Michael Thouless

Publications  

(ISI h = 45, citations = 6,800)

 

Index

 

Some significant papers                                                                             

 

A Mechanics of Interfaces

      (i) Fracture of interfaces                                                                          

      (ii) Delamination of films and coatings                                                    

      (iii) Buckling-driven delamination            

      (iv) Adhesive joints and interfacial fracture         

B. Cohesive-Zone Models and Fracture

      (i) General concepts

      (ii) Application of cohesive-zone models to adhesive joints                      

      (iii) Application of cohesive-zone models to welds and weld-bonds         

C. Cracking in Films and Coatings                                                             

D. Friction and Wear                                                                                    

            E. Time-Dependent Deformation, Fracture and Damage

      (i) Bulk materials                                                                                     

      (ii) Thin films                                                                                           

      (iii) Fracture of polymers                                                                         

      (iv) Self-healing of polymers                                                                    

F. Use of Fracture for Fabrication at Small Scales

      (i) Fabrication of nano- / bio- devices                                                      

      (ii) Brittle machining                                                                                

      (iii) Ion-cut synthesis                                                                                

G. Composites

      (i) Ceramic-matrix composites                                                                

      (ii) Polymer-matrix composites                                                                

      (iii) Nano-composites                                                                               

H. Miscellaneous

      (i) Engineering education                                                                         

      (ii) Electromigration                                                                                

      (iii) Optical properties                                                                             

      (iv) Nuclear materials                                                                              

      (v) Others                                                                                                 

 

Patents                                                                                                          


Some significant papers

Mechanics of mixed-mode delamination [A(i)1]

M. D. Thouless, A. G. Evans, M. F. Ashby and J. W. Hutchinson, "The Edge Cracking and Spalling of Brittle Plates," Acta Metallurgica, 35, 1333-1341 (1987).

      This was the paper that first identified and explained the mechanics of the KII = 0 path by which a crack propagates parallel to a free surface.  This paper could be viewed as being one of the pre-cursors for a major global resurgence of research in the mechanics of interfaces and thin films.  An immediate follow-on to this work were the author's own papers on spalling and delamination of films, such as the work in 1988 [A2, A3]

 

Statistical effects of strength on fiber pull-out from composites [G(i)3]

M. D. Thouless and A. G. Evans, "Effects of Pull-Out on the Mechanical Properties of Ceramic-Matrix Composites," Acta Metallurgica, 36, 517-522 (1988).

      Although there had been previous attempts to incorporate statistical effects on the pull-out of fibers from composites, and how this influenced the toughness, this was the first paper to do this in a complete and rigorous fashion.

 

Crack spacing for cracks in coatings and thin films [C1]

M. D. Thouless, "Crack Spacing in Brittle Films on Elastic Substrates," Journal of the American Ceramic Society, 73, 2144-2146 (1990).

      This was the first paper to use fracture mechanics to relate the crack spacing to the geometry and stresses in a coated system.  A subsequent paper in 1992 [C3] developed this in a more sophisticated fashion, and provided experimental validation in the form of a model system consisting of a high-Tc superconducting film.  Later experimental papers include [C8] that showed how statistics affects the crack spacing, and how to control the spacing experimentally, and how to use the energy-release rate associated with channel cracks to monitor crack kinetics [C9]

 

Effect of surface diffusion on grain-boundary grooving [E(ii)1]

M. D. Thouless, "Effect of Surface Diffusion on the Creep of Thin Films and Sintered Arrays of Particles," Acta Metallugica et Materialia, 41, 1057-1064 (1993).

      This paper extended the Mullins' solution for grain-boundary grooving by including the effects of surface diffusion.  This analysis illustrated the importance of surface diffusion on relaxation by diffusive creep mechanisms in thin films, since the stresses are biaxial preventing in-plane diffusion.  This led to the realization that stress relaxation can be suppressed by passivation layers (and explains the anomalous relaxation of aluminum films).  These concepts were explored experimentally in 1993 and 1996 [G(ii)2, G(ii)7]

 

A mode-I cohesive-zone model for adhesive fracture [B(ii)1]

Q. D. Yang, M. D. Thouless and S. M. Ward, "Numerical Simulations of Adhesively-Bonded Beams Failing with Extensive Plastic Deformation," Journal of the Mechanics and Physics of Solids, 47, 1337-1353 (1999).

      This was the first paper to recognize that the concept of a cohesive-zone could be used as the physical representation of how an entire adhesive layer interacts with the surrounding material, and to determine the characteristic cohesive properties experimentally.  We also demonstrated the powerful ability of this technique to predict (not just model) fracture behavior in plastically-deforming structures.  This view that a cohesive-zone can represent the physics of a relatively large-scale entity, and is not just a numerical tool, is now common-place in the adhesives community.  This paper set up the original cohesive-zone model that my group subsequently adapted and used with great success since then

 

A mixed-mode cohesive-zone model for adhesive fracture [B(ii)5]

Q. D. Yang and M. D. Thouless, "Mixed-mode fracture analyses of plastically-deforming adhesive joints," International Journal of Fracture, 110, 175-187 (2001).

      The work described above was extended to mixed-mode fracture.  We demonstrated that we could measure mode-I and mode-II cohesive parameters, and use these parameters in a predictive fashion.  It is important to appreciate that we measured parameters in one set of geometry, and predicted behavior in completely different configurations of plastically-deforming geometries, with the predictions being very high-fidelity in terms of predicted loads and displacements.  A further example showing the power of this work is given in the work on the lap-shear geometry [B(ii)8] in 2002.

 

Analysis for role of shear on delamination [A(i)9; A(i)13]

S. Li, J. Wang and M. D. Thouless, "The Effects of Shear on Delamination of Beam-Like Geometries," Journal of the Mechanics and Physics of Solids, 52, 193-214 (2004).

M. D. Thouless, "Shear Forces, Root Rotations, Phase Angles and Delamination of Layered Materials," Engineering Fracture Mechanics, 191, 153-167 (2018).

      The role of transverse shear forces on delamination problems (such as the DCB) has generated much approximate analysis since the 1960s.  In A(i)18 we presented a rigorous analysis in which we showed how the contribution to the energy-release rate and phase angle for a laminated structure subjected to shear could be separated from the effects of any bending moment at the crack tip, and expressed as crack-length independent expressions.  The additional expressions for the two forms of shear (symmetrical and non-symmetrical) that we developed complement the expressions given by Suo and Hutchinson for the effect of bending moments and axial loads, to provide a master set of expressions from which the energy-release rate and phase angle of any arbitrary loading on a laminated structure can be determined.  A(i)22, takes this analysis further and rationalizes many of the expressions in the literature for shear corrections with their effects on phase angles, root rotations, effective crack lengths and elastic foundations, showing how they are all connected.

 

Crack deflection at interfaces [A(i)11]

J. P. Parmigiani and M. D. Thouless, "The Roles of Toughness and Cohesive Strength on Crack Deflection," Journal of the Mechanics and Physics of Solids, 54, 266-287 (2006).

      A model for crack deflection at interfaces for composites was given by Cook and Gordon in the 1960s.  This was based on the concept of interfacial strength.  In 1989, Hutchinson and co-workers developed a model based on interfacial toughness.  (Independently, I came up with the same criterion in the same year, but based on an approximate analysis, and only for isotropic systems [G(i)5]).  In this paper we showed how a cohesive-zone model, which incorporates the concepts of both strength and toughness results in a deflection criterion that is probably more aligned with the strength criterion.  (We did also show that we could reproduce the classical kink-based analysis under appropriate limits, to rule out any cohesive-length scale artifacts).  A key conclusion of this study is that it should be possible to design interfaces that both deflect cracks and are tough!  All one needs is a weak tough interface, such as might be provided by a polymer interface in a ceramic matrix.  The classical fracture-mechanics analyses predict that one can only deflect cracks into interfaces that don't dissipate energy efficiently.

 

Crack spacing for films on compliant substrates [C6]

M. D. Thouless, Z. Li, N. J. Douville and S. Takayama,"Periodic Cracking of Films Supported on Compliant Substrates," Journal of the Mechanics and Physics of Solids, 59, 1927-1937 (2011).

      When a stiff film is supported on a complaint substrate, fracture mechanics tells us that cracks in the film will penetrate into the substrate.  The calculation of the crack spacing is then complicated by the fact that the crack depth is no longer dictated by the film thickness.  In systems with extreme mismatches of moduli, such as such as metal films on elastomers, the crack can penetrate in a controlled fashion orders of magnitude deeper into the substrate than the film thickness.  This was the first paper to address this problem, and to provide an analysis of how the crack spacing depends on the properties of the film and substrate, and on the applied strain.  A later paper showed the sequence by which channel cracks develop in a system where cracks penetrate the interface [C8].

The relationship between cohesive-zone models and LEFM [B(i)5]

R. B. Sills and M. D. Thouless, "Cohesive-Length Scales for Damage and Toughening Mechanisms," International Journal of Solids and Structures 55, 32-43 (2015).        

      This is part of a series of other papers [B(i)1, B(i)4], in which my group has explored the concept of cohesive-length scales, and how cohesive-zone models make a connection to classical concepts of LEFM.  We have demonstrated the expected result that if the cohesive-length scale is small there is a region remote from the crack tip in which the stresses follow an inverse-root-distance field.  What is a bit surprising is how small this region can be, yet still have the strength well-predicted by LEFM.  Less well appreciated is the fact that if one describes the phase angle in terms of the ratio of the shear and normal work done at the crack tip, one can get beautiful agreement with the results of LEFM.  Note: the stresses agree with LEFM away from the crack tip, not close to it, but the partition of energy agree close to the crack tip, not away from it!  This means that LEFM mixed-mode failure criteria work very well with correctly formulated cohesive-zone models.  We have shown how the phase angle moves systematically away from the LEFM value as the cohesive-length scale is increased. We have also explored what happens when the second Dundurs' parameter is non-zero, and the crack-tip phase angle can't be defined by a continuum theory.  Here the cohesive-zone model provides a natural length scale, and we have shown that this length scale is a constant for a given law (and the phase angle scales as expected with b).

Cohesive strength, interfacial toughness, and their roles in the adhesion of ice [Aii(10)]

Kevin Golovin, Abhishek Dhyani, M. D. Thouless and Anish Tuteja, "Low-Interfacial Toughness Materials for Effective Large-Scale Deicing," Science, 364, 371-375 (2019).  (Supplemental Information)

         Traditionally, the ice community considers the design of ice-resistant coatings from a strength perspective: the focus is on reducing the strength of the interface.  In this paper, we introduced the notion that design of ice-resistant coatings can require consideration of the interfacial toughness between the coating and ice, rather than merely the interfacial strength, and analyze the problem from a cohesive-zone perspective.  We show that there is a transition in the delamination.  When the bonded area is relatively small, strength is the dominant parameter, and the force to delaminate a layer of ice increases with the bonded area.  However, there is a transition at larger length scales when the dominant parameter is the interfacial toughness, and the force required to delaminate a layer of ice becomes independent of the bonded area.  This is significant, because it represents a paradigm shift for design of larger structures such as wind-turbine blades.  We use a cohesive-zone to assess the nature of coatings that might result in low-toughness interfaces, and show it is possible to achieve coatings that have both low cohesive strengths and low toughness.  From a mechanics perspective this article provides an nice model experimental demonstration of cohesive models.


A Mechanics of Interfaces

(i) Fracture of interfaces

1.     M. D. Thouless, A. G. Evans, M. F. Ashby and J. W. Hutchinson, "The Edge Cracking and Spalling of Brittle Plates," Acta Metallurgica, 35, 1333-1341 (1987).

2.     H. C. Cao, M. D. Thouless and A. G. Evans, "Residual Stresses and Cracking in Brittle Solids Bonded with a Thin Ductile Layer," Acta Metallurgica, 36, 2037-2046 (1988).

3.     M. D. Thouless, "The Role of Fracture Mechanics in Adhesion," MRS Symposium Proceedings, 119, 51-62 (1988).

4.     M. D. Thouless and A. G. Evans, "Comment on the Spalling and Edge-Cracking of Plates," Scripta Metallurgica et Materialia, 24, 1507-1510 (1990).

5.     M. D. Thouless, "Fracture of a Model Interface under Mixed-Mode Loading," Acta Metallurgica et Materialia, 38, 1135-1140 (1990).

6.     M. D. Thouless, "Mixed-Mode Fracture of a Lubricated Interface," Acta Metallurgica et Materialia, 40, 1281-1286 (1992).

7.     H. Ji, G. S. Was and M. D. Thouless, "Measurement of the Niobium/Sapphire Interface Toughness via Delamination," Engineering Fracture Mechanics, 61, 163-171 (1998).

8.     H. Ji, G. S. Was and M. D. Thouless, "Determination of the Fracture Toughness of the Niobium/Sapphire Interface," MRS Symposium Proceedings, 522, 325-338 (1998).

9.     S. Li, J. Wang and M. D. Thouless, "The Effects of Shear on Delamination of Beam-Like Geometries," Journal of the Mechanics and Physics of Solids, 52, 193-214 (2004).

10.  K. T. Turner, M. D. Thouless and S. M. Spearing, "Mechanics of Wafer Bonding: Effect of Clamping," Journal of Applied Physics, 95, 349-355 (2004).

11.  J. P. Parmigiani and M. D. Thouless, "The Roles of Toughness and Cohesive Strength on Crack Deflection," Journal of the Mechanics and Physics of Solids, 54, 266-287 (2006).

12.  M. D. Thouless, "The Effect of Transverse Shear on the Delamination of Edge-Notch Flexure and 3-Point Geometries," Journal of Composites B, 40, 305-312 (2009).

13.  M. D. Thouless, "Shear Forces, Root Rotations, Phase Angles and Delamination of Layered Materials," Engineering Fracture Mechanics, 191, 153-167 (2018).

 

(ii) Delamination of films and coatings

1.     M. S. Hu, M. D. Thouless and A. G. Evans, "The Decohesion of Thin Films from Brittle Substrates," Acta Metallurgica, 36, 1301-1307 (1988).

2.     M. D. Drory, M. D. Thouless and A. G. Evans, "On the Decohesion of Residually-Stressed Thin Films," Acta Metallurgica, 36, 2019-2028 (1988).

3.     M. D. Thouless, "Decohesion of Films with Axisymmetric Geometries," Acta Metallurgica, 36, 3131-3135 (1988).

4.     M. D. Thouless, "Some Mechanics for the Adhesion of Thin Films," Thin Solid Films, 181, 397-406 (1989).

5.     M. D. Thouless, "Cracking and Delamination of Coatings," Journal of Vacuum Science & Technology, A9, 2510-2515 (1991).

6.     M. D. Thouless and H. M. Jensen, "Elastic Fracture Mechanics of the Peel-Test Geometry," Journal of Adhesion, 38, 185-197 (1992).

7.     M. D. Thouless and H. M. Jensen, "The Effect of Residual Stresses on Adhesion Measurements," Journal of Adhesion Science and Technology, 8, 579-586 (1994).

8.     M. D. Thouless, "Fracture Mechanics for Thin-Film Adhesion," IBM Journal of Research and Development, 38, 367-377 (1994).

9.     M. D. Thouless, "An Analysis of Spalling in the Microscratch Test," Engineering Fracture Mechanics, 61, 75-81 (1998).

10.  Kevin Golovin, Abhishek Dhyani, M. D. Thouless and Anish Tuteja, "Low-Interfacial Toughness Materials for Effective Large-Scale Deicing," Science, 364, 371-375 (2019).  (Supplemental Information)

 

(iii) Buckling-driven delamination

1.     J. W. Hutchinson, M. D. Thouless and E. G. Liniger, "Growth and Configurational Stability of Circular, Buckling-Driven Film Delaminations," Acta Metallurgica et Materialia, 40, 295-308 (1992).

2.     M. D. Thouless, J. W. Hutchinson and E. G. Liniger, "Plane-Strain, Buckling-Driven Delamination of Thin Films: Model Experiments and Mode-II Fracture," Acta Metallurgica et Materialia, 40, 2639-2649 (1992).

3.     M. D. Thouless, "Combined Cracking and Buckling of Films," Journal of the American Ceramic Society, 76, 2936-2938 (1993).

4.     H. M. Jensen and M. D. Thouless, "Effects of Residual Stresses in the Blister Test," International Journal of Solids and Structures, 30, 779-795 (1993).

5.     M. D. Thouless, H. M. Jensen and E. G. Liniger, "Delamination from Edge Flaws," Proceedings of the Royal Society, A447, 271-279 (1994).

6.     H. M. Jensen and M. D. Thouless, "Buckling Instability of Straight Edge Cracks," Journal of Applied Mechanics, 62, 620-625 (1995).

 

(iv) Adhesive joints and interfacial fracture

1.     M. D. Thouless, "Fracture Resistance of an Adhesive Interface," Scripta Metallurgica et Materialia, 26, 949-951 (1992).

2.     M. D. Thouless, M. S. Kafkalidis, S. M. Ward and Y. Bankowski, "Toughness of Plastically-Deforming Asymmetric Joints," Scripta Materialia, 37, 1081-1087 (1997).

3.     M. D. Thouless, M. S. Kafkalidis, J. L. Adams, S. M. Ward, R. A. Dickie and G. L. Westerbeek, "Determining the Toughness of Adhesives in Plastically-Deforming Joints," Journal of Materials Science, 33, 189-197 (1998).

4.     Q. D Yang and M. D. Thouless, "Reply to 'Comments on "Determining the Toughness of Plastically Deforming Joints"'," Journal of Materials Science Letters, 18, 2051-2053 (1999).

5.     Y. Chen, N. Ginga, W. S. LePage, E. F. Kazyak, A. J. B. Gayle, J. Wang, R. E. Rodríguez, M. D. Thouless, N. P. Dasgupta, ''Enhanced Interfacial Toughness of Thermoplastic-Epoxy Interfaces using ALD Surface Treatments,'' Applied Materials and Interfaces, 11, 43573-43580 (2019).

6.     F. Van Loock, M. D. Thouless and N. A. Fleck, "Tensile Fracture of an Adhesive Joint: The Role of Crack Length and of Material Mismatch," Journal of the Mechanics and Physics of Solids, 130, 330-348 (2019).

7.     S. Askarinejad, M. D. Thouless, N. A. Fleck, "Failure of a Pre-Cracked Epoxy Sandwich Layer in Shear," European Journal of Mechanics / A Solids, 85, 104134 (2021).

 

B. Cohesive-Zone Models and Fracture

(i) General concepts

1.     J. P. Parmigiani and M. D. Thouless, "The Effects of Cohesive Strength and Toughness on Mixed-mode Delamination of Beam-Like Geometries," Engineering Fracture Mechanics, 74, 2675-2699 (2007).

2.     M. D. Thouless and J. P. Parmigiani, "Mixed-mode Cohesive-zone Models for Delamination and Deflection in Composites," p.93-111 in Proceedings of the 28th Risø International Symposium on Material Science: Interface Design of Polymer matrix Composites; edited by B. F. Sørensen, L. P. Mikkelsen, H. Lilhot, S. Goutianos, and F. S. Abdul-Mahdi, (Roskilde, Denmark, September 2007).

3.     R.B. Sills and M.D. Thouless, "Fracture length scales in delamination of composite materials," p. 457-464, in Proceedings of the 32nd Risø International Symposium on Materials Science: Composite materials for structural performance: towards higher limits; edited by S. Fæster, D. Juul Jensen, B. Ralph and B. F. Sørensen, (Roskilde, Denmark, September 2011).

4.     R. B. Sills and M. D. Thouless, "The Effect of Cohesive-Law Parameters on Mixed-Mode Fracture," Engineering Fracture Mechanics, 109, 353-368 (2013).

5.     R. B. Sills and M. D. Thouless, "Cohesive-Length Scales for Damage and Toughening Mechanisms," International Journal of Solids and Structures 55, 32-43 (2015).

6.     Z. Hu, W. Lu and M. D. Thouless, "Slip and Wear at a Corner with Coulomb Friction and an Interfacial Strength," Wear, 338-339, 242–251 (2015).

7.     H. Wang, W. Lu, J. R. Barber and M. D. Thouless, "The Roles of Cohesive Strength and Toughness for Crack Growth in Visco-elastic and Creeping Materials," Engineering Fracture Mechanics, 160, 226-237 (2016).

8.     Fanbo Meng and M.D. Thouless, "Cohesive-zone analyses with stochastic effects, illustrated by an example of kinetic crack growth," Journal of the Mechanics and Physics of Solids, 132, 103686 (2019).

9.     S. Goutianos, B. F. Sørensen, M. D. Thouless, "Mixed-mode Cohesive Laws and the Use of Linear-Elastic Fracture Mechanics," Engineering Fracture Mechanics, in press, (2021).

(ii) Application of cohesive-zone models to adhesive joints

1.     Q. D. Yang, M. D. Thouless and S. M. Ward, "Numerical Simulations of Adhesively-Bonded Beams Failing with Extensive Plastic Deformation," Journal of the Mechanics and Physics of Solids, 47, 1337-1353 (1999).

2.     Q. D. Yang, M. D. Thouless, and S. M. Ward, "Analysis of the Symmetrical 900-Peel Test with Extensive Plastic Deformation," Journal of Adhesion, 72, 115-132 (2000).

3.     M. S. Kafkalidis, M. D. Thouless, Q. D. Yang and S. M. Ward, "Deformation and Fracture of an Adhesive Layer Constrained by Plastically-Deforming Adherends," Journal of Adhesion Science & Technology, 14, 1593-1607 (2000).

4.     Q. D. Yang, M. D. Thouless and S. M. Ward, "Elastic-Plastic Mode-II Fracture of Adhesive Joints," International Journal of Solids and Structures, 38, 3251-3262 (2001).

5.     Q. D. Yang and M. D. Thouless, "Mixed-mode fracture analyses of plastically-deforming adhesive joints," International Journal of Fracture, 110, 175-187 (2001).

6.     M. N. Cavalli and M. D. Thouless, "The Effect of Damage Nucleation on the Toughness of an Adhesive Joint," Journal of Adhesion, 76, 75-92 (2001).

7.     M. D. Thouless and Q. D. Yang, "Measurement and Analysis of the Fracture Properties of Adhesive Joints," Chapter 7 (pp. 235-271) of The Mechanics of Adhesion, Vol. I of Adhesion Science and Engineering, edited by A. Pocius and D. Dillard.  Published by Elsevier (2002).

8.     M. S. Kafkalidis and M. D. Thouless, "The Effects of Geometry and Material Properties on the Fracture of Single Lap-Shear Joints," International Journal of Solids and Structures, 39, 4367-4383 (2002).

9.     S. Li, M. D. Thouless, A. M. Waas, J. A. Schroeder, and P. D. Zavattieri, "Use of Mode-I Cohesive-Zone Models to Describe the Fracture of an Adhesively-bonded Polymer-Matrix Composite," Journal of Composites Science and Technology, 65, 281-293 (2005).

10.  S. Li, M. D. Thouless, A. M. Waas, J. A. Schroeder, and P. D. Zavattieri, "Mixed-mode Cohesive-Zone Models for Fracture of an Adhesively-Bonded Polymer-Matrix Composite," Engineering Fracture Mechanics, 73, 64-78 (2006).

11.  S. Li, M. D. Thouless, A. M. Waas, J. A. Schroeder, and P. D. Zavattieri, "Competing Failure Mechanisms in Mixed-Mode Fracture of an Adhesively-Bonded Polymer-Matrix Composite," International Journal of Adhesion & Adhesives, 26, 609-616 (2006).

12.  M. D. Thouless and Q. D. Yang, "A Parametric Study of the Peel Test," invited paper in International Journal of Adhesion and Adhesives, 28, 176-184 (2008).

13.  C. Sun, M. D. Thouless, A. M. Waas, J. A. Schroeder and P. D. Zavattieri, "Ductile-Brittle Transitions in the Fracture of Plastically-Deforming, Adhesively-Bonded Structures: I Experimental Studies," International Journal of Solids and Structures, 45, 3059-3073 (2008).

14.  C. Sun, M. D. Thouless, A. M. Waas, J. A. Schroeder and P. D. Zavattieri, "Ductile-Brittle Transitions in the Fracture of Plastically-Deforming, Adhesively-Bonded Structures: II Numerical Studies," International Journal of Solids and Structures, 45, 4725-4738 (2008).

15.  C. Sun, M. D. Thouless, A. M. Waas, J. A. Schroeder and P. D. Zavattieri, "Rate Effects for Mixed-Mode Fracture of Plastically Deforming, Adhesively-Bonded Structures," International Journal of Adhesion and Adhesives, 29, 434-443 (2009).

16.  C. Sun, M. D. Thouless, A. M. Waas, J. Schroeder and P. D. Zavattieri, "Rate Effects in Mode-II Fracture of Plastically Deforming, Adhesively-Bonded Structures," International Journal of Fracture, 156, 111-128 (2009).

17.  M. D. Thouless, "Cohesive-Zone Modeling of Adhesive Joints," pages 249-255 in Mechanics Down Under, Proceedings of the 22nd Congress of Applied and Theoretical Mechanics, edited by J. P. Denier and M. D. Finn, Springer (2013).

18.  J. B. Jørgensen, M. D. Thouless, B. F. Sørensen and C Kildegaard, "Determination of Mode-I Cohesive Strength for Interfaces," 37th Risø International Symposium on Materials Science, IOP Conference Series: Materials Science and Engineering, 139, 01205 (2016).

19.  J. M. Gorman and M. D. Thouless, "The Use of Digital-Image Correlation to Investigate the Cohesive Zone in a Double-Cantilever Beam, with Comparisons to Numerical and Analytical Models," Journal of the Mechanics and Physics of Solids Journal of the Mechanics and Physics of Solids, 123, 315-331 (2019).

 

(iii) Application of cohesive-zone models to welds and weld-bonds

1.     M. N. Cavalli, M. D. Thouless and Q. D. Yang, "Cohesive-Zone Modeling of the Deformation and Fracture of Weld-bonded Joints, " Welding Journal, 83, 133S-139S (2004).

2.     M. N. Cavalli, M. D. Thouless and Q. D. Yang, "Cohesive-Zone Modeling of the Deformation and Fracture of Spot-Welded Joints," Fatigue and Fracture of Engineering Materials and Structures, 28, 861-874 (2005).

3.     B. Zhou, M. D. Thouless, and S. M. Ward, "Determining Mode-I Cohesive Parameters for Nugget Fracture in Ultrasonic Spot Welds," International Journal of Fracture, 136, 309-326 (2005).

4.     B. Zhou, M. D. Thouless, and S. M. Ward, "Predicting the Failure of Ultrasonic Spot Welds by Pull-out from Sheet Metal," International Journal of Solids and Structures, 43, 7482-7500 (2006).

 

C. Cracking in Films and Coatings

1.     M. D. Thouless, "Crack Spacing in Brittle Films on Elastic Substrates," Journal of the American Ceramic Society, 73, 2144-2146 (1990).

2.     E. Olsson, A. Gupta, M. D. Thouless, A. Segmüller and D. R. Clarke, "Crack Formation in Epitaxial [110]-Films of YBa2Cu3O7-d and PrBa2Cu3O7‑x on [110]-SrTiO3 Substrates," Applied Physics Letters, 58, 1682-1684 (1991).

3.     M. D. Thouless, E. Olsson and A. Gupta, "Cracking of Brittle Films on an Elastic Substrate," Acta Metallurgica et Materialia, 40, 1287-1292 (1992).

4.     M. E. Nichols, C. A. Darr, C. A. Smith, M. D. Thouless and E. R. Fischer, "Fracture Energy of Automotive Clearcoats: I - Experimental Methods and Mechanics," Polymer Stability and Degradation, 60, 291-299 (1998).

5.     N. J. Douville, Z. Li, S. Takayama and M.D. Thouless, "Fracture of Metal Coated Elastomers," Soft Matter, 7, 6493-6500 (2011).  

6.     M. D. Thouless, Z. Li, N. J. Douville and S. Takayama, "Periodic Cracking of Films Supported on Compliant Substrates," Journal of the Mechanics and Physics of Solids, 59, 1927-1937 (2011).

7.     Byoung Choul Kim, Toshiki Matsuoka, Christopher Moraes, Jiexi Huang, M. D. Thouless and Shuichi Takayama, "Guided Fracture of Films on Soft Substrates to Create Micro/nano-feature Arrays with Controlled Periodicity," Scientific Reports, 3, 3027 (2013).

8.     Jiexi Huang, Byoung Choul Kim, Shuichi Takayama and M. D. Thouless "The Control of Crack Arrays in Thin Films," Journal of Materials Science, 49, 255-268 (2014).

9.     Fanbo Meng, J. L. David, S. Bollin, M. R. Nichols and M. D. Thouless, "The Control of Kinetics of Channeling Cracks in Polymeric Coatings," International Journal of Solids and Structures, International Journal of Solids and Structures, 132-133, 105-113 (2018).

 

D. Friction and Wear

1.     Z. Hu, W. Lu, M. D. Thouless and J. R. Barber, "Simulation of Wear Evolution Using Fictitious Eigenstrains," Tribology International, 82, 191-194 (2015).

2.     Z. Hu, W. Lu and M. D. Thouless and J. R. Barber, "Effect of plastic deformation on the evolution of wear and local stress fields in fretting," International Journal of Solids & Structures, 82, 1–8 (2016).

3.     Z. Hu, W. Lu, M. D. Thouless, "Effects of Gap Size and Excitation Frequency on the Vibrational Behavior and Wear Rate of Fuel Rods," Nuclear Engineering and Design, 308, 261–268 (2016).

4.     W. Lu, M. D. Thouless, Z. Hu, H. Wang, R. Ghelichi, C. H. Wu, K. Kamrin, D. Parks, "CASL Structural Mechanics Modeling of Grid-to-Rod Fretting (GTRF)," Journal of Materials, 68, 2922-2929 (2016).

5.     H. Wang, Z. Hu, W. Lu and M. D. Thouless, "The Effect of Coupled Wear and Creep During Grid-to-Rod Fretting," Nuclear Engineering and Design, 318, 163-173 (2017).

6.     Zupan Hu, Hai Wang, M. D. Thouless and Wei Lu, "An Approach of Adaptive Effective Cycles to Couple Fretting Wear and Creep in Finite-Element Modeling," International Journal of Solids and Structures, 139-140, 302-311 (2018).

7.     K, Hong, M. D. Thouless, W. Lu and J. R. Barber, "Asymptotic Stress Fields for Complete Contact between Dissimilar Materials," Journal of Applied Mechanics, 86, 011009/1-6 (2019).

8.     Kisik Hong, Wei Lu, M. D. Thouless and J. R. Barber, "Corner Stress Fields in Sliding at High Friction Coefficients," European Journal of Mechanics A, 76, 308-311 (2019).

9.     Dandan Wang, M. D. Thouless, Wei Lu and J. R. Barber, "In-situ Observations of Abrasion Mechanisms of Nonwoven Fabric," Wear, 432-433, 202945 (2019).

Also see [B(i)6]

 

E. Time-Dependent Deformation, Fracture and Damage

(i) Bulk materials

1.     M. D. Thouless, C. H. Hsueh and A. G. Evans, "A Damage Model of Creep Crack Growth in Poly-Crystals, " Acta Metallurgica, 31, 1675-1687 (1983).

2.     M. D. Thouless and A. G. Evans, "Nucleation of Cavities During Creep of Liquid-Phase Sintered Materials, " Journal of the American Ceramic Society, 67, 721-727 (1984).

3.     M. D. Thouless and A. G. Evans, "Some Considerations Regarding the Creep Crack Growth Threshold, " Scripta Metallurgica, 18, 1175-1180 (1984).

4.     M. D. Thouless and A. G. Evans, "On Creep Rupture in Materials Containing an Amorphous Phase, " Acta Metallurgica, 34, 23-31 (1986).

5.     M. D. Thouless, "High Temperature Creep Crack Growth:-Models in Ceramics," Vol. 9 of Reports in Materials Science, Parthenon Press, Kirby Lonsdale, U.K., (1986). (ISBN# 1-85070-118-0).

6.     M. D. Thouless, "A Review of Creep Rupture in Materials Containing an Amorphous Phase," Res Mechanica, 22, 213-242 (1987).

7.     M. D. Thouless, "Bridging and Damage Zones in Crack Growth, " Journal of the American Ceramic Society, 71, 408-413 (1988).

8.     M. D. Thouless, "Modelling Creep-Crack Processes in Ceramic Materials, " pp. 50-62 In The Mechanics of Creep Brittle Materials - 1, edited by A. R. S. Ponter and A. C. F. Cocks, Elsevier Applied Science, London, UK, (1989).

9.     M. D. Thouless and R. F. Cook, "Stress-Corrosion Cracking in Silicon," Applied Physics Letters, 56, 1962-1964 (1990).

10.  H. Wang, Z. Hu, W. Lu and M. D. Thouless, "A Mechanism-Based Framework for the Numerical Analysis of Creep in Zircaloy-4," Journal of Nuclear Materials, 433, 188-198 (2013).

11.  William S. LePage, Yuxin Chen, Eric Kazyak, Kuan-Hung Chen, Adrian J. Sanchez, Andrea Poli, Ellen M. Arruda, M. D. Thouless, and Neil P. Dasgupta, "Lithium Mechanics: Critical Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries," Journal of The Electrochemical Society, 162, A89-A97 (2019).

        Also see [B(i)7]

 

(ii) Thin films

1.     M. D. Thouless, "Effect of Surface Diffusion on the Creep of Thin Films and Sintered Arrays of Particles," Acta Metallurgica et Materialia, 41, 1057-1064 (1993).

2.     M. D. Thouless, J. Gupta and J. M. E. Harper, "Stress Development and Relaxation in Copper Films During Thermal Cycling, " Journal of Materials Research, 8, 1845-1852 (1993).

3.     M. D. Thouless, "Residual Stresses in Thin Films," Proceedings of the 4th. International Conference on Residual Stresses, 1088-1096 (1994).

4.     D. Chidambarrao, K. P. Rodbell, M. D. Thouless and P. W. Dehaven, "Line Width Dependence of Stress in Passivated Al Lines during Thermal Cycling," MRS Symposium Proceedings, 338, 261-268 (1994).

5.     M. D. Thouless and W. Liniger, "Effects of Surface and Boundary Diffusion on Void Growth," Acta Metallurgica et Materialia, 43, 2493-2500 (1995).

6.     M. D. Thouless, "Modeling the Development and Relaxation of Stresses in Films," Annual Review of Materials Science, 25, 69-96 (1995).

7.     M. D. Thouless, K. P. Rodbell and C. Cabral, "Effect of a Surface Layer on the Stress Relaxation of Thin Films, " Journal of Vacuum Science and Technology A, 14, 2454-2461 (1996).

8.     D. Wong and M. D. Thouless, "Effects of Elastic Relaxation on Aspect Ratios During Island Growth of Isotropic Films," Journal of Materials Science, 32, 1835-1840 (1997).

9.     I. Gupta, J. R. Barber, M. D. Thouless and W. Lu, "Mechanistic Model for Stresses in the Oxide Layer formed on Zirconium Alloys," Journal of Thermal Stresses, 42, 1071-1082 (2019).

 

(iii) Fracture of polymers

1.     J. Du, P. C. Niven, M. D. Thouless and A. F. Yee, "Rate Dependence of the Fracture Behavior in a Rubber-Modified Epoxy," Polymeric Materials Science and Engineering, 79, 198-199 (1998).

2.     J. Du, M. D. Thouless and A. F. Yee, "Development of a Process Zone in Rubber-Modified Epoxy Polymers," International Journal of Fracture, 92, 271-286 (1998).

3.     M. D. Thouless, J. Du and A. F. Yee, "Mechanics of Toughening Brittle Polymers," pp. 71-85 in Toughening of Plastics, ACS symposium series 759B, edited by R. A. Pearson, H.-J. Sue and A. F. Yee (2000).

4.     A. F. Yee, J. Du and M. D. Thouless, "Toughening of Epoxies," Chapter 26 (pages 225-267) in Polymer Blends - Volume 2: Performance, edited by D. Paul and C. B. Bucknall, published by John Wiley & Sons (2000).

5.     J. Du, M. D. Thouless and A. F. Yee, "Effects of Rate on Crack Growth in a Rubber-Modified Epoxy," Acta Materialia, 48, 3581-3592 (2000).

 

(iv) Self-healing of polymers

1.     J. M. Mazzara, M. A. Balagna, M. D. Thouless and S. P. Schwendeman, "Healing Kinetics of Microneedle-formed Pores in PLGA Films," Journal of Controlled Release, 171, 172-177 (2013).

2.     J. Huang, J. M. Mazzara, S. P. Schwendeman and M. D. Thouless, "Self-Healing of Pores in PLGAs," Journal of Controlled Release, 206, 20-29 (2015).

 

F. Use of Fracture for Fabrication at Small Scales

(i) Fabrication of nano- / bio- devices

1.     Xiaoyue Zhu, Kristen L. Mills, Portia R. Peters, Joong Hwan Bahng, Elizabeth Ho Liu, Jeongsup Shim, Keiji Naruse, Marie E. Csete, M. D. Thouless, and Shuichi Takayama, "Fabrication of Reconfigurable Protein Matrices by Cracking," Nature Materials, 4, 403-405 (2005).

2.     K. L. Mills, X. Zhu, D. Lee, S. Takayama, and M. D. Thouless, "Properties of the Surface-modified Layer of Plasma-oxidized Poly(dimethylsiloxane)," in Mechanics of Nanoscale Materials and Devices, edited by A. Misra, J. P. Sullivan, H. Huang, K. Lu, S. Asif, Materials Research Society Symposium Proceedings, 924E, Warrendale, PA, Z07-08 (2006).

3.     D. Huh, K. L. Mills, M. D. Thouless and S. Takayama, "Tunable Elastomeric Nanochannels for Nanofluidic Manipulation," Nature Materials, 6, 424-428 (2007).

4.     K. L. Mills, X. Zhu, S. Takayama and M. D. Thouless, "The Mechanical Properties of a Surface-Modified Layer on Poly(dimethylsiloxane)," Journal of Materials Research, 23, 37-48 (2008).

5.     Tomoyuki Uchida, K. L. Mills, Chuan-Hsien Kuo, Whijae Roh, Yi-Chung Tung, Amanda L. Garner, Kazunori Koide, M.D. Thouless, and Shuichi Takayama, "External Compression-Induced Fracture Patterning on the Surface of Poly(dimethylsiloxane) Cubes and Microspheres," Langmuir, 25, 3102-3107 (2009).

6.     K. L. Mills, Dongeun Huh, Shuichi Takayama and M. D. Thouless, "Instantaneous Fabrication of Arrays of Normally Closed, Adjustable, and Reversible Nanochannels by Tunnel Cracking," Lab on a Chip, 10, 1627 - 1630 (2010).

7.     Toshiki Matsuoka, Byoung Choul Kim, Jiexi Huang, Nicholas Joseph Douville, M. D. Thouless, and Shuichi Takayama, "Nanoscale Squeezing in Elastomeric Nanochannels for Single Chromatin Linearization," Nanoletters, 12, 6480-6484 (2012).

8.     Byoung Choul Kim, Christopher Moraes, Jiexi Huang, M. D. Thouless and Shuichi Takayama, "Fracture-based Micro- and Nano-fabrication for Biological Applications," Biomaterials Science, 2, 288-296 (2014).

9.     Angela R. Dixon, Christopher Moraes, Marie E. Csete, M. D. Thouless, Martin A. Philbert, Shuichi Takayama, "One-dimensional Patterning of Cells in Silicone Wells via Compression-induced Fracture," Journal of Biomedical Research A, 102, 1361-1369 (2014).

10.  Christopher Moraes, Byoung Choul Kim, Xiaoyue Zhu, Kristen L. Mills, Angela R. Dixon, M. D. Thouless, and Shuichi Takayama, "Defined Topologically-Complex Protein Matrices to Manipulate Cell Shape via Three-Dimensional Fiber-like Patterns," Lab on a Chip, 14, 2191-2201 (2014).

11.  Byoung Choul Kim, Christopher Moraes, Jiexi Huang, Toshiki Matsuoka, M. D. Thouless, and Shuichi Takayama, "Fracture-based Fabrication of Normally-closed, Adjustable and Fully Reversible Micro-scale Fluidic Channels," Small, 10, 4020-4029 (2014).

12.   Byoung Choul Kim, Priyan Weerappuli, M. D. Thouless, and Shuichi Takayama, "Fracture Fabrication of a Multi-scale, Channel Device that Efficiently Captures and Linearizes DNA from Dilute Solutions," Lab on a Chip, 15, 1329-1334 (2015).

 

(ii) Brittle machining

1.     W. C. Chiu, M. D. Thouless and W. J. Endres, "An Analysis of Chipping in Brittle Materials," International Journal of Fracture, 90, 287-298 (1998).

2.     W. C. Chiu, W. J. Endres and M. D. Thouless, "An Experimental Study of Chip Formation and Surface Formation during Orthogonal Machining of Homogeneous Brittle Materials," Machining Science and Technology, 4, 253-275 (2000).

3.     W. C. Chiu, W. J. Endres and M. D. Thouless, "An Analysis of Surface Cracking during Orthogonal Machining of Glass," Machining Science and Technology, 5, 195-215 (2001).

 

(iii) Ion-cut synthesis

1.     R. R. Collino, B. B. Dick, F. Naab, Y. Q. Wang, M. D. Thouless and R. S. Goldman, "Blister Formation in Ion-Implanted GaAs: Role of Diffusivity," Applied Physics Letters, 95, 111912 (2009).

2.     R. R. Collino, A. W. Wood, N. M. Estrada, B. B. Dick, H. W. Ro, C. L. Soles, Y. Q. Wang, M. D. Thouless, R. S. Goldman, "Formation and Transfer of GaAsN Nanostructure Layers," Journal of Vacuum Science and Technology, A29, 060601.1-6 (2011).

 

G. Composites

(i) Ceramic-matrix composites

1.     A. G. Evans, M. D. Thouless, D. P. Johnson-Walls, E. Y. Luh and D. B. Marshall, "Some Structural Properties of Ceramic Matrix Fiber Composites," Conf. Proc. Fifth Int. Conf. on Composite Materials ICCM-V, Eds. W. C. Harrigan, J. Strife and A. K. Dhingra, 543-553 (1985).

2.     A. G. Evans, M. Rühle, B. J. Dalgleish and M. D. Thouless, "On Prevalent Whisker Toughening Mechanisms in Ceramics," MRS Symp. Proc., 78, 259-271 (1987).

3.     M. D. Thouless and A. G. Evans, "Effects of Pull-Out on the Mechanical Properties of Ceramic-Matrix Composites," Acta Metall., 36, 517-522 (1988).

4.     M. D. Thouless, O. Sbaizero, E. Bischoff and E. Y. Luh, "The Influence of Heat Treatment upon Fiber Pull-Out in a Ceramic Composite," MRS Symp. Proc., 120, 333-339 (1988).

5.     M. D. Thouless, H. C. Cao and P. A. Mataga, "Delamination from Surface Cracks in Composite Materials," Journal of Materials Science, 24, 1406-1412 (1989).

6.     M. D. Thouless, O. Sbaizero, L. S. Sigl and A. G. Evans, "Effect of Interface Mechanical Properties on Pullout in a SiC-Fiber-Reinforced Lithium Aluminum Silicate Glass Ceramic," Journal of the American Ceramic Society, 72, 525-532 (1989).

7.     B. N. Cox, D. B. Marshall and M. D. Thouless, "Influence of Statistical Fiber Strength Distribution on Matrix Cracking in Fiber Composites," Acta Metallurgica, 37, 1933-1943 (1989).

8.     M. D. Thouless, "A Re-Examination of the Analysis of Toughening in Brittle-Matrix Composites," Acta Metallurgica, 37, 2297-2304 (1989).

9.     R. F. Cook, M. D. Thouless, D. R. Clarke and M. C. Kroll, "Stick-Slip during Fibre Pull-Out," Scripta Metallurgica, 23, 1725-1730 (1989).

10.  H. C. Cao and M. D. Thouless, "Tensile Tests of Ceramic-Matrix Composites: Theory and Experiment," Journal of the American Ceramic Society, 73, 2091-2094 (1990).

11.  M. D. Thouless, "Frictional Sliding and Pull-Out of a Fibre," Scripta Metallurgica et Materialia, 27, 1211-1214 (1992).  (Erratum: 27, 543 1993.)

12.  D. Kovar, G. A. Brady, M. D. Thouless and J. W. Halloran, "Interfacial Fracture between Boron Nitride and Silicon Nitride and its Applications to the Failure Behavior of Fibrous Monolithic Ceramics," MRS Symp. Proc., 409, 243-248 (1996).

13.  D. Kovar and M. D. Thouless, "A Simple Method for Determining Frictional Sliding Resistance and Frictional Energy Dissipation in Layered Ceramics," Journal of the American Ceramic Society, 80, 673-679 (1997).

14.  D. Kovar, M. D. Thouless and J. W. Halloran, "Crack Deflection and Propagation in Layered Silicon Nitride / Boron Nitride Ceramics," Journal of the American Ceramic Society, 81, 1004-1012 (1998).

 

(ii) Polymer-matrix composites

1.     S. Li, M. D. Thouless, A. M. Waas, J. A. Schroeder, and P. D. Zavattieri, "Use of a Cohesive-Zone Model to Analyze the Fracture of a Fiber-Reinforced Polymer-Matrix Composite," Journal of Composites Science & Technology, 65, 537-549 (2005).

2.     G. Liu, M. D. Thouless, V. S. Deshpande and N. A. Fleck, "Collapse of a Composite Beam made from Ultra High Molecular-weight Polyethylene Fibres," Journal of the Mechanics and Physics of Solids, 63, 320-335 (2014).

3.     R. E. Rodríguez, T.H. Cho, M. Ravandi, W. S. LePage, M. Banu, M. D. Thouless, N. P. Dasgupta, "Mechanical Properties of Fibers Coated by Atomic Layer Deposition for Polymer-Matrix Composites with Enhanced Thermal and Ultraviolet Resistance," pp. 1513-1527 in TMS 2020 149th
 Annual Meeting & Exhibition Supplemental Proceedings, The Minerals, Metals & Materials Series (2020).

 

(iii) Nano-composites

1.     K. J. Loh, M. D. Thouless and J. P. Lynch, "Enhancing the Mechanical and Fracture Properties of Nanocomposites Using Carbon Nanotubes," Proceedings of the 12th International Conference on Fracture, Ottawa, Canada (July 2009).

2.     Ming Yang, Keqin Cao, Lang Sui, Ying Qi, Jian Zhu, Anthony Waas, Ellen M. Arruda, John Kieffer, M. D. Thouless, and Nicholas A. Kotov, "Dispersions of Aramid Nanofibers: A New Nanoscale Building Block," ACS Nano, 5, 6945–6954 (2011).

3.     Keqin Cao, Carlos Pons Siepermann, Ming Yang, Anthony M. Waas, Nicholas A. Kotov, M. D. Thouless, and Ellen M. Arruda, "Reactive Aramid Nanostructures as High-Performance Polymeric Building Blocks for Advanced Composites," Advanced Functional Materials, 23, 2072-2080 (2013).

4.     Ming Yang, Keqin Cao, Bongjun Yeom, M. D. Thouless, Anthony Waas, Ellen M. Arruda and Nicholas A. Kotov, "Aramid Nanofiber-Reinforced Transparent Nanocomposites," Journal of Composites, 49(15), 1873-1879 (2015).

 

H. Miscellaneous

(i) Engineering education

1.     G. Tryggvason, M. Thouless, D. Dutta, S. L. Ceccio, and D. M. Tilbury. "The New Mechanical Engineering Curriculum at the University of Michigan," Journal of Engineering Education, 90, 437-444 (2001).

2.     M. D. Thouless, "Slow and Steady: The Effects of Teaching a One-Semester Introductory Mechanics Class over a Year," International Journal of Engineering Education, 33, 1842-1855 (2017).

 

(ii) Electromigration

1.     M. D. Thouless, H. Yu, Z. Zhao and W. Yang, "Damage Nucleation During Electromigration along an Isolated Boundary in an Elastic Medium," Journal of the Mechanics and Physics of Solids, 44, 371-387 (1996).

2.     M. D. Thouless, "Stress Evolution During Electromigration in a Bamboo Structure," Scripta Materialia, 34, 1825-1831 (1996).

3.     M. D. Thouless, "Modeling Stress Evolution in Electromigration," MRS Symposium Proceedings, 474, 305-315 (1997).

(iii) Optical properties

1.     C. M. Seubert, M. E. Nichols, J. Frey, M. Shtein and M. D. Thouless, "The Characterization and Effects of Microstructure on the Appearance of Platelet-Polymer Composite Coatings," Journal of Materials Science, 51, 2259-2273 (2016).

2.     C. M. Seubert, M. E. Nichols, C. Kappauf, K. Ellwood, M. Shtein and M. D. Thouless, "A Hybrid Ray-Wave Optics Model to Study the Scattering Behavior of Silver Metallic Paint Systems," Journal of Coatings Technology and Research, 15, 471-480 (2018).

(iv) Nuclear materials

1.     K, Hong, J. R. Barber M. D. Thouless and W. Lu, "Cracking and Spalling of the Oxide Layer developed in High-Burnup Zircaloy-4 Cladding under Normal Operating Conditions in a PWR," Journal of Nuclear Materials, 512, 46-55 (2018).

2.     Kisik Hong, J. R. Barber, M. D. Thouless and Wei Lu, "Cracking of Cr-Coated Accident-Tolerant Fuel during Normal Operation and under Power-Ramping Conditions," Nuclear Engineering and Design, 353, 110275 (2019).

3.     K. Hong, J. R. Barber, M. D. Thouless and W. Lu, ''Effect of power history on pellet-cladding interaction,'' Nuclear Engineering and Design, 358, 110439 (2020).

 

(v) Others

1.     M. D. Thouless, "Spalling of Flat Plates by Thermal Shock," Journal of the American Ceramic Society, 68, C111-C112 (1985).

2.     M. F. Ashby, A. C. Palmer, M. D. Thouless, D. J. Goodman, M. Howard, S. D. Hallam, S. A. F. Murrell, N. Jones, T. J. O. Sanderson and A. R. S. Ponter, "Nonsimultaneous Failure and Ice Loads on Arctic Structures," Offshore Technology Conference, 399-402 (1986).

3.     M. D. Thouless, B. J. Dalgleish and A. G. Evans, "Determining the Shape of Cylindrical Second Phases by Two-Dimensional Sectioning," Materials Science and Engineering A, 102, 57-68 (1988).

4.     Donghee Lee, N. Triantafyllidis, J. R. Barber and M. D. Thouless, "Surface Instability of an Elastic Half Space with Material Properties Varying with Depth," Journal of Mechanics and Physics of Solids, 56, 858-868 (2008).

5.     Donghee Lee, J. R. Barber and M. D. Thouless, "Indentation of an Elastic Half Space with Material Properties Varying with Depth," International Journal of Engineering Science, 47, 1274-1283 (2009).

6.     Joel P. McDonald, M. D. Thouless, and Steven M. Yalisove, "Mechanics Analysis of Femtosecond Laser-Induced Blisters produced in Thermally-Grown Oxide on Si(100)," Journal of Materials Research, 25, 1087-1095 (2010).

7.     J. E. Olberding, M. D. Thouless, E. M. Arruda and K. Garikipati, "The Non-equilibrium Thermodynamics and Kinetics of Focal Adhesion Dynamics," PLoS ONE 5(8): e12043 (2010).

8.     J. E. Olberding, M. D. Thouless, E. M. Arruda and K. Garikipati, "A Theoretical Study of the Thermodynamics and Kinetics of Focal Adhesion Dynamics," K. Garikipati and E.M. Arruda (eds.), IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, IUTAM Book Series 16, 181-192, Springer Science & Business Media B .V. (2010).

9.     Fanbo Meng, Jiexi Huang and M. D. Thouless, "The Collapse and Expansion of Liquid-filled Elastic Channels and Cracks," Journal of Applied Mechanics, 82, 101009/1-11 (2015).

10.  Tanaz Rahimzadeh, Ellen M. Arruda and M.D. Thouless, "Design of Armor for Protection against Blast and Impact," Journal of the Mechanics and Physics of Solids, 85, 98111 (2015).

11.  M Han, B. C. Kim, T. Matsuoka, M. D. Thouless and S. Takayama, "Dynamic Simulations show Repeated Narrowing maximizes DNA Linearization in Elastomeric Nanochannels," Biomicrofluidics, 10, 064108 (2016).

12.  Sasha Cai Lesher-Perez, Ge-Ah Kim, Chuan-hsien Kuo, Brendan M. Leung, Sanda Mong, Taisuke Kojima, Christopher Moraes, M. D. Thouless, Gary D. Luker, Shuichi Takayama, "Dispersible Oxygen Microsensors map Oxygen Gradients in Three-Dimensional Cell Cultures," Biomaterials Science, 5, 2106-2113 (2017).

13.  Junki Joe, M. D. Thouless and J. R. Barber, "
Effect of roughness on the adhesive tractions between contacting bodies," Journal of the Mechanics and Physics of Solids, 118, 365-373 (2018).

14.  Dandan Wang, J. R. Barber, W. Lu and M. D. Thouless, "Use of Wavelet Analysis for an Objective Evaluation of the Formation of Pills in Nonwoven Fabrics," Journal of Industrial Textile, 49, 663–675 (2019).

15.  D. Wang, M. D. Thouless, W. Lu and J. R. Barber, "Generation of Perversions in Fibers with Intrinsic Curvature," Journal of the Mechanics and Physics of Solids, 139, 103932 (2020).

16.  M. C. Rice, E. M. Arruda and M. D. Thouless, "The Use of Visco-Elastic Materials for the Design of Helmets and Packaging," Journal of the Mechanics and Physics of Solids, 141, 103966 (2020).

17.  Isha Gupta, J. R. Barber, M. D. Thouless and Wei Lu, "Influence of the Turing Instability on the Motion of Domain Boundaries," Physical Review E, 102, 012802 (2020).

 


Patents

1.     Shuichi Takayama, Michael David Thouless, Dongeun Huh, Kristen L. Mills and Nicholas Joseph Douville, "Tunable Elastomeric Nanochannels for Nanofluidic Manipulation," US 8,945,909 (Issued: February 3, 2015)

2.     Michael Thouless, Ellen M Arruda, Tanaz Rahimzadeh, Anthony M Waas, "Blast/Impact Frequency Tuning and Mitigation," US 9,958,238 (Issued: May 1, 2018).

3.     Michael Thouless, Ellen M Arruda, Tanaz Rahimzadeh, Levon Cimonian, Marie Rice, "Blast/Impact Frequency Tuning and Mitigation," US 10,041,767 (Issued: August 7, 2018).

4.     Michael Thouless, Ellen M Arruda, Tanaz Rahimzadeh, Levon Cimonian, Marie Rice, "Blast/Impact Frequency Tuning and Mitigation," US 10,094,641 (Issued: October 9, 2018).

5.     Michael Thouless, Ellen M Arruda, Tanaz Rahimzadeh, Anthony M Waas, "Blast/Impact Frequency Tuning and Mitigation," US 10,101,129 (Issued: October 16, 2018).

6.     Michael Thouless, Ellen M Arruda, Tanaz Rahimzadeh, Anthony M Waas, "Blast/Impact Frequency Tuning and Mitigation," JP 6426180 (Issued: November 2, 2018).

7.     Nicholas A. Kotov, Kevin Cao, Michael D. Thouless, Ellen M.Arruda, Anthony M. Waas, Carlos A. PonsSiepermann, Ryan M. Anderson, "Synthesis and Use of Aramid Nanofibers," US 10,160,833 (Issued: December 25, 2018).

8.     Michael Thouless, Ellen M Arruda, Tanaz Rahimzadeh, Anthony M Waas, "Blast/Impact Frequency Tuning and Mitigation," EP 3069098 (Issued: January 19, 2019)

9.     Michael Thouless, Ellen M Arruda, Tanaz Rahimzadeh, Anthony M Waas, "Method for Mitigating Stress Waves resulting from a Blast or Impact," EP 3473966 (Issued: April 24, 2019).

10.  Michael Thouless, Ellen M Arruda, Tanaz Rahimzadeh, Anthony M Waas, "Blast/Impact Frequency Tuning And Mitigation," JP 6707117 (Issued: May 21, 2020).

last modified: 18/v/21