
Hypergeometric decomposition
of symmetric K3 pencils

Ursula Whitcher
uaw@umich.edu



Collaborators

Tyler Kelly, Charles Doran, Steven Sperber, Ursula Whitcher, John
Voight, Adriana Salerno



An anniversary
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Where can you find this?

DKSSVW
▶ Zeta functions of alternate mirror Calabi-Yau families (Israel

Journal of Mathematics 2018)

▶ Hypergeometric decomposition of symmetric K3 quartic
pencils (Research in the Mathematical Sciences 2020)

W
▶ Arithmetic mirror symmetry and hypergeometric structures.

(Crossing Walls in Enumerative Geometry, AMS
Contemporary Mathematics, 2021).



Grand goal
Use physics intuition to prove arithmetic theorems.



Five interesting quartics in P3

Family Equation

F4 (Fermat/Dwork) x40 + x41 + x42 + x43
F2L2 x40 + x41 + x32x3 + x33x2

F1L3 (Klein-Mukai) x40 + x31x2 + x32x3 + x33x1
L2L2 x30x1 + x31x0 + x32x3 + x33x2
L4 x30x1 + x31x2 + x32x3 + x33x0



Intriguing group actions

We can extend each of our quartics to a pencil admitting a
symplectic group action induced by multiplying coordinates by
roots of unity.

Family Equation Group

F4 x40 + x41 + x42 + x43 − 4ψx0x1x2x3 (Z/4Z)2
F2L2 x40 + x41 + x32x3 + x33x2 − 4ψx0x1x2x3 Z/8Z
F1L3 x40 + x31x2 + x32x3 + x33x1 − 4ψx0x1x2x3 Z/7Z
L2L2 x30x1 + x31x0 + x32x3 + x33x2 − 4ψx0x1x2x3 Z/4Z× Z/2Z
L4 x30x1 + x31x2 + x32x3 + x33x0 − 4ψx0x1x2x3 Z/5Z



Concrete goal
Understand the relationship between the group actions and point
counts over finite fields.



The zeta function

▶ Let q = ps and consider the finite field Fq

▶ We can organize information about point counts on a variety
X over extensions of Fq in a generating function.

Definition
The zeta function of X is

Z (X/Fq,T ) := exp

( ∞∑
s=1

#X (Fqs )
T s

s

)
∈ Q[[T ]].



Dwork and the Weil Conjectures

▶ Z (X/Fq,T ) is rational

▶ We can factor Z (X/Fq,T ) using polynomials with integer
coefficients:

Z (X/Fq,T ) =

∏n
j=1 P2j−1(T )∏n
j=0 P2j(T )

▶ dimX = n

▶ P0(t) = 1− T and P2n(T ) = 1− pnT

▶ For 1 ≤ j ≤ 2n − 1, degPj(T ) = bj , where bj = dimH j
dR(X ).
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Projective hypersurfaces

For a smooth projective hypersurface X in Pn, we have

Z (X ,T ) =
PX (T )(−1)n

(1− T )(1− qT ) · · · (1− qn−1T )
,

with PX (T ) ∈ Q[T ].



A pair of K3 surface examples

Let p = 281, ψ = 5. Using code by Edgar Costa, we compute PX :

Fermat pencil

(1− 281T )12(1 + 281T )6(1− 281T )(1 + 418T + 2812T 2)

Klein-Mukai pencil

(1 + 281T + 2812T 2 + 2813T 3 + 2814T 4 + 2815T 5 +
2816T 6)3(1− 281T )(1 + 418T + 2812T 2)



A common factor
DKSSVW18

▶ PX has a common factor Rψ(T ) of degree 3 for
⋄ ∈ {F4,F2L2,F1L3, L2L2, L4} and each appropriate ψ.

▶ Similar collections of Calabi-Yau pencils with common factors
in their zeta functions can be identified in Pn for any n.

▶ The common factor corresponds to a common Picard-Fuchs
equation satisfied by the holomorphic form.
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Berglund-Hübsch-Krawitz duality

The techniques of [DKSSVW18] use Berglund-Hübsch-Krawitz
(BHK) mirror symmetry and invertible polynomials.

Figure: Per Berglund

Figure: Tristan Hübsch
Figure: Marc Krawitz



An approach through quotients

Zeta functions of monomial deformations
of Delsarte hypersurfaces

▶ Common zeta function factor (possibly
larger) using a covering map

▶ Geometric information about the ⋄
family. Figure: Remke

Kloosterman



What about the rest of the zeta function?

In [DKSSVW20], we give a complete description of the zeta
function for each ⋄ ∈ {F4,F2L2,F1L3, L2L2, L4} using:

▶ Hypergeometric Picard-Fuchs equations

▶ Generalizations of hypergeometric functions to finite fields

▶ Extensive computational validation.



Packaging zeta functions

Let S be a finite (specified) set of bad primes and for fixed ⋄, ψ, p,
let P⋄,ψ,p be the degree 21 factor of the zeta function. Define an
incomplete L-series by

LS(X⋄,ψ, s) :=
∏
p ̸∈S

P⋄,ψ,p(p
−s)−1.

This series converges for s ∈ C in a right half-plane.
We factor LS(X⋄,ψ, s) in terms of hypergeometric L-series.



Mirror quartics

Let Yψ be the mirror family to quartics in P3 (constructed using
Greene-Plesser and the Fermat pencil). Then de la Ossa showed
(see S. Kadir’s thesis):

Z (Yψ/Fp,T ) =
1

(1− T )(1− pT )19(1− p2T )Rψ(T )
.

The common factor Rψ(T ) is invariant under mirror symmetry.
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Changing fields

For Fq containing sufficiently many roots of unity, we show in
DKSSVW20 that

Z (X⋄,ψ/Fq,T ) =
1

(1− T )(1− qT )19(1− q2T )Rψ(T )
.

We may say our zeta functions are potentially equal.



Comparing to the mirror
DKSSVW20

Let Yψ be the family of mirror quartics. Then Z (X⋄,ψ) and Z (Yψ)
are potentially equal for any ⋄.



The transient factors

Recall that for p = 281, ψ = 5:

Fermat pencil

(1− 281T )12(1 + 281T )6(1− 281T )(1 + 418T + 2812T 2)

Klein-Mukai pencil

(1 + 281T + 2812T 2 + 2813T 3 + 2814T 4 + 2815T 5 +
2816T 6)3(1− 281T )(1 + 418T + 2812T 2)



Computing zeta functions
First attempts

▶ In principle, given an equation for X , one can compute
Z (X/Fq,T ) using #X (Fq),#X (Fq2), . . . ,#X (Fqs ), where s
is approximately half the sum of the Betti numbers of X .

▶ In practice: combinatorial explosion!
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Computing zeta functions
Specific examples

Figure: Edgar Costa

The state of the art
▶ K3 surfaces in P3 or realized as double

covers of P2

▶ A handful of special threefolds or
fourfolds



Fascinating experiments

Computational experiments show intriguing behavior in zeta
function factors associated to Calabi-Yau holomorphic forms.

Figure: Philip Candelas

Figure: Xenia de la Ossa
Figure: Duco van
Straten



Computing zeta functions
The art

The zeta function is given by the characteristic polynomial of the
Frobenius action on a suitably defined p-adic cohomology space.

▶ Costa’s code: Monsky-Washnitzer cohomology

▶ DKSSVW18: Dwork cohomology

▶ Candelas–de la Ossa–van Straten ’21: Dwork cohomology and
(partially conjectural) exploitation of holomorphic
Picard-Fuchs.
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From p-adic cohomology to the zeta function

Key observation

A subspace of p-adic cohomology stable under the action of
Frobenius yields a factor of the zeta function.



An explicit counting strategy

▶ Compute (hypergeometric) Picard-Fuchs equations for all
elements of primitive cohomology.

▶ Decompose point counts for each family using finite field
hypergeometric functions with related parameters.



Hypergeometric functions

Let A,B ∈ N. Recall that a hypergeometric function is a function
on C of the form:

AFB(α;β|z) = AFB(α1, . . . , αA;β1, . . . , βB |z)

=
∞∑
k=0

(α1)k · · · (αA)k
(β1)k · · · (βB)kk!

zk ,

where α ∈ QA are numerator parameters, β ∈ QB are denominator
parameters, and the Pochhammer notation is defined by:

(x)k = x(x + 1) · · · (x + k − 1) =
Γ(x + k)

Γ(x)
.



Hypergeometric differential operators

Consider the differential operator

θ := z
d

dz

and define the hypergeometric differential operator

D(ααα;βββ | z) := (θ+β1− 1) · · · (θ+βm − 1)− z(θ+α1) · · · (θ+αn).



Group actions on primitive cohomology

For each of our pencils, we can decompose the primitive
cohomology using the characters of the symplectic group action on
monomial representatives of cohomology classes.



Picard–Fuchs equations
Fermat pencil

Proposition

The primitive middle-dimensional cohomology group
H2
prim(XF4,ψ,C) has 21 periods whose Picard–Fuchs equations are

hypergeometric differential equations as follows:

Periods Annihilated by

3 periods D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4)
6 periods D(14 ,

3
4 ; 1,

1
2 |ψ

−4)
12 periods D(12 ; 1 |ψ

−4)



Naive expectations
Fermat pencil

Periods Annihilated by Corresponding factors

3 periods D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4) 1 degree 3 factor
6 periods D(14 ,

3
4 ; 1,

1
2 |ψ

−4) 3 degree 2 factors
12 periods D(12 ; 1 |ψ

−4) 12 linear factors



Picard–Fuchs equations
Klein-Mukai pencil

Proposition

The group H2
prim(XF1L3,ψ) has 21 periods whose Picard–Fuchs

equations are hypergeometric differential equations as follows:

Periods Annihilated by

3 periods D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4)
3 periods D( 1

14 ,
9
14 ,

11
14 ;

1
4 ,

3
4 , 1 |ψ

4)
3 periods D(−3

14 ,
1
14 ,

9
14 ; 0,

1
4 ,

3
4 |ψ

4)
3 periods D(−5

14 ,
−3
14 ,

1
14 ;

−1
4 , 0,

1
4 |ψ

4)
3 periods D( 3

14 ,
5
14 ,

13
14 ;

1
4 ,

3
4 , 1 |ψ

4)
3 periods D(−1

14 ,
3
14 ,

5
14 ; 0,

1
4 ,

3
4 |ψ

4)
3 periods D(−11

14 ,
−1
14 ,

5
14 ;

−1
4 , 0,

1
4 |ψ

4)



Naive expectations
Klein-Mukai pencil

Periods Annihilated by Corresponding factors

3 periods D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4) 1 degree 3 factor
3 periods D( 1

14 ,
9
14 ,

11
14 ;

1
4 ,

3
4 , 1 |ψ

4) 1 degree 3 factor
3 periods D(−3

14 ,
1
14 ,

9
14 ; 0,

1
4 ,

3
4 |ψ

4) 1 degree 3 factor
3 periods D(−5

14 ,
−3
14 ,

1
14 ;

−1
4 , 0,

1
4 |ψ

4) 1 degree 3 factor
3 periods D( 3

14 ,
5
14 ,

13
14 ;

1
4 ,

3
4 , 1 |ψ

4) 1 degree 3 factor
3 periods D(−1

14 ,
3
14 ,

5
14 ; 0,

1
4 ,

3
4 |ψ

4) 1 degree 3 factor
3 periods D(−11

14 ,
−1
14 ,

5
14 ;

−1
4 , 0,

1
4 |ψ

4) 1 degree 3 factor



Naive expectations can fail

Recall that for p = 281, ψ = 5:

Klein-Mukai pencil

(1 + 281T + 2812T 2 + 2813T 3 + 2814T 4 + 2815T 5 +
2816T 6)3(1− 281T )(1 + 418T + 2812T 2)

We do not have 7 cubic factors!
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The Gamma function and Gauss sums

One may define the rising factorials used in hypergeometric
functions as ratios of Gamma functions.

Γ(z) =

∫ ∞

0
tz−1e−t dt.

Over finite fields, a Gauss sum plays the role of a gamma function.

▶ Let ω : F×
q → C× be a generator of the character group on F×

q

▶ Let Θ: Fq → C× be a nontrivial (additive) character.

For m ∈ Z, define the Gauss sum

g(m) :=
∑
x∈F×

q

ω(x)mΘ(x). (1)
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Finite field hypergeometric sums
The classic definition

Following Greene, Katz, McCarthy, Beukers–Cohen–Mellit. . .

Assumption

Set q× = q − 1 and suppose for all i = 1, . . . , d

q×αi , q
×βi ∈ Z.

Definition
For t ∈ F×

q , we define the finite field hypergeometric sum by

Hq(ααα,βββ | t) := − 1

q×

q−2∑
m=0

ω((−1)d t)mG (m +αααq×,−m − βββq×)

G (m +αααq×,−m − βββq×) :=
d∏

i=1

g(m + αiq
×)g(−m − βiq

×)

g(αiq×)g(−βiq×)
.
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A plausibility check

▶ Our common factor corresponds to D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4).

▶ We have q×αi , q
×βi ∈ Z when 4|q − 1.



A plausibility check

▶ Our common factor corresponds to D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4).

▶ We have q×αi , q
×βi ∈ Z when 4|q − 1.



Hypergeometric innovators

Figure: Frits Beukers

Figure: Henri Cohen

Figure: Anton Mellit



Defined over Q

Definition (Beukers–Cohen–Mellit)

We say hypergeometric parameters ααα,βββ are defined over Q if the
field generated by the coefficients of the polynomials

d∏
j=1

(x − e2πiαj ) and
d∏

j=1

(x − e2πiβj ).

is Q.



The common factor parameters are defined over Q

ααα : 1
4 ,

1
2 ,

3
4

(x − e2πi/4)(x − e2πi/2)(x − e2·3πi/4) = (x − i)(x + 1)(x + i)

βββ : 1, 1, 1

(x − e2πi )(x − e2πi )(x − e2πi ) = (x − 1)3.



Finite field hypergeometric sums
The Beukers–Cohen–Mellit definition

▶ We say q is good for ααα,βββ if q is coprime to the least common
denominator of ααα ∪ βββ.

▶ If ααα,βββ are defined over Q, we have positive integers
p1, . . . , pr , q1, . . . , qs such that

d∏
j=1

(x − e2πiαj )

(x − e2πiβj )
=

∏r
j=1 x

pj − 1∏s
j=1 x

qj − 1
.

▶ Using the p1, . . . , pr , q1, . . . , qs , Beukers–Cohen–Mellit define
a finite field hypergeometric sum Hq(ααα,βββ | t) that works for
all good q.



Finite field hypergeometric sums
The Beukers–Cohen–Mellit definition

▶ We say q is good for ααα,βββ if q is coprime to the least common
denominator of ααα ∪ βββ.

▶ If ααα,βββ are defined over Q, we have positive integers
p1, . . . , pr , q1, . . . , qs such that

d∏
j=1

(x − e2πiαj )

(x − e2πiβj )
=

∏r
j=1 x

pj − 1∏s
j=1 x

qj − 1
.

▶ Using the p1, . . . , pr , q1, . . . , qs , Beukers–Cohen–Mellit define
a finite field hypergeometric sum Hq(ααα,βββ | t) that works for
all good q.



Finite field hypergeometric sums
The Beukers–Cohen–Mellit definition

▶ We say q is good for ααα,βββ if q is coprime to the least common
denominator of ααα ∪ βββ.

▶ If ααα,βββ are defined over Q, we have positive integers
p1, . . . , pr , q1, . . . , qs such that

d∏
j=1

(x − e2πiαj )

(x − e2πiβj )
=

∏r
j=1 x

pj − 1∏s
j=1 x

qj − 1
.

▶ Using the p1, . . . , pr , q1, . . . , qs , Beukers–Cohen–Mellit define
a finite field hypergeometric sum Hq(ααα,βββ | t) that works for
all good q.



A comparison

▶ The classic and BCM definitions of finite field hypergeometric
sums agree when they are both defined.

▶ When ααα,βββ are defined over Q, the BCM definition works for
all but finitely many primes.



A practical difficulty

▶ The Klein-Mukai pencil has 3 periods annihilated by
D( 1

14 ,
9
14 ,

11
14 ;

1
4 ,

3
4 , 1 |ψ

4).

▶ But (x − e2πi/14)(x − e18πi/14)(x − e22πi/14) ̸∈ Q[x ], so we
don’t have a BCM hypergeometric sum corresponding to
these parameters.

▶ The classic definition requires q ≡ 1 (mod 28).
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Divide and conquer

Definition
We say that q is splittable for ααα,βββ if there exist partitions

ααα = ααα0 ⊔ααα′ and βββ = βββ0 ⊔ βββ′

where ααα0,βββ0 are defined over Q and

q×α′
i , q

×β′j ∈ Z

for all α′
i ∈ ααα′ and all β′j ∈ βββ′.



A hybrid definition

▶ In [DKSSVW20], we define a finite field hypergeometric sum
Hq(ααα;βββ | t) ∈ Kααα,βββ ⊆ C for any q that is good and splittable
for ααα,βββ.

▶ We package these sums in L-series for any prime power q such
that ααα,βββ is splittable:

Lq(H(ααα,βββ | t),T ) := exp

(
−

∞∑
r=1

Hqr (ααα;βββ | t)
T r

r

)
∈ 1+TKααα,βββ[[T ]]
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What were those bad primes in the L-series?

Family Group Bad primes

F4 (Z/4Z)2 2
F2L2 Z/8Z 2
F1L3 Z/7Z 2,7
L2L2 Z/4Z× Z/2Z 2
L4 Z/5Z 2,5

Also bad
Primes dividing the numerator or denominator of either ψ4 or
ψ4 − 1.
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Primes dividing the numerator or denominator of either ψ4 or
ψ4 − 1.



Main result
Fermat pencil

Let t = ψ−4.
For the Fermat pencil F4,

LS(XF4,ψ, s) = LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s)

· LS(H(14 ,
3
4 ; 0,

1
2 | t), s − 1, ϕ−1)

3

· LS(H(12 ; 0 | t),Q(
√
−1), s − 1, ϕ√−1)

6

where

ϕ−1(p) :=

(
−1

p

)
= (−1)(p−1)/2 ↔ Q(

√
−1) |Q

ϕ√−1(p) :=

(√
−1

p

)
= (−1)(Nm(p)−1)/4 ↔ Q(ζ8) |Q(

√
−1).



A field of definition

Using our L-series for the Fermat pencil, one may deduce that the
minimal field of definition for its Néron-Severi group is
Q(ζ8,

√
1− ψ2,

√
1 + ψ2).



Main result
Stay tuned for a table

We can summarize our findings in the following table . . .



Pencil Degree ααα βββ Base Field

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

F4 2 · 3 = 6 1
4 ,

3
4 0, 12 Q

2 · 6 = 12 1
2 0 Q(

√
−1), from Q

F1L3
3 1

4 ,
1
2 ,

3
4 0, 0, 0 Q

18 1
14 ,

9
14 ,

11
14 0, 14 ,

3
4 Q(ζ7), from Q(

√
−7)

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

3 · 2 = 6 - - Q(ζ8), from Q

F2L2
2 1

4 ,
3
4 0, 12 Q

2 1
2 0 Q(

√
−1), from Q

8 1
8 ,

5
8 0, 14 Q(ζ8), from Q(

√
−1)

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

L2L2
2 · 4 = 8 - - Q(

√
−1), from Q

2 1
4 ,

3
4 0, 12 Q

8 1
8 ,

3
8 ,

5
8 ,

7
8 0, 14 ,

1
2 ,

3
4 Q(

√
−1), from Q

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

L4 1 · 2 = 2 - - Q
16 1

5 ,
2
5 ,

3
5 ,

4
5 0, 14 ,

1
2 ,

3
4 Q(ζ5), from Q
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