Spin operators and matrices

Spin operators

Spin vectors are usually represented in terms of their Hermitian cartesian component operators

$$
\hat{\boldsymbol{S}}=\left(\begin{array}{l}
\hat{S}_{\mathrm{x}} \\
\hat{S}_{\mathrm{y}} \\
\hat{S}_{\mathrm{x}}
\end{array}\right)
$$

Sometimes, the non-Hermitian ladder operators

$$
\hat{S}_{+}=\hat{S}_{\mathrm{x}}+\mathrm{i} \hat{S}_{\mathrm{y}} \quad \hat{S}_{-}=\hat{S}_{\mathrm{x}}-\mathrm{i} \hat{S}_{\mathrm{y}}
$$

are used. The cartesian operators are then given by

$$
\hat{S}_{\mathrm{x}}=\frac{1}{2}\left(\hat{S}_{+}+\hat{S}_{-}\right) \quad \hat{S}_{\mathrm{y}}=\frac{1}{2 \mathrm{i}}\left(\hat{S}_{+}-\hat{S}_{-}\right)
$$

Some common commutators are

$$
\left[\hat{S}_{x}, \hat{S}_{y}\right]=\mathrm{i} \hat{S}_{z} \quad\left[\hat{S}_{y}, \hat{S}_{z}\right]=\mathrm{i} \hat{S}_{x} \quad\left[\hat{S}_{z}, \hat{S}_{\mathrm{x}}\right]=\mathrm{i} \hat{S}_{y}
$$

and

$$
\left[\hat{S}_{z}, \hat{S}_{+}\right]=\hat{S}_{+} \quad\left[\hat{S}_{z}, \hat{S}_{-}\right]=-\hat{S}_{-} \quad\left[\hat{S}_{+}, \hat{S}_{-}\right]=2 \hat{S}_{z}
$$

Spin matrices - General

For a spin S the cartesian and ladder operators are square matrices of dimension $2 S+1$. They are always represented in the Zeeman basis with states $|S, m\rangle(\mathrm{m}=-\mathrm{S}, \ldots, \mathrm{S})$, in short $|m\rangle$, that satisfy

$$
\begin{aligned}
\left\langle m^{\prime}\right| \hat{S}_{\mathrm{x}}|m\rangle & =\left(\delta_{m^{\prime}, m+1}+\delta_{\left.m^{\prime}+1, m\right)} \frac{1}{2} \sqrt{S(S+1)-m^{\prime} m}\right. \\
\left\langle m^{\prime}\right| \hat{S}_{\mathrm{y}}|m\rangle & =\left(\delta_{m^{\prime}, m+1}-\delta_{\left.m m^{\prime}+1, m\right)} \frac{1}{2 \mathrm{i}} \sqrt{S(S+1)-m^{\prime} m}\right. \\
\left\langle m^{\prime}\right| \hat{S}_{\mathrm{z}}|m\rangle & =\delta_{m^{\prime}, m} m \\
\left\langle m^{\prime}\right| \hat{S}_{+}|m\rangle & =\delta_{m^{\prime}, m+1} \sqrt{S(S+1)-m^{\prime} m} \\
\left\langle m^{\prime}\right| \hat{S}_{-}|m\rangle & =\delta_{m^{\prime}+1, m} \sqrt{S(S+1)-m^{\prime} m} \\
\left\langle m^{\prime}\right| \hat{\boldsymbol{S}}^{2}|m\rangle & =\delta_{m^{\prime}, m} S(S+1)
\end{aligned}
$$

Spin matrices - Explicit matrices

For $S=1 / 2$

$$
S_{\mathrm{x}}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad S_{\mathrm{y}}=\frac{1}{2 \mathrm{i}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad S_{\mathrm{z}}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
S_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad S_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

The $|+1 / 2\rangle$ state is commonly denoted as α, the $|-1 / 2\rangle$ state as ${ }^{\beta}$.
For $S=1$

$$
\begin{array}{ll}
S_{\mathrm{x}}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & S_{\mathrm{y}}=\frac{1}{\sqrt{2} \mathrm{i}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \\
S_{+}=\sqrt{2}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) & S_{\mathrm{z}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{array}
$$

For $\mathrm{S}=3 / 2$

$$
\begin{aligned}
S_{\mathrm{x}} & =\frac{1}{2}\left(\begin{array}{cccc}
0 & \sqrt{3} & 0 & 0 \\
\sqrt{3} & 0 & 2 & 0 \\
0 & 2 & 0 & \sqrt{3} \\
0 & 0 & \sqrt{3} & 0
\end{array}\right) \quad S_{\mathrm{y}}=\frac{1}{2 \mathrm{i}}\left(\begin{array}{ccc}
0 & \sqrt{3} & 0 \\
-\sqrt{3} & 0 & 2 \\
0 & -2 & 0 \\
0 & \sqrt{3} \\
0 & 0 & -\sqrt{3} \\
0
\end{array}\right) \\
S_{\mathrm{z}} & =\left(\begin{array}{cccc}
3 / 2 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & -1 / 2 & 0 \\
0 & 0 & 0 & -3 / 2
\end{array}\right) \\
S_{+} & =\left(\begin{array}{cccc}
0 & \sqrt{3} & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & \sqrt{3} \\
0 & 0 & 0 & 0
\end{array}\right) \quad S_{-}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\sqrt{3} & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & \sqrt{3} & 0
\end{array}\right)
\end{aligned}
$$

For $S=2$

$$
\begin{aligned}
S_{\mathrm{x}} & =\frac{1}{2}\left(\begin{array}{ccccc}
0 & 2 & 0 & 0 & 0 \\
2 & 0 & \sqrt{6} & 0 & 0 \\
0 & \sqrt{6} & 0 & \sqrt{6} & 0 \\
0 & 0 & \sqrt{6} & 0 & 2 \\
0 & 0 & 0 & 2 & 0
\end{array}\right) \quad S_{y}=\frac{1}{2 \mathrm{i}}\left(\begin{array}{cccc}
0 & 2 & 0 & 0 \\
-2 & 0 & \sqrt{6} & 0 \\
0 \\
0 & -\sqrt{6} & 0 & \sqrt{6} \\
0 & 0 & -\sqrt{6} & 0 \\
2 \\
0 & 0 & 0 & -2
\end{array}\right) \\
S_{\mathrm{z}} & =\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -2
\end{array}\right) \\
S_{+}=\left(\begin{array}{cccccc}
0 & 2 & 0 & 0 & 0 \\
0 & 0 & \sqrt{6} & 0 & 0 \\
0 & 0 & 0 & \sqrt{6} & 0 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) & S_{-}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 \\
0 & \sqrt{6} & 0 & 0 & 0 \\
0 & 0 & \sqrt{6} & 0 & 0 \\
0 & 0 & 0 & 2 & 0
\end{array}\right)
\end{aligned}
$$

For $\mathrm{S}=5 / 2$

$$
\begin{aligned}
& S_{\mathrm{x}}=\frac{1}{2}\left(\begin{array}{cccccc}
0 & \sqrt{5} & 0 & 0 & 0 & 0 \\
\sqrt{5} & 0 & \sqrt{8} & 0 & 0 & 0 \\
0 & \sqrt{8} & 0 & \sqrt{9} & 0 & 0 \\
0 & 0 & \sqrt{9} & 0 & \sqrt{8} & 0 \\
0 & 0 & 0 & \sqrt{8} & 0 & \sqrt{5} \\
0 & 0 & 0 & 0 & \sqrt{5} & 0
\end{array}\right) \quad S_{y}=\frac{1}{2 \mathrm{i}}\left(\begin{array}{cccccccc}
0 & \sqrt{5} & 0 & 0 & 0 & 0 \\
-\sqrt{5} & 0 & \sqrt{8} & 0 & 0 & 0 \\
0 & -\sqrt{8} & 0 & \sqrt{9} & 0 & 0 \\
0 & 0 & -\sqrt{9} & 0 & \sqrt{8} & 0 \\
0 & 0 & 0 & -\sqrt{8} & 0 & \sqrt{5} \\
0 & 0 & 0 & 0 & -\sqrt{5} & 0
\end{array}\right) \\
& S_{\mathrm{z}}=\left(\begin{array}{cccccc}
5 / 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 / 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & -3 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & -5 / 2
\end{array}\right) \\
& S_{+}=\left(\begin{array}{cccccc}
0 & \sqrt{5} & 0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{8} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt{9} & 0 & 0 \\
0 & 0 & 0 & 0 & \sqrt{8} & 0 \\
0 & 0 & 0 & 0 & 0 & \sqrt{5} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad S_{-}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{5} & 0 & 0 & 0 & 0 & 0 \\
0 & \sqrt{8} & 0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{9} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt{8} & 0 & 0 \\
0 & 0 & 0 & 0 & \sqrt{5} & 0
\end{array}\right)
\end{aligned}
$$

