Name(s):

SUPERSYMMETRY PROBLEMS: MONDAY

(1) Symmetries.
(a) Construct an orthonormal basis of 3-dimensional space, using for two of your vectors: $\vec{v}=(1 / \sqrt{2}, 1 / \sqrt{2}, 0)$ and $\vec{w}=(1 / \sqrt{3},-1 / \sqrt{3}, 1 / \sqrt{3})$. Note: you will need to find your third vector. Check that it's an orthonormal basis.
Now describe a change of basis taking (x, y, z) in the standard basis to $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ in your new basis. Verify that the matrix that describes this satisfies the condition $A^{T} A=I$.
(b) Consider the set of symmetries on (x, y, z), for each t :

$$
\begin{aligned}
x^{\prime} & =x+2 t y+3 t^{2} z \\
y^{\prime} & =y+3 t z \\
z^{\prime} & =z
\end{aligned}
$$

Show that these symmetries form a group under composition (that is, doing one such symmetry using t followed by another such symmetry using s).
(c) For the symmetry in (b), find the infinitesimal description.
(d) For $O(n)$ prove that the condition that $A^{T} A=I$ turns into the condition that $A^{T}=-A$ for the Lie algebra.
(e) For $O(3)$ use the generators of the Lie algebra

$$
J_{X}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \quad J_{y}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] J_{z}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Show that

$$
\begin{aligned}
{\left[J_{x}, J_{y}\right] } & =J_{z} \\
{\left[J_{y}, J_{z}\right] } & =J_{x} \\
{\left[J_{z}, J_{x}\right] } & =J_{y}
\end{aligned}
$$

(f) Derive Equation (21) in Jim Gates' notes: gates-Lect1.pdf.
(g) Suppose we have the complex matrices

$$
s_{x}=\frac{1}{2}\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right], \quad s_{y}=\frac{1}{2}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad s_{z}=\frac{1}{2}\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]
$$

and show that these satisfy the same commutation relations as for J_{x}, J_{y}, and J_{z} in $O(3)$. Characterize the matrices spanned by s_{x}, s_{y}, and s_{z}. Note that this means that at least infinitesimally, $O(3)$ can be a symmetry of 2-dimensional complex ordered pairs (w, z) using these relations. These (w, z) are called spinors.
(2) Electromagnetism.

Let $\vec{E}=\left(E^{1}, E^{2}, E^{3}\right)$ be the electric field and $\vec{B}=\left(B^{1}, B^{2}, B^{3}\right)$ be the magnetic field. We will work in Lorentz-Heaviside units, where the speed of light c, the magnetic constant μ_{0}, and the electric constant ϵ_{0} are all 1 .

Let ϕ be the electromagnetic scalar potential and let $\vec{A}=\left(A^{1}, A^{2}, A^{3}\right)$ be the electromagnetic vector potential. Recall that \vec{E} and \vec{B} are given by

$$
\begin{aligned}
\vec{E} & =-\frac{\partial \vec{A}}{\partial t}-\nabla \phi \\
\vec{B} & =\nabla \times \vec{A},
\end{aligned}
$$

where ∇ is the operator $\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$.
This problem will use the Minkowski metric $\eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)$ for raising and lowering of indices.
(a) Define the current 4-vector J^{μ} by $\left(\rho, J^{1}, J^{2}, J^{3}\right)$, and define the electromagnetic four-potential by $A_{\mu}=(\phi, \vec{A})$. Expand $A_{\mu} J^{\mu}$. What is the current one-form J_{μ} ?
(b) Define the field strength tensor $F_{\mu \nu}$ by

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

Write $F_{\mu \nu}$ as a 4×4 matrix in terms of the components of \vec{E} and \vec{B}.
(c) Two of Maxwell's equations for the electromagnetic field are:

$$
\begin{aligned}
\nabla \cdot \vec{B} & =0 \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B}
\end{aligned}
$$

Show that these equations are equivalent to

$$
\partial_{\xi} F_{\mu \nu}+\partial_{\mu} F_{\nu \xi}+\partial_{\nu} F_{\xi \mu}=0 .
$$

(d) Write $F_{\mu \nu} F^{\mu \nu}$ in terms of E and B, where $E=\|\vec{E}\|$ and $B=\|\vec{B}\|$.
(e) Let $\vec{J}=\left(J^{1}, J^{2}, J^{3}\right)$. The rest of Maxwell's equations for the electromagnetic field are:

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\rho \\
\frac{\partial}{\partial t} \vec{E}-\nabla \times \vec{B} & =-\vec{J}
\end{aligned}
$$

Show that these are equivalent to:

$$
\partial_{\nu} F^{\mu \nu}=J^{\mu} .
$$

(3) Topologies and Chromotopologies.

In Adinkras for mathematicians, Y. Zhang writes:
An n-dimensional adinkra topology, or topology for short, is a finite connected simple graph A such that A is bipartite and n-regular (every vertex has exactly n incident edges). We call the two sets in the bipartition of $V(A)$ bosons and fermions, though the actual choice is mostly arbitrary and we do not consider it part of the data. A chromotopology of dimension n is a topology A such that the following holds.

- The elements of $E(A)$ are colored by n colors ...such that every vertex is incident to exactly one edge of each color.
- For any distinct i and j, the edges in $E(A)$ with colors i and j form a disjoint union of 4-cycles.
(a) Draw two different chromotopologies.
(b) Construct one of your chromotopologies as a directed graph in Sage. You may wish to consult the documentation at: http://www.sagemath.org/doc/prep/Quickstarts/Graphs-and-Discrete.html or
http://www.sagemath.org/doc/reference/graphs/sage/graphs/digraph.html
(c) Can you give an example of an adinkra topology that does not admit a chromotopology?
(d) When defining chromotopologies in her senior thesis at Bard College, S. Naples wrote:

Finally, every pair of edge colors $\{a, b\}$ incident to a single vertex is part of a 4 -cycle of alternating edge colors, such that the edge colors alternate $a b a b$.
Does Naples' condition follow from Zhang's definition of a chromotopology? Why or why not?
(e) How many chromotopologies can you construct on at most 6 vertices, and with $n \leq 4$?
(f) What do you think it should mean for two chromotopologies to be isomorphic?

