon radius is δ � 2h, with h denoting
the distance between nearest particles.

Table 1 Higher-order approximation weight functions
for 1D particle discretization with a constant spacing h

Weight function values

Horizon size ω1 ω2 ω3 ω4 Leading error

δ � h 1 0 0 0 O�h2�
δ � 2h 1 −1∕16 0 0 O�h4�
δ � 3h 1 −1∕10 1/135 0 O�h6�
δ � 4h 1 −1∕8 1/63 −1∕896 O�h8�

Fig. 7 One-dimensional particle-discretized barwith a constant spacing

h. Here, ω is a symmetric weight function. Dashed box with δ � 2h
illustrates the horizon of center particle xi, including only the nearest
four particles.
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Eventually, only two components of the fourth-order tensor Aijkl

are nonzero. These components are A1111 and A2211.
Consistent with 1D discretizations, the weight function value

corresponding to the particle closest to the center particle is set to
be 1, i.e., ω1 � 1. To achieve O�h4�, two more independent weight
function values (i.e.,ω2 andω3) need to be calculated. Consequently,
the horizon with radius δ � 2h in Fig. 8 is the smallest horizon size

that can achieve a truncation error in the order of O�h4� in the 2D
quadrilateral pattern. In terms of horizons with excess independent
weight functions, but not enough to achieve higher-order truncation
errors, the weight function values are generally not unique. These
horizon selections could possibly bring noise or numerical oscilla-
tions to the ultimate solutions. As a result, the numerical simulations
in Sec. III primarily focus on horizon sizes with unique weight
function values, as tabulated in Tables 2 and 3. Typically, the magni-
tude of weight function values decrease from the closest particles to
distant particles, and the value on the farthest particle should be a
nonzero.
For 2D quadrilateral patterns, horizon sizes up to δ � 3h are

studied. Figure 8 illustrates all possible spatial distributions of neigh-
boring particles for different horizon sizes. Here, only a quarter of the
interacting circular space is depicted due to the symmetric nature of
material particle discretization. The unique weight function values
for these horizon sizes are obtained using the following process. The
constraint equations for the weight function values to achieve the
desired leading error, such as Eqs. (22) and (23), are identified. These
constraints typically lead to a multiple nonunique set of weight
functions for a given horizon size δ. As such, additional equations
from the next set of higher-order constraint equations that do not

contain the ω1 term are added to the existing set of constraint

equations. The solution to such a constraint set leads to a unique

set of weight function values for the specific material interaction.

Table 2 shows these unique weight function values to achieve the

corresponding higher-order accuracy for the 2D quadrilateral discre-

tization. The constraint solutions that have either resulted in a zero

influence function value at the material particle farthest from the

center particle or led to a noninvertible shape tensor are excluded

from Table 2.

Similarly, for 3D cubic patterns, the horizon sizes up to δ ≤ 3h are

investigated, where h represents the spacing between nearest par-

ticles. Figure 9 illustrates all possible distributions of neighboring

material particles for different horizon sizes δ. Here, similar to the 2D

quadrilateral distribution, only a small portion of the interacting

sphere is illustrated due to the symmetric nature of ω. Subsequently,
a similar procedure as for 2D quadrilateral discretization is employed

to derive the most optimal unique weight function values. Weight

function values that either result in a zero value for the material

particle farthest within the horizon shape or lead to a noninvertible

shape tensor are disregarded in numerical simulations. Table 3 shows

the unique weight function values to achieve corresponding higher

accuracy for 3D cubic patterns.

D. Boundary Treatment

Conventional constraint conditions, such as Dirichlet and Neu-

mann boundary conditions, are supposed to be imposed in different

forms, as the PD governing equations are applied in non-local

formulation. In the case of simulations with no boundary treatment,

defect horizons can still approximate the deformation gradient across

the boundary layer.However, as the horizon size δ increases, irregular
defects ultimately lead to disordered and unstable solutions around

the particles located at the margins. Because higher-order approx-

imations are derived using the internal particles with a fully sym-

metric horizon, defect horizons along the external boundary are

expected to give rise to numerical errors when approximating the

deformation gradient. One possible solution, as suggested by Macek

and Silling [57], is to apply an inward fictitious material layer along

the boundary layer.As illustrated inFig. 10a, the thickness or depth of

the fictitious boundary layer should be equal to the horizon size δ, to
ascertain that prescribed constraints are sufficiently enforced on the

real material region. The same discretization spacing should be

applied in both the fictitious boundary layer and realmaterial domain.

Fig. 8 All possible 2Dhorizon shapeswith aquadrilateral particle discretization up to δ � 3h. Because theweight functionω is radially symmetric, only a
quarter of interacting circular regions are depicted for each horizon size δ.

Table 2 Higher-order approximation weight functions for a
2D quadrilateral discretization patternwith a constant spacingh

Weight function values

Horizon size ω1 ω2 ω3 ω4 ω5 ω6 Leading error

δ � h 1 0 0 0 0 0 O�h2�
δ � 2h 1 0 −1∕16 0 0 0 O�h4�
δ � 3h 1 0 −1∕10 0 0 1/135 O�h6�

Here, horizon sizes in Fig. 8 that either encompass a zero influence function

value at the farthestmaterial particlewithin the given horizon radius or lead to a

noninvertible shape tensor are excluded.

Table 3 Higher-order approximation weight functions for a 3D cubic discretization pattern with a
constant spacing h

Weight function values

Horizon size ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 Leading error

δ � h 1 0 0 0 0 0 0 0 O�h2�
δ � 2h 1 0 0 −1∕16 0 0 0 0 O�h4�
δ � 3h 1 −80∕267 16/89 −25∕178 14/267 −8∕267 −2∕267 1/267 O�h6�

Here, horizon sizes in Fig. 9 that either encompass a zero influence function value at the farthest material particle within the given

horizon radius or lead to a noninvertible shape tensor are excluded.
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Shadow particles are therefore introduced in the fictitious layer, as
shown in Fig. 10b.
Considering that no information is provided outside the original

boundary, Madenci and Oterkus [21] suggested that the prescribed
displacement vector should be the same as that of the closest material
particle at the boundary. This operation results in zero strain and
stress across the fictitious boundary layer. An alternative option is to
apply a constant deformation gradient across the fictitious boundary
layer. In this paper, displacements on shadow particles are prescribed
based on a constant deformation gradient. Consequently, stress at
shadow particles can be calculated by the correspondence constitu-
tive model. This special boundary treatment has been particularly
effectivewhen larger-horizon interactions are applied, encompassing
simulations beyond the nearest-neighbor PD family [41].With such a
boundary treatment procedure, all information (e.g., displacement
and stress) on shadowparticles is presumably known, in contrast with
boundary particles where only displacement field is given [21].

III. Results and Discussion

Here, the non-local state-based PD algorithm is examined for a 1D
elastic barwith a varyingYoung’smodulus of elasticity. The resultant
displacements of the PD scheme with the higher-order stabilization
approach are compared against analytical solutions as well as
numerical algorithms with no stability implementation. Thereafter,
2D and 3D numerical schemes are tested for different microstruc-
tures. Comparisons are performed against analytical and FEM sol-
utions as needed. The examples aim to demonstrate that increasing

the order of interactions in material particles can improve the accu-

racy of the numerical solution and reduce the hourglass instability

modes of the non-local state-based PD framework.

A. One-Dimensional Cantilever Bar

The classic 1D cantilever elastic bar example [30,36,41], as

depicted in Fig. 11a, is conducted for validation of the higher-order

implementation. Here, the bar has a total length Ltot and a constant

cross-sectional area A. Displacement constraints are applied on each

side of the bar, i.e., u�x � 0� � 0 and u�x � Ltot� � uend. In this 1D
example, uend is set to be 0.005Ltot. A variable Young’s modulus, as

plotted in Fig. 11b, is also adopted as follows:

E�x� �
8<
:
E0 0 ≤ x ≤ Ltot∕2

E0

�
1� β

2α

1��������������������������
x∕Ltot − 1∕2

p �−1
Ltot∕2 < x ≤ Ltot

(27)

Consequently, the corresponding analytical displacement u�x� can
be computed to be as follows:

u�x� �
(
αx 0 ≤ x ≤ Ltot∕2

αx� βLtot

��������������������������
x∕Ltot − 1∕2

p
Ltot∕2 < x ≤ Ltot

(28)

where parameters are set as α � 0.001, β � 0.004
���
2

p
, Ltot � 1,

and E0 � 1.

1

center particle 

neighbor particle 

2
3

6
5

4

8

Fig. 9 All possible 3D horizon shapes with a cubic particle discretization up to δ � 3h. Because the weight functionω is spherically symmetric, only one
eighth of the interacting spherical regions are depicted for each horizon size δ.

original 
boundary

fictitious 
boundary layer

computation 
domain

a) inward fictitious layer

ℎ

ℎ

inner particle
boundary particle
shadow particle
computation domain

b) shadow particles

Fig. 10 Boundary treatment on a 2D polycrystalline domain. a) The fictitious boundary layer is inward possessing a thickness equal to the prescribed

horizon radius δ. b) A horizon of δ � h is illustrated in this plot, where h is the particle spacing.
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Subsequently, a uniform mesh with 500 equally distant material

particles is employed to study the effect of using higher-order

approximations framework on the resultant axial displacements

u�x�, under outward displacement constraint uend � 0.005Ltot. A

comparison between the higher-order approximation solutions and

those with no stabilization control method [52] is shown in Fig. 12.

Because a higher-order approximation approach only takes effect in

large-horizon families, i.e., δ > h, two horizon selections δ � 2h and
δ � 3h are illustrated in Fig. 12. As the horizon size increases, the

hourglass oscillations grow dramatically if no control method is

applied. In contrast, the higher-order approximation method sup-

presses the numerical oscillations in both cases (i.e., δ � 2h and

δ � 3h) and dampens the zero-energy modes effectively.

B. Two-Dimensional Polycrystalline Microstructure

Here, a 1 × 1 mm2 polycrystalline microstructure with 21 grains,

synthetically generated by Voronoi tessellation [3], is considered. In

this example, 12 different orientation angles from the interval

�−π∕2; π∕2� are distributed randomly among grains. The discretized

computational domain, as depicted in Fig. 13, is based on a uniform

50 × 50 particle discretization for PD technique, and 50 × 50 square-
faced elements for FEM.With the number of particles being the same

as the number of elements, the material particles in the PD model are

located at the center of elements in the FEmodel. Consequently, each

material particle occupies a constant area in the reference configura-

tion that is equal to the corresponding enclosed FE area. Linear basis

functions and traditional implicit solvers are employed in the FEM.

Although different solvers are applied in PD and FEmodels, the same

constraint on errors is set, i.e., el � 10−6. The particular hardening
law is chosen as follows [14]:

hαβ � hβ0�q� �1 − q�δαβ�
�
1 −

sβ�t�
sβs

�
a

(29)

Fig. 12 Effect of zero-energy modes on the displacement field of 1D bar obtained from the higher-order approximation approach with two different
horizon sizes a) δ � 2h and b) δ � 3h. Results are based on a uniform mesh with 500 material particles.

→

→
a) No boundary treatment

→

→
b) Boundary enforcement

void

80

70

60

50

40

30

20

10

0

( )

Fig. 13 The effect of boundary treatment on PD stress distributions with a horizon size δ � 3h.

Ltot

1 2 n − 1 n

uend

x

A, L A, L A, L

a) 1D elastic bar

x/Ltot0 0.5 1

E(x)

E0

b) Variable Young’s modulus

Fig. 11 One-dimensional cantilever bar. a) A one-dimensional elastic bar under tension with displacement constraints is used to study the effect of using
higher-order approximations of deformation gradient. b) The example exhibits a varying Young’s modulus along the x axis.
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where hβ0, s
β�t�, and sβs are the hardening coefficient, the current slip

resistance, and the saturation resistance of slip system β, respectively;
δαβ is the Kronecker delta function; and a and q are constant param-

eters. These hardening parameters are taken to be identical for both

slip systems and are listed below:

h0 � 10 MPa; s�0� � 10 MPa; ss � 200 MPa;

a � 2; q � 1.4 (30)

where s�0� is the initial value of slip system resistance. Furthermore,

a compression velocity gradient, as shown below, with plane strain

assumptions is applied on microstructure boundaries to simulate the

process of y-axis compression:

L � η

�
1 0

0 −1

�
(31)

where η � 0.0020 denotes a constant strain rate. Each simulation is

performed over 30 steps with the corresponding velocity gradient

leading to a final strain around 0.06. The isotropic elastic stiffness

matrix is taken as C11 � 2, C12 � 1, and C33 � 2 (in gigapascals).
The inward boundary treatment, as elaborated in Sec. II.C, is then

applied to constrain the velocity gradient of the fictitious boundary

particles to that shown in Eq. (31) for the PD model. As the horizon

radius δ grows, the boundary-layer thickness (equal to the horizon

radius) increases, and the number of material particles within the

computational domain decreases. Figure 13 provides an example

illustrating the effect of enforcing the inward boundary treatment.

In Fig. 13a, low-magnitude stress values are captured around the

external edges without the fictitious boundary layer. This is mainly

because of the erroneous deformation gradient approximated by the

defect horizons. In contrast, the stress field obtained from the boun-

dary enforcement, as depicted in Fig. 13b, shows no spurious values

along the four outermost edges.
Next, Fig. 14 provides a comparison of the PD and FE techniques

for modeling crystal orientation changes of the same polycrystal

under a y-axis compression test, using three different horizon selec-

tions in Table 2. In the following, the quantification of the crystal

orientation changes is briefly explained. In 2D polycrystals, each

grain can be characterized by a rotation tensor, denoted asR, relating
the local crystal lattice frame to the reference sample frame. Given

an orientation θ (i.e., the angle between crystal and sample axes), the

associated rotation matrix supports parameterization as R � cos�θ�
I − sin�θ�E, where E is a 2D alternator (i.e., E11 � E22 � 0,
E12 � −E21 � 1) and I is a 2D identity tensor. Consequently, the

rotation tensor can be evaluated through a polar decomposition of the

elastic deformation gradient asF � RU. The spin tensorΦ can then

be expressed asΦ � RRT � −_θE, where _θ � �∂θ∕∂t� is the crystal
reorientation velocity. Alternatively, in the component form, the cry-

stal reorientation velocity can be expressed as _θ � �Φ21 −Φ12�∕2.
Accordingly, using the reorientation velocity, the crystal texturing is

tracked by Δθ � _θΔt at each time step.

Reorientation of grains predicted by PD and FE models are com-
pared in Fig. 14 at the final strain value of 0.06. The overall reor-
ientation contours, and locations of the shear bands aremostly similar
between the two models at the same degree of mesh refinement. The
localized shear bands seen from FE simulations are comparatively
more diffuse due to the lack of an internal length scale. Along the
direction of arrows, the width of a shear band obtained by PD si-
mulations is smaller, and its boundary is more conspicuous, which
are qualitatively closer to those seen in experiments [18,58–60]. It is
clear from Fig. 14 that zero-energy modes are effectively suppressed
in all long-range horizon selections. This is in agreement with the 1D
elastic bar tension test seen previously in Sec. III.A,where the higher-
order stabilization implementations are compared against the solu-
tions with no stabilization control.
Additionally, as evident from PD simulations in Fig. 14, larger

horizon interactions make the reorientation results more stable.
Nevertheless, it is shown by Yaghoobi and Chorzepa [30] that by
includingmore neighboring particles the higher-order approximation
frameworkmay lead to less stable results if the increased horizon size
is not able to obtain a greater accuracy (e.g., δ � h vs. δ � ���

2
p

h).
This is different from the 1D bar test in Sec. III.A, in which larger
horizon sizes consistently reduced the spurious zero-energy mode
oscillations.

C. Three-Dimensional Matrix with Soft Precipitate

For the first 3D example, a cubic matrix of dimensions 3 × 3 ×
3 mm3 along with a central spherical precipitate with a diameter
0.875 mm having a lower modulus, as illustrated in Fig. 15, is
modeled using both FE and PD techniques. The transversely iso-
tropic elastic matrix is assigned with the following stiffness con-
stants: Cmat

11 � 59.3, Cmat
12 � 25.7, Cmat

13 � 21.4, Cmat
33 � 61.5, and

Cmat
44 � 16.4 (in gigapascals). Contrarily, the stiffness constants

assigned to the spherical precipitate are reduced by a factor of 10,

i.e., Cppt
ij � 0.1 × Cmat

ij , where Cppt
ij denotes the (i, j) entry of the

elastic stiffness tensor pertaining to the precipitate particles. Here,
both materials are assumed to be elastic under a small deformation.

Thus, the strain tensor is computed as ϵ � �1∕2��F� FT� − I,
where I is the identity tensor. Also, Cauchy stress tensor σ � C:ϵ
is used in lieu ofP in Eq. (4), assuming a small deformation, whereC
represents the elastic stiffness tensor.
The cubic material domain represented in Fig. 15a is discretized

into a 48 × 48 × 48 structured particle grid. A similar discretization
refinement is adopted for the FE simulation, where each linear
hexahedral volumetric element encompasses the material particle
in the PD model. In addition, Dirichlet boundary conditions dictated
by the following diagonal velocity gradient are applied to the micro-
structure boundaries to simulate an x-axis tension up to 0.02 strain:

L �
"
1.0 0 0

0 −0.5 0

0 0 −0.5

#
(32)

Subsequently, numerical PD simulations are carried out using the
higher-order influence weight functions tabulated in Table 3 for

→

→

a) FE

→

→

b) PD, = h

→

→

c) PD, = 2h

→

→

d) PD, = 3h

void

0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
-0.05
-0.1
-0.15
-0.2
-0.25

Δ ( )

Fig. 14 Orientation changes for 2500 particles under a y-axis compression test for FE and PD results with three different horizon sizes at final strain of
0.06. Along the direction of arrows, sharper andmore number of shear bands can be seen in PD results. Here, δ is the horizon radius, and h is the distance
between the nearest material particles. The margin around the boundary in PD models is due to the inward boundary treatment.
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δ � h, 2h, 3h, and weighting value coefficients without any stabili-

zation framework for δ � 2h, 3h [52]. An inward boundary treat-

ment, as outlined in Sec. II.C, is then enforced to constrain the

velocity gradients of the shadow particles in PD models. Figure 16

depicts the variations in y-displacement contours at the midsection

z � 1.5 mm for stabilized PD framework using horizon sizes of

δ � h, 2h, and 3h at the final strain value 0.02. FEM simulation

prediction is also included for comparison. Although the overall

displacement fields are mostly similar between PD and FE models,

the localizations around the precipitate as obtained from FEM sim-

ulation are comparatively more diffuse due to the lack of an internal

length scale.

Next, Fig. 17 depicts the variations in the x-displacement contours

for PD technique with and without the stabilization control of zero-

energy modes, across the midsection z � 1.5 mm using horizon

sizes δ � 2h and 3h at the final strain value 0.02. For the case of a

PD scheme without any control of zero-energy modes (termed “no

control”), an influence function of the formω � 1∕kξk2 is employed

[52], where ξ denotes the bond vector associated with neighboring

material particles. While “no control” simulations tend to produce

significant increases in erroneous zero-energymodeswith successive

horizon sizes, the resultant displacements with higher-order approxi-

mation scheme (termed “higher-order”) illustrates stabilized solu-

tions for both horizon sizes δ � 2h and 3h. Figure 18 depicts the
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Fig. 16 Comparison of y displacements (inmicrometers) between FE and PD techniqueswith δ � h, 2h, and 3h alongmidsection at z � 1.5 mm at final
strain.
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Fig. 17 Contours of x displacements (in micrometers) obtained from PD models with no control of zero-energy modes against proposed higher-order
stabilization approach with δ � 2h and 3h along midsection at z � 1.5 mm at final strain.

a)

matrix
precipitate 

2
/

b)

Fig. 15 Three-dimensional matrix with soft precipitate. a) A 3D matrix microstructure (colored in blue) with dimension l � 3 mm consisting of a soft
precipitate (colored in red) with diameter d � 0.8750 mm locating at the center. The material domain is discretized into 48 × 48 × 48 particles with a
constant interparticle spacingh � 62.5 μm. b) This illustration provides the interior information along the slice z � 1.5 mm. The spherical precipitate is
fully retained for a better visualization.
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profiles of x displacements through centerline along the x direction
for the contours shown in Fig. 17. The plots here are also compared
against the FEM solution as seen in Fig. 16a. Figure 18a exhibits the
emergence of the instability modes for the “no control” case of δ �
2h right across the interface of soft precipitate and stiff matrix, as the
hourglass oscillations grow dramatically within the spherical pre-
cipitate. In the case of δ � 3h shown in Fig. 18b, the hourglass
oscillations significantly worsen for “no control” procedure, affect-
ing the displacements even along the stiff matrix. In both horizon
sizes, the resulting contours pertaining to the higher-order approxi-
mation scheme effectively dampen the hourglass oscillations and
remain close to the FEM solution.
Thereafter, four additional stiffness constants are assigned to the

spherical precipitate using the following ratios: rc � 10−2, 10−3,

10−4, and 10−5, where Cppt
ij � rc × Cmat

ij . As the stiffness ratio

decreases, the precipitate properties tend toward the properties
of a void with a zero modulus. As observed in the previous
examples, the interface between a stiff and soft material has

particularly sharp gradients in the strain and stress fields. Hence,

a non-local theory becomes advantageous due to its ability in

capturing discontinuities without enforcing any traction boundary

conditions around the precipitate interface. Figure 19 illustrates x-
and z-component displacements along the midsection z � 1.5 mm
as obtained from the stabilized non-local PD simulation using the

horizon size δ � 3h for all the stiffness ratios considered. As the

stiffness of the precipitate decreases towards that of a void, one

would expect a decreased force transmission across the precipitate

interface and, consequently, a decreased displacement at the void’s

center. As demonstrated in Fig. 19, the stabilized higher-order

PD model correctly captures the zero displacements at the cen-

ter as the elastic modulus pertaining to the spherical precipitate

decreases.
Figure 20 denotes the plots for componentwise displacements at

the center of the precipitate as a function of the stiffness ratio rc, for
different horizon sizes δ. Here, the FEM predicts close to a constant
nonzero displacement at the center. However, one would expect
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Fig. 19 Comparison of a–d) x displacements and e–h) z displacements (both inmicrometers) alongmidsection z � 1.5 mm for varying stiffness ratios as
obtained from the high-order stabilized PD model with δ � 3h.

a) = 2h b) = 3h

Fig. 18 Contours of x displacements through centerline along the x direction for two horizon interactions a) δ � 2h and b) δ � 3h, respectively, at final
strain.
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convergence toward a zero-displacement because no force transmis-
sion occurs across the precipitate interface in the case of a zero-
modulus material, e.g., vacuum. Despite that, PD, a non-local
method, depicts a faster convergence toward a zero center displace-
ment with growing horizon sizes δ, as the stiffness ratio rc decreases.
For a given horizon size δ, the absolute value of all the displacement
components decreases with reducing stiffness ratio rc. The conver-
gence rate of the non-local PD solutions to the zero displacement at
the center of the precipitate depends on the horizon size δ. This is
expected as the non-local horizons utilize the information from both
sides (i.e., low and high stiffness particles) to capture the sharp strain
gradient. Additionally, with a given stiffness ratio rc, the absolute
values of the displacement components drop with increasing horizon
size δ. As the horizon size δ increases, the sharp gradient around the
void’s interface is captured more efficiently because there are more
particles to decide upon the interface behavior.

D. Three-Dimensional Polycrystalline Microstructure with Spherical
Void

The previous 3D example demonstrates the efficacy of the higher-
order stabilization scheme in the case of an elastic matrix. Here, the
example includes an elastoplastic 3D model of the polycrystalline
aggregates using a soft precipitate with a stiffness ratio rc � 0.1.
Specifically, a 3D polycrystalline microstructure consisting of 78
grains with dimensions l � 3 mm, and a soft precipitate with diam-
eter d � 0.8750 mm at the center is considered. The 3D material
domain is discretized into 48 × 48 × 48 particles with a constant
interparticle spacing h � 62.5 μm as shown in Fig. 21a. Moreover,

Fig. 21b illustrates the interior cross section of the 3D polycrystalline

microstructure along slice z � 1.5 mm without depicting the pre-
cipitate region. The polycrystal is simulated with properties ofWE43

alloy-T5 temper, as provided by Lakshmanan et al. [18] with 18 slip

systems, including 3 basal hai, 3 prismatic hai, 6 pyramidal hai, and 6
pyramidal hc� ai slip systems. The boundary conditions are the
same as those considered in Sec. III.C.
Figure 22 depicts the x and y strains, with and without control of

zero-energy modes, along the midsection z � 1.5 mm using a hori-

zon size δ � 3h. For the case of the PD schemewithout any control of
zero-energymodes (termed “no control”), an influence functionω �
1∕kξk2 is employed [52] similar to the previous example in Sec. III.C.

The no control case shows patchy/pixellated locations not just along

the precipitate interface (similar to the elastic matrix example) but
also within the grains, where one can expect strain localizations

across grain boundaries due to property variations as a function of

crystal orientations (i.e., across hard and soft grains depending on

their crystal orientations relative to the loading direction). Never-
theless, the results associated with the higher-order stabilization

scheme (termed “higher-order”) show an effective control of the

erroneous zero-energy mode oscillations.
Next, the PD results are compared against the FEM solution in

Fig. 23, which depicts the profile of equivalent strain at midsection

z � 1.5 mm for horizon sizes δ � h, 2h, and 3h. Unlike the 3D

composite microstructure in Sec. III.C, where there exist signifi-

cant strain localizations only around the interface of the precipitate;
here, there are expected to be strain concentrations across the

granular interfaces as well. In the FEM solution, the interfacial

Orientation ID:

a)

2
/

Orientation ID:

b)

Fig. 21 Three-dimensional polycrystalline microstructure with spherical void. a) A 3D polycrystalline microstructure consisting of 78 grains with
dimensions l � 3 mm and a soft precipitatewith diameterd � 0.8750 mm at the center. b) Interior of the 3Dmicrostructure along slice z � 1.5 mm. The
spherical precipitate at the center is removed for a better visualization. Grains with similar orientation ID share the same Rodrigues orientation vector.
The black lines denote grain boundaries.

Fig. 20 Variations in the displacement components at the center of the spherical precipitate in terms of the stiffness ratio rc, for different horizon sizes δ.
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strain localizations are computed to be significantly more pro-
nounced than the granular strain localizations within each crystal.
Contrastingly, the PD solution identifies both strain localizations
along the precipitate boundary as well as granular interfaces. Addi-
tionally, the PD results are stable across the three horizon sizes
δ � h, 2h, and 3h. Implementation of the higher-order stabilization
control in these examples required no additional computational
cost per time step, as the influence function values are explicitly
adjusted for each user-defined horizon interaction δ. However, as
shown by Silling andAskari [53], themaximum stable time step for
PD is, in general, also a function of the horizon radius for long-
range interactions (i.e., δ > h) and needs to be scaled based on the
von Neumann stability analysis as the horizon radius δ rises [41].

IV. Conclusions

In this paper, a higher-order approximation to the non-local defor-
mation gradient is developed to suppress zero-energy instabilitymodes
in PDmodels beyond nearest-neighbor interactions. Inmicrostructural
simulations, pixel- or voxel-based structured discretizations are often
preferred as they can be readily obtained directly from microscopy,
tomographic imaging, or numerical acquisition techniques.As a result,
a mesh-less non-ordinary state-based implementation of the PD via
Newmark’s dynamic method with artificial damping is employed for
solving deformation and stress fields on structured grids. However,
such correspondence-based PD models often suffer from zero-energy
mode oscillations, which, as studied in this paper, can be effectively
mitigated by choosing material weight functions via a Taylor series
expansion of the deformation gradient. The novelty here is a tensor-
based derivation of the linear constraint equations, which can be used
to systematically identify the particle interaction weight functions for
various user-specified horizon radii. It is demonstrated that unique
weighting value coefficients can be obtained by combining the gov-
erning equations for the desired leading truncation error, along with
additional set of constraint equations from the next higher-order
approximations that do not contain first-order interaction weight
functions.

The efficacy of the higher-order stabilization method is first
demonstrated for a simple 1D elastic cantilever bar, where results
are compared with exact and PD solutions with no stabilization
control. The zero-energy modes are demonstrated to be effectively
dampened using the proposed higher-order particle interaction
weight functions. Next, in the case of 2D polycrystalline micro-
structures, observed shear bands are shown to be stable across
different horizon sizes while being relatively sharper and more
localized within intergranular regions relative to the FEM solution.
The proposed higher-order stabilization scheme is also demon-
strated for examples involving 3D composite and polycrystalline
microstructures, along with comparisons against FE technique. In
addition to the stabilization scheme effectively suppressing the
zero-energy mode oscillations, it is shown that the PD approach,
unlike FEM, converges toward a zero displacement in the precipi-
tate with a decrease in the stiffness. Overall, the presented stabili-
zation scheme can lead to high-quality and consistent non-ordinary
state-based results for PD simulations beyond nearest-neighbor in-
teractions. Furthermore, the proposed higher-order approximation
framework can be directly applied to PD problems involving dis-
continuities such as damage/fracture propagation, once an appropri-
ate damage continuummodel is adopted. All the codes and examples
constituting the current CPPD implementation will be available
in an open-source platform to the community upon publication of
the work.

Appendix: Adaptive Dynamic Relaxation Scheme

In the absence of body forces, the equation of motion as shown in
Eq. (3) can be rewritten in a vector form as follows:

�u�x; t� � c _u�x; t� � f�u; x; t� (A1)

where c is a damping coefficient, and the force vector f is defined as

f�u; x; t� � Λ−1L�x; t�, in which Λ is a diagonal fictitious density
matrix. Based on the adaptive dynamic relaxation method, the most
desired density matrix and damping coefficient can be determined
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Fig. 23 Comparison of equivalent strain (denoted as ϵeq) (in %) between FE and PD techniques with δ � h, 2h, and 3h along the midsection at z �
1.5 mm at final strain.
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Fig. 22 Contours of a,b) ϵxx and c,d) ϵyy (in %) obtained from PD models with no control of zero-energy modes against proposed higher-order

stabilization approach with δ � 3h along midsection at z � 1.5 mm at final strain value.
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using Greschgorin’s theorem and Rayleigh’s quotient, respec-

tively [61].
Let un, _un, �un, and fn denote the displacement, velocity, accel-

eration, and force vector fields for a given material particle at t � tn,
respectively. In the central difference scheme, the velocity and accel-

eration vectors can be approximated as follows:

_un ≈
un�1 − un−1

2Δt
(A2)

�un ≈
un�1 − 2un � un−1

Δt2
(A3)

where Δt refers to the incremental time step. Substituting Eqs. (A2)

and (A3) into Eq. (A1) while rearranging the terms yields an updated

scheme for the displacement field:

un�1 � 2Δt2fn � 4un � �cΔt − 2�un−1
2� cΔt

(A4)

Accordingly, Eq. (A5) is employed to estimate u−1 for initializa-
tion of the displacement update:

u−1 � u0 − Δt _u0 � Δt2

2
�u0 (A5)

where u0, _u0, and �u0 are the initial displacement, velocity, and

acceleration vectors, respectively. The velocity and acceleration vec-

torsmay subsequently be updated using Eqs. (A2) and (A3).With the

assumption of a unit diagonal matrix Λ, the time step Δt can be

selected based on Greschgorin’s theorem [61], as expressed in the

following:

Δt ≤
���������������
4ΛiiP
j
jKijj

vuut �
�����������������

4P
jjKijj

s
�

�������������
4

kKk∞

s
(A6)

where Λii represents the diagonal coefficients of the density matrix,

K denotes the stiffness matrix of the system, and k ⋅ k∞ denotes the

vector-induced matrix ∞ norm. Because the stiffness matrix Kij is

not explicitly computed, another approximation scheme can be

applied for the computation of time step size. An appropriate value

ofΔt for the 1D PDmodel is based on thewave speed, denoted as cs,
using the Courant–Friedrichs–Lewy (CFL) condition [54]:

Δt ≤
2Δx
cs

(A7)

where Δx represents the minimal grid size, or the minimal bond

length in PD modeling. In higher-dimensional problems, however,

the CFL condition becomes stringent. For an n-dimensional problem

with a uniform grid, the critical Δt may be estimated as:

Δt ≤
2Δx
n

����������
ρ

Emax

r
(A8)

whereEmax is the largest eigenvalue of the elastic stiffnessmatrix. It is

worth noting that the CFL condition in Eq. (A8) can be conservative

because the derivation is based solely on the nearest neighbors [53].
Next, the damping ratio c is selected based on the lowest frequency

of the system using Rayleigh’s quotient [61]:

cn � 2

����������������������
�un�Tknun
�un�Tun

s
(A9)

where kn is a diagonal local stiffness matrix given by:

knii � −
1

Λii

fni − fn−1i

uni − un−1i

� −
fni − fn−1i

uni − un−1i

(A10)

Here, fni is the ith component of the force vector f, at time t � tn.
Because the local stiffnessmatrix calculation involves division by the
difference of displacements in consecutive time steps, it is plausible
to encounter a division by zero. Accordingly, the local stiffness knii is
set to zero, when the difference between displacement fields van-
ishes. Finally, a guess damping ratio c0 can be chosen to start the
computation.

Data Availability

The executable files, as well as raw/processed data required to
reproduce the findings in this paper, are available upon request.
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