
Name(s):

SUPERSYMMETRY PROBLEMS: MONDAY

(1) Symmetries.
(a) Construct an orthonormal basis of 3-dimensional space, using for two of your

vectors: ~v = (1/
√
2, 1/
√
2, 0) and ~w = (1/

√
3,−1/

√
3, 1/
√
3). Note: you will

need to find your third vector. Check that it’s an orthonormal basis.
Now describe a change of basis taking (x, y, z) in the standard basis to (x′, y′, z′)
in your new basis. Verify that the matrix that describes this satisfies the con-
dition ATA = I .

(b) Consider the set of symmetries on (x, y, z), for each t:

x′ = x+ 2ty + 3t2z

y′ = y + 3tz

z′ = z

Show that these symmetries form a group under composition (that is, doing
one such symmetry using t followed by another such symmetry using s).

(c) For the symmetry in (b), find the infinitesimal description.
(d) For O(n) prove that the condition that ATA = I turns into the condition that

AT = −A for the Lie algebra.
(e) For O(3) use the generators of the Lie algebra

JX =

 0 0 0
0 0 −1
0 1 0

 , Jy =

 0 0 1
0 0 0
−1 0 0

 Jz =
 0 −1 0

1 0 0
0 0 0


Show that

[Jx, Jy] = Jz

[Jy, Jz] = Jx

[Jz, Jx] = Jy

(f) Derive Equation (21) in Jim Gates’ notes: gates-Lect1.pdf .
(g) Suppose we have the complex matrices

sx =
1

2

[
0 i
i 0

]
, sy =

1

2

[
0 −1
1 0

]
, sz =

1

2

[
i 0
0 −i

]
and show that these satisfy the same commutation relations as for Jx, Jy, and
Jz in O(3). Characterize the matrices spanned by sx, sy, and sz. Note that this
means that at least infinitesimally, O(3) can be a symmetry of 2-dimensional
complex ordered pairs (w, z) using these relations. These (w, z) are called
spinors.

(2) Electromagnetism.
Let ~E = (E1, E2, E3) be the electric field and ~B = (B1, B2, B3) be the magnetic

field. We will work in Lorentz-Heaviside units, where the speed of light c, the
magnetic constant µ0, and the electric constant ε0 are all 1.
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Let φ be the electromagnetic scalar potential and let ~A = (A1, A2, A3) be the electro-
magnetic vector potential. Recall that ~E and ~B are given by

~E = −∂
~A

∂t
−∇φ

~B = ∇× ~A,

where∇ is the operator
(
∂
∂x
, ∂
∂y
, ∂
∂z

)
.

This problem will use the Minkowski metric ηµν = diag(−1, 1, 1, 1) for raising
and lowering of indices.
(a) Define the current 4-vector Jµ by (ρ, J1, J2, J3), and define the electromagnetic

four-potential by Aµ = (φ, ~A). Expand AµJ
µ. What is the current one-form Jµ?

(b) Define the field strength tensor Fµν by

Fµν = ∂µAν − ∂νAµ.
Write Fµν as a 4× 4 matrix in terms of the components of ~E and ~B.

(c) Two of Maxwell’s equations for the electromagnetic field are:

∇ · ~B = 0

∇× ~E = − ∂

∂t
~B

Show that these equations are equivalent to

∂ξFµν + ∂µFνξ + ∂νFξµ = 0.

(d) Write FµνF µν in terms of E and B, where E = || ~E|| and B = || ~B||.
(e) Let ~J = (J1, J2, J3). The rest of Maxwell’s equations for the electromagnetic

field are:

∇ · ~E = ρ

∂

∂t
~E −∇× ~B = − ~J

Show that these are equivalent to:

∂νF
µν = Jµ.

(3) Topologies and Chromotopologies.
In Adinkras for mathematicians, Y. Zhang writes:

An n-dimensional adinkra topology, or topology for short, is a finite con-
nected simple graph A such that A is bipartite and n-regular (every ver-
tex has exactly n incident edges). We call the two sets in the bipartition of
V (A) bosons and fermions, though the actual choice is mostly arbitrary
and we do not consider it part of the data. A chromotopology of dimension
n is a topology A such that the following holds.
• The elements of E(A) are colored by n colors . . . such that every ver-

tex is incident to exactly one edge of each color.
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• For any distinct i and j, the edges in E(A) with colors i and j form
a disjoint union of 4-cycles.

(a) Draw two different chromotopologies.
(b) Construct one of your chromotopologies as a directed graph in Sage.

You may wish to consult the documentation at:
http://www.sagemath.org/doc/prep/Quickstarts/Graphs-and-Discrete.html

or
http://www.sagemath.org/doc/reference/graphs/sage/graphs/digraph.html

(c) Can you give an example of an adinkra topology that does not admit a chro-
motopology?

(d) When defining chromotopologies in her senior thesis at Bard College, S. Naples
wrote:

Finally, every pair of edge colors {a, b} incident to a single vertex
is part of a 4-cycle of alternating edge colors, such that the edge
colors alternate abab.

Does Naples’ condition follow from Zhang’s definition of a chromotopology?
Why or why not?

(e) How many chromotopologies can you construct on at most 6 vertices, and
with n ≤ 4?

(f) What do you think it should mean for two chromotopologies to be isomor-
phic?
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