Task Energy Demands, Physical Work Capacity and Fatigue

Thomas J. Armstrong
Revised 12/1/20


Cardiopulmonary Responses to Work

Energy Demands

Table 1: Average Energy Consumption (liters O2/min)1 for females by body weight2.
Females 18-24
Females 55-64
ml/Kg 5% Avg 95% 5% Avg 95%
/min 45Kg 58Kg 82Kg 47Kg 65Kg 92Kg
45.4 58.2 82.3 47.3 65.4 92.3
Sleep 3.20 0.15 0.19 0.26 0.15 0.21 0.30
Sitting 4.00 0.18 0.23 0.33 0.19 0.26 0.37
Standing 4.80 0.22 0.28 0.39 0.23 0.31 0.44
Walk@2.0mph 9.00 0.41 0.52 0.74 0.43 0.59 0.83
Walk@3.0mph 12.50 0.57 0.73 1.03 0.59 0.82 1.15
Walk @4.0 16.00 0.73 0.93 1.32 0.76 1.05 1.48
Walk@4.5mph 20.00 0.91 1.16 1.65 0.95 1.31 1.85
Run@5.omph 24.00 1.09 1.40 1.97 1.13 1.57 2.21
Run@5.5mph 29.00 1.32 1.69 2.39 1.37 1.90 2.68
Bicyle@13.0 31.40 1.43 1.83 2.58 1.48 2.06 2.90
Run@7.0mph 38.00 1.73 2.21 3.13 1.80 2.49 3.51
Run@8.0mph 48.00 2.18 2.79 3.95 2.27 3.14 4.43
Run@10.0mph 57.00 2.59 3.32 4.69 2.69 3.73 5.26
Comp Swim 68.50 3.11 3.99 5.64 3.24 4.48 6.32

Table 2: Average Energy Consumption (liters O2/min)1 for males by body weight2.
Males 18-24
Males 55-64
5% Avg 95% 5% Avg 95%
ml/Kg
/min
56Kg 73Kg 101 Kg 57 Kg 77 Kg 101 Kg
Sleep 3.20 0.18 0.23 0.32 0.18 0.25 0.32
Sitting 4.00 0.23 0.29 0.40 0.23 0.31 0.40
Standing 4.80 0.27 0.35 0.48 0.27 0.37 0.48
Walk@2.0mph 9.00 0.51 0.66 0.91 0.51 0.70 0.91
Walk@3.0mph 12.50 0.70 0.91 1.26 0.71 0.97 1.26
Walk @4.0 16.00 0.90 1.17 1.61 0.91 1.24 1.61
Walk@4.5mph 20.00 1.13 1.46 2.02 1.14 1.55 2.02
Run@5.omph 24.00 1.35 1.76 2.42 1.36 1.85 2.42
Run@5.5mph 29.00 1.63 2.12 2.93 1.65 2.24 2.93
Bicyle@13.0 31.40 1.77 2.30 3.17 1.78 2.43 3.17
Run@7.0mph 38.00 2.14 2.78 3.83 2.16 2.94 3.83
Run@8.0mph 48.00 2.71 3.51 4.84 2.73 3.71 4.84
Run@10.0mph 57.00 3.21 4.17 5.75 3.24 4.40 5.75
Comp Swim 68.50 3.86 5.01 6.91 3.89 5.29 6.91
1Exercise Testing and Training of Apparently Healthy Individuals: A Hand Book for Physicians, The American Heart Association, 1972
2 National Health Survey data

For a more detailed metabolic analysis see the UofM Energy Expenditure Prediction ProgramTM (EEPP) software

Problem 1: Predict the energy demand for 21 and 57.5 year old males and females of average weight and condition walking at 3mph and 5mph?

Physical Work Capacity, PWC

Figure 2: Heart rate versus energy expenditure rate.

Predicting Physical Work Capacity, PWC (Also Aerobic Capacity, Emax, VO2max, etc.)

Table 3: Physical Work Capacities3 expressed as ml O2 /kg body mass/min
Female
Maximal Oxygen Uptake (ml/kg/min)
Age Low Fair Average Good High
20-29 <24 24-30 31-37 38-48 49+
30-39 <20 20-27 38-33 34-44 45+
40-49 <17 17-23 24-30 31-41 42+
50-59 <15 15-20 21-27 28-37 38+
60-69 <13 13-17 18-23 24-34 35+
Males
Age Low Fair Average Good High
20-29 <25 25-33 34-42 43-52 53+
30-39 <23 23-30 31-38 39-48 49+
40-49 <20 20-26 27-35 36-44 45+
50-59 <18 18-24 25-33 34-42 43+
60-69 <16 16-22 23-30 31-40 41+

3 Exercise Testing and Training of Apparently Healthy Individuals: A Hand Book for Physicians, The American Heart Association, 1972

Problem 2: From Table 3, what would be the predicted physical work capacity for 25 and 50 year old males and females of average weight and condition? (use body weights from Tables 1 and 2)

Fatigue

Endurance

Problem 3: Given a 35 year old female with PWC = 12 Kcal/min & a job that requires 6 Kcal/min, calculate Tend

Calculating Fatigue Allowance

Problem 4

Updated fatigue curves (Wu and Wang 2002)

Based on 6 healthy males and females between 25 & 30 years of age.

MAWT=95.33xe-7.28x%VO2max, r2=0.83; SEE=1.09 hour

MAWT=26.12xe-4.81x%RHR, r2=0.87 See= 1.07 hour

MAWT=37.80xe-6.366x%RVO2, r2=0.83 SEE=1.12 hour

Where:

  1. MAWT = Maximum Acceptable Work Time (hours)
  2. VO2max = Maximum oxygen uptate rate (aerobic capacity)
  3. %VO2max = Percent of maximum aerobic Capacity = (VO2work ± VO2rest)/(VO2max ± VO2rest) x 100%.
  4. %RHR = Perent of Relative Heart Rate = (HRwork ± HRrest)/(HRmax ± HRrest) x 100%,

References

Bink, B. 1962, The physical work capacity in relatition to working time and age. Ergonomics, 5, 25-28.

Bonjer, F. 1962, Actual energy expenditure in relation to the physical work capacity. Ertonomics, 5, 29-31.

Borg, G. Psycholphysical scaling with applications in physical work and the perception of exertion, Scand J. Work Environ Health , 16(Suppl 1): 55-58, 1990.

Garet M, Boudet G, Montaurier C, Vermorel M, Coudert J, Chamoux A. Estimating relative physical workload using heart rate monitoring: a validation by whole-body indirect calorimetry. European journal of applied physiology. 2005 May 1;94(1-2):46-53.

Gibreth: The Writings of the Gilbreths,W. Spriegel, and C. Myers (eds.), Homewood, NJ: Richard D. Irwin,Inc

McArdle, W., F. Katch, V. Katch 1996, Exercise Physiology: Energy, Nutrition, and Human Performance. Fourth Edition, Baltimore, MD: Williams &Wilkin.

Garg, A., Chaffin, D.B. and Herrin, G.D., 1978. Prediction of metabolic rates for manual materials handling jobs. American Industrial Hygiene Association Journal, 39(8), pp.661-674.

Schmidt, Robert F., and Gerhard Thews, eds. Human Physiology. Springer Science & Business Media, 2013. pp. 647-648. https://books.google.com/books?hl=en&lr=&id=8WrmCAAAQBAJ&oi=fnd&pg=PA3&dq=robert+schmidt+human+physiology+&ots=9-6Buav6Bw&sig=2sNwx4UjOmCG7Kmnx-zh5YZ-4ts#v=onepage&q=robert%20schmidt%20human%20physiology&f=false

Wu HC, Wang MJ. Relationship between maximum acceptable work time and physical workload. Ergonomics. 2002 Mar 1;45(4):280-9.