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Abstract 

The force required to peel a film from a substrate is generally a complex function of 
geometry, the constitutive properties of the film and substrate, and the interfacial cohesive 
properties.  In most analyses, the effects of the transverse shear force that is an integral aspect 
of almost any peel test are neglected, although they can be incorporated in an indirect 
fashion through models that invoke a root-rotation angle.  In this study, a complete elastic 
solution that incorporates all the components contributing to crack-tip deformation, 
including bending moment, transverse shear force and axial force, is derived in a self-
consistent way.  In particular, it is shown that, for a strong interface that requires a 
reasonably large peel strain, the transverse shear results in a significant deviation of the 
phase angle from earlier analyses that neglected the shear term.  The present analysis also 
links the transverse shear component to the root-rotation angle.  A cohesive-zone analysis is 
presented for the peeling of an elastic-plastic film.  In this analysis the interface is modeled 
using cohesive elements, and the film is modeled by a full, two-dimensional, finite-element 
analysis.  This analysis allows the full effects of bending, axial loading, and transverse shear 
to evolve, with no a-priori assumptions being made about their relative magnitudes.  The 
numerical results show how the peel force depends on the film thickness.  When the film is 
relatively thin, the peel force increases with an increase in thickness as the extent of plasticity 
increases.  This increase in plasticity is associated with (i) an increase in the contribution of 
bending to the deformation at the crack tip, relative to the contribution of transverse shear, 
and (ii) an increase in the physical limits imposed by the dimensions of the film on the 
volume of any crack-tip plastic zone.  When the film is relatively thick, elasticity dominates 
the deformation of the film, and small-scale yielding effects become important.  The peel 
force is dictated by the toughness of the interface and by crack-tip plasticity (if any) induced 
by the cohesive stresses.  Therefore, peel forces tend to minimum values for both thick and 
thin films.  A maximum peel force is exhibited for films with an intermediate thickness.  
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Nomenclature 

E Young's modulus of film 
 E/(1-ν2) in plane strain, and E in plane stress 

Es Young's modulus of substrate 
G Energy-release rate 

GI Mode-I component of energy-release rate 
GII Mode-II component of energy-release rate 
h Film thickness 
M Bending moment (per unit width) acting at crack tip 
n Power-law hardening exponent for film 
N Axial (compressive) force (per unit width) acting at crack tip 
P Force (per unit width) applied to film  
Pf Peel force (per unit width) required to cause delamination 
V Transverse shear force (per unit width) acting at crack tip 
α Primary dimensionless modulus mismatch ratio  
β Secondary dimensionless modulus mismatch ratio 
Γ Interfacial toughness 
ΓI Mode-I component of interfacial toughness (area under mode-I traction-

separation law) 
ΓII Mode-II component of interfacial toughness (area under mode-II traction-

separation law) 
θ Peel angle 
ν Poisson's ratio of film 
νs Poisson's ratio of substrate 

 Mode-I cohesive strength of interface 
σY Yield strength of film 

 Mode-II cohesive strength of interface 
ψ Phase angle 
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1. Introduction 

Owing to its simplicity of concept and geometry, the peel test is popular 

for adhesion measurements.  The geometry consists of a film bonded to a thick 

substrate, and the test proceeds by measuring the force required to pull the film 

off the substrate.  This peel force is then related to the properties of the interface.  

Under some limiting conditions, the peel force is a direct measure of the 

interfacial toughness.  However, more generally, the peel force is affected by the 

geometry, the constitutive properties of the film and substrate, and the cohesive 

properties of the interface.  The geometrical terms include the peel angle, θ, and  

the film thickness, h, (Fig. 1).  If the film and substrate are both isotropic and 

elastic, then the relevant constitutive properties are the Young’s moduli, E and 

Es, and Poisson’s ratio, ν and νs, of the film and substrate.  The yield strength and 

hardening characteristics of the film enter the problem if there is plasticity.  For 

the purposes of this paper, it was assumed that the substrate is very hard, so that 

yield did not occur at any scale within the substrate.  The film was assumed to 

have a yield strength of σY, with a power-law hardening relationship after yield, 

so that the true strain, , and true stress,  were related by: 

   for ,     (1) 

where n is the power-law hardening exponent, and  in plane stress, and 

 in plane strain.   

The cohesive properties of the interface were assumed to be described by 

mode-I and mode-II traction-separation laws, and a mixed-mode failure criterion 

that couples them.  In general, the important features of traction-separation laws 
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are the mode-I toughness, ΓI, the normal cohesive strength, , the mode-II 

toughness, ΓII, and the shear cohesive strength, .1  Other details of the laws, 

such as the shape, generally seem to have a minor role on the fracture process: 

they affect details of the fracture, but not the fundamental conclusions that will 

be emphasized in this paper.  For the purposes of this paper, a simple shape for 

the traction-separation laws was used, as illustrated in Fig. 2.  These two laws 

were linked with a simple mixed-mode fracture criterion [Yang and Thouless, 

2001] 

,        (2) 

where GI and GII are the mode-I and mode-II components of the energy-release 

rate, such that the total energy release rate is given by 

   G = GI + GII  .       (3) 

The mode-I and mode-II components of the energy-release rate are defined by  

   and .       (4) 

The mode-I and mode-II toughness are defined by  

   and  ,     (5) 

where the mode-I traction is σ, the mode-I separation is δn, the mode-II traction is 

τ, the mode-II separation is δt, and the critical displacements at which the 

tractions go to zero in each mode are δnc and δtc. 

                                                 
1 Other parameters that can be used as possible characterizations of the cohesive properties of the 
interface include a critical root rotation, critical displacement or critical strain.  These are 
essentially variations on a theme, and can be re-expressed in terms of the cohesive strength and 
toughness. 
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 The relative ratio between the two modes of energy-release rate is 

described by a phase angle, defined as [Yang and Thouless, 2001; Parmigiani and 

Thouless, 2007]: 

   .      (6) 

Linear-elastic fracture mechanics is predicated on the use of the energy-based 

failure criterion, G = Γ, where Γ  is the toughness at the appropriate phase angle.  

Equations 2, 3 and 6 can be re-expressed in terms of a mixed-mode failure 

criterion of 

   ,     (7) 

where λ = ΓII/ΓI, which follows the general form of mixed-mode failure criteria 

often used in the fracture-mechanics literature.  The numerical analyses 

presented in this paper have been conducted with λ = 1.  This is mode-

independent fracture, for which mixed-mode effects do not play a role. 

2. Parametric description of the peel geometry 

In general, the peel force, Pf, depends on all the geometrical and material 

parameters, so that 

   .  (8) 

There are, however, limiting regimes under which some of these dimensionless 

groups can be neglected. 
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2.1 Completely-elastic limit 

 The simplest regime is one in which energy dissipation occurs only in the 

interface, with no plasticity in the film. The peel test can then be analyzed in 

terms of the energy-based failure criterion associated with linear-elastic fracture 

mechanics.  Under these conditions, a steady-state energy balance can be used to 

derive a simple expression for the peel force in terms of the mode-dependent 

toughness of the interface.  Assuming that strains are not so extensive so as to 

preclude the use of nominal stresses and strains,2 the energy-release rate, G, 

associated with an applied force, P, is given by Kendall [1975]: 

 .     (9) 

Fracture occurs when the energy-release rate is equal to the mode-dependent 

toughness of the interface.  Therefore, the peel force is given by 

 .  (10) 

For mode-independent failure, when Γ(ψ)=1, Eqn. 10 gives an expression 

for the peel force that is a simple function of  and θ only.  However, the 

phase angle must also be calculated to evaluate the peel force for mode-

dependent failure.  In general, the phase angle depends on the peel force, the 

elastic properties of the film and substrate, and the cohesive properties of the 

interface [Parmigiani and Thouless, 2007].  Therefore, for mode-dependent 

failure, the peel force for an elastic film is of the form  

                                                 
2 For large strains, with conservation of volume and plane stress, this expression becomes 

, where εn is defined by .  A limit 
on the peel force is set by εn=1.73. 
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  .     (11) 

In this expression, plane conditions have been assumed so that the two 

dimensionless groups 

  

and 

   

with  in plane strain, and  in plane stress, 

replace the three dimensionless groups that are generally required to describe 

isotropic modulus mismatch [Dundurs, 1969].  If the fracture-length scales, 

 and  are sufficiently small for linear-elastic conditions to apply, 

the cohesive strengths of the interface do not affect the phase angle, and the peel 

force is dependent on five dimensionless groups: 

  .      (12) 

Thouless and Jensen [1992] presented a derivation for the phase angle, from 

which the peel force can be calculated for a given mixed-mode failure criterion.  

However, this derivation neglected the effect of shear at the crack tip.  Therefore, 

a corrected derivation for the phase angle is given in Section 3 of this paper. 

2.2 Plasticity 

 There are two distinct sources of plasticity in the peel geometry: (i) crack-

tip plasticity induced by the cohesive tractions [Wei and Hutchinson, 1998], and 

(ii) bending plasticity [Kim and Aravas, 1988; Kim et al., 1989].  If  is greater 
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than about two, local yielding at the crack tip occurs in response to the cohesive 

tractions [Wei and Hutchinson, 1998].  The peel force is then elevated above the 

level predicted by Eqn. 10, as a direct consequence of the additional energy 

dissipated by this crack-tip plasticity induced by the fracture process.  If the 

effects of bending plasticity are neglected, the size of the crack-tip plastic zone is 

limited by the film thickness when the film is relatively thin.  This results in an 

approximately linear dependence between the peel force and the film thickness, 

until the film is thick enough for a fully-developed plastic zone to evolve.  When 

the film is relatively thick, the crack-tip plasticity is embedded in a linear elastic 

region.  In this small-scale yielding limit, the peel force is determined by the 

equations of linear-elasticity given in the previous section, with the toughness 

being replaced by a small-scale yielding toughness, Γssy, that incorporates the 

energy dissipated by crack-tip plasticity in addition to the energy dissipated at 

the interface.  This small-scale yielding value of toughness depends on the 

cohesive properties of the interface, as well as on the constitutive properties of 

the film and substrate.  Therefore, the peel force is a function of all the 

parameters listed in Eqn. 8, as shown in Wei and Hutchinson [1998] and 

Tvergaard and Hutchinson [1992; 1996].  

 When the non-dimensional group  is greater than about 1/6, the 

bending moment acting at the crack tip can induce macroscopic plasticity [Kim 

and Aravas, 1988; Kim et al. 1989].  This bending plasticity can occur even when 

the cohesive strengths are too low to trigger any crack-tip plasticity.  A cohesive-

zone analysis by Yang et al. [2000] of this regime was limited to a range of 

parameters for which elastic deformations could be neglected.  In general, all 
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seven dimensionless groups of Eqn. 8 are required to describe the peel force, 

because the interfacial cohesive strengths induce a degree of triaxiality in the 

film, and affect the distribution of bending stresses.  The analysis of Yang et al. 

[2000] indicated that the peel force increased with film thickness, but less 

strongly than the linear dependence shown by Wei and Hutchinson [1998] that 

was associated with fracture-induced, crack-tip plasticity.  A subsequent paper 

by Wei [2004], confirmed this weaker dependence on the peel force when 

plasticity was associated only with bending.  

3. Phase angle for the elastic peel test 

 The peel force can be determined from a steady-state energy balance, 

provided the toughness of the interface is mode-independent.  If the toughness  

varies with phase angle, knowledge of the phase angle is required to analyze the 

peel test.  The peel geometry belongs to a class of fracture problems that involves 

the delamination of beams.  General solutions for the energy-release rate and 

phase angle have been developed in terms of the axial force, bending moment, 

and shear forces acting at the crack tip.  For the peel geometry, attention can be 

limited to the solutions appropriate for infinitely-thick substrates.  For a beam 

with an axial compression, N (per unit width), applied at the crack tip (Fig. 3a), 

the energy-release rate is given by  

          (13) 

with a phase angle ψN = ψN(α, β) which is given in Suo & Hutchinson [1990].  

When, α =β = 0, ψN = +52.1º (where a positive sign indicates shear in a sense that 

would cause the crack to kink into the substrate).  For a beam with a bending 
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moment, M (per unit width) applied at the crack tip (Fig. 3b), the energy-release 

rate is given by 

          (14) 

with a phase angle ψM(α, β) = -90º + ψN(α, β).  For a beam with a transverse shear 

force, V (per unit width) applied at the crack tip (Fig. 3c), the energy-release rate 

is given by: 

         (15a) 

with a phase angle ψV = ψV(α, β).  fV(α, β) is a function of α and β and can be 

found along with the phase angle in Li et al. [2004] (for β = 0).  For the case of 

α = β = 0,  

      (15b) 

and ψV = +0.7º.  If the three loading components act together in a single 

geometry,  the energy-release rate and the phase angle are given by [Li et al., 

2004] 

  (16a) 

and 

 (16b) 

 For a peel geometry, the energy-release rate is known from the steady-

state energy balance, but the phase angle can not be computed without 
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knowledge of the three loading components.  If the axial force, moment and 

transverse force acting at the crack tip are known, then the phase angle can be 

computed.  For a peel test, the axial force and transverse shear force can be 

approximated from equilibrium considerations as (Fig. 4): 

          (17a) 

          (17b) 

The bending moment at the crack tip is given by the product of the applied load 

times the distance from the crack tip to the line of action of the load (Fig. 4).  This 

could be computed by elasticity calculations for a bending beam that represents 

the peeling film.  Such calculations rely on appropriate assumptions about the 

boundary conditions at the point where the delaminated film joins the part of the 

film still attached to the substrate.  The simplest assumption is that the film is 

rigidly clamped orthogonal to the substrate at the crack tip.  However, this 

assumption neglects the effects of deformation in the film and substrate.  

Therefore, an alternative approach is to assume that the delaminated portion of 

the film is clamped at the crack tip, but rotated by an angle from the orthogonal 

orientation.  This "root-rotation angle" depends on the axial load and bending 

moment acting at the crack tip [Cottrell and Chen (2000); Yu and Hutchinson 

(2002)].  It also depends on the shear force acting at the crack tip [Li et al., 2004; 

Andrews and Massabò, 2007].  An approximate expression for the average 

rotation (in radians) of the planes at the crack tip for a peel geometry given by Li 

et al. [2004] is  

    ,   (18) 
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where , , and  are functions of the modulus mismatch between the film 

and substrate.  For α = β = 0, the three numerical constants are given by = 1.9, 

= 7.0, and = 3.1.  If this angle is known, the moment acting at the crack tip 

can be calculated by an analysis of the delaminated portion of the film, subjected 

to this rotated and clamped boundary condition. 

 An alternative approach to calculating the moment and the phase angle is 

to recognize that, once N and V have been calculated from equilibrium 

considerations (Eqn. 15), the bending moment can be found from a comparison 

between the two forms of the energy-release rate given by Eqns. (16a) and 

Eqn. (9).  Provided the shear term is specifically included in the analysis, no 

assumptions are required about the nature of the crack-tip deformation, since the 

deformation is correctly incorporated in the expressions given above for the 

energy-release rates and phase angles.      

As an example of the procedure outlined above, the special case of 

α = β = 0, with a peel angle of θ = 90º is considered.  Substitution of Eqn. (17) into 

Eqn. (16a) results in an expression for the energy-release rate in terms of the non-

dimensional crack-tip bending moment, M/Ph:  

   .    (19a) 

A comparison of this expression with Eqn. 9, gives the result that 

   .      (19b) 
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More generally, Fig. 5 shows how the crack-tip bending moment for a 90º-peel 

test varies with peel strain, for different values of modulus mismatch between 

the film and substrate.  Superimposed on this plot is the crack-tip bending 

moment that was computed by the same process, but with the shear term being 

neglected [Thouless and Jensen, 1992]:  

          (20) 

It can be seen from Fig. 5 that this earlier analysis is valid in the limit of very 

small peel strains, , for which the root rotations are negligible.  Indeed, 

Eqn. 20 is identical to the results of calculations based on clamped boundary 

conditions at the crack tip (root-rotation angle equals zero). 

 The observation that the effects of shear are significant for stiff films and 

high peel strains, can be used to make a connection to the body of literature that 

views the peel test through the prism of root rotation [Williams, 1993; Kinloch et 

al., 1994].  Root rotation effects are only important if shear effects are important 

and, at some level, the two effects should be regarded as manifestations of the 

same phenomenon [Li et al., 2004; Andrews and Massabò, 2006].  Root rotation 

becomes more pronounced as the peel strain increases (the loading terms of 

Eqn. 18), and as the compliance of the substrate increases (the constant terms of 

Eqn. 18).  Root rotation occurs in the absence of shear, but steady-state 

arguments can be used to show that it has no effect on the delamination of a 

linear-elastic system loaded by a pure moment or by a pure axial load.3  Root 

                                                 
3  Additional root rotation, beyond that identified by Eqn. 18, can also be associated with 
deformation of the interface region, such as an adhesive layer.  Parmigiani and Thouless [2007] 
have shown that the linear-elastic results for films, such as those used in this text, are very robust 
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rotation only has an influence on fracture through its interaction with the shear 

component of loading [Andrews and Massabò, 2007].  Therefore, if the effects of 

shear are neglected (as in Thouless and Jensen [1992]), the analysis reduces to 

one for which root rotation is ignored, as would be appropriate for small peel 

strains and rigid substrates.  To further make the connection between the present 

analysis, and the root-rotation perspective, a plot of root-rotation angle against 

peel strain for different values of α is shown in Fig. 6.  The effect of substrate 

compliance and peel strain on the root-rotation angle is apparent from this plot.   

 The phase angle can be determined by substituting the result for V, N and 

M, into Eqn. 16b.  It is plotted for α = β = 0 as a function of peel angle for 

different peel strains in Fig. 7.  A comparison of this figure with the equivalent 

figure given in Thouless and Jensen [1992] reveals the effects of shear.  If shear is 

neglected, the phase angle is constant at -37.9º for all values of peel strain in the 

90º-peel test.  However, when shear (and, consequently, root rotation) is included 

in the analysis, the mode-I component increases with peel strain for a peel angle 

of 90º, but the phase angles appears to be independent of peel strain at a peel 

angle of about 30.3º (for α = β = 0).  In contrast to the earlier results, these new 

calculations indicate that the magnitude of the phase angle decreases as the peel 

angle increases beyond 90º.  The full solution indicates that the role of the mode-I 

component of the energy-release rate is a maximum for peel angles of about 90º, 

and the 90º-peel test is quite strongly mode-I for large peel strains. 

                                                                                                                                                 
even for relatively large fracture length scales defined by  and .  Furthermore, 
even when they occur, fracture-length scales affect only phase angles and energy-release rates 
associated with shear.  
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 The calculation of the bending moment provided in this section can also be 

used to determine the conditions required to avoid plastic deformation of the 

film.  Following the insight of Kim and co-workers [Kim and Aravas,1988; Kim et 

al., 1989] that yield is induced by the bending stresses at the crack tip, the 

requirement to avoid yield is given by 

    ,      (21) 

provided the cohesive stresses are sufficiently low that they do not affect the 

bending stresses.  Furthermore, if the cohesive stresses do not induce plasticity, 

this equation can be re-expressed in terms of material parameters through 

Eqn. 10 and Eqn. 20.  A plot of the resulting conditions to avoid yield is given in 

Fig. 8.  Superimposed on this plot is the condition given by Kim and Aravas 

[1988] of 

€ 

σY /E = 6ΓI /E h .4  It will be observed that this provides an excellent 

description of the yield condition, when 

€ 

E h /ΓI  is greater than about 500. 

4.  Elastic-plastic analysis of the peel test 

In this section, the results of a cohesive-zone analysis for an elastic-plastic 

peel test are presented.  The film was modeled using 2-D plane-strain continuum 

elements.  Large-strain, large-rotation formulations were used for all numerical 

calculations.  Plasticity in the film was modeled by a von Mises yield criterion 

(J-flow theory) coupled with isotropic hardening, and a uniaxial yield strength of 

σY.  Power-law hardening occurred after yield, following Eqn. (1).  This full 

numerical elastic-plastic modeling of the deformation of the film, which includes 

                                                 
4 This equation can be derived by considering only the moment acting at the crack tip.  From 
Eqn. 14, fracture occurs if .  Yield occurs if . 
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all the effects of shear and axial loading, as well as bending, makes these analyses 

of the peel test distinct from earlier cohesive-zone analyses.  The analysis 

followed the implementation of the mixed-mode cohesive-zone model described 

in Yang and Thouless [2001].  The interface was modeled using user-defined 

elements with the cohesive law shown in Fig. 25 and the mixed-mode failure 

criterion of Eqn. 2.   Boundary conditions appropriate for a rigid substrate were 

enforced.  The numerical analyses were done by allowing delamination of the 

peel geometry to proceed until a steady-state peeling configuration was reached.  

The peel force under these steady-state conditions, Pf, was determined for 

different values of the normalized thickness, .  All  calculations were done 

for the following set of non-dimensional parameters:  n = 0.2; θ = 90º; ; 

; and ΓΙΙ/ΓΙ = 1.  Two distinct conditions for the normal cohesive 

strength were examined.  One set of calculations was done with a cohesive 

strength so low ( ), that crack-tip plasticity was not induced by the 

fracture process.  The other set of calculations was done with , so that 

the cohesive tractions induced crack-tip plasticity.  

The normalized steady-state peel force, Pf/ΓI, is plotted as a function of 

the normalized film thickness, σYh/ΓI, in Fig. 9.  The form of this plot follows the 

schematic form proposed by Gent and Ahmed [1977], with a peak peel force at 

intermediate values of film thickness.  As the film increases in thickness, the 

volume of the plastically-deforming material (and, hence, the energy dissipated) 

increases.  However, eventually, elastic bending begins to  dominate over plastic 
                                                 
5 Although many different cohesive laws can be proposed for use in such models, exploration of 
different laws indicated that the shape of the law does not have a major influence on the general 
features of fracture of interest in this study. 
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bending.  This reduces the energy dissipation and the peel force.  These 

competing effects lead to the intermediate regime in which the peel force is a 

maximum. 

In the limit of very large values of σYh/ΓI, no bending plasticity is 

associated with the deformation induced by the peel force.  The only sources of 

energy dissipation are the toughness of the interface itself and any crack-tip 

plasticity triggered by the cohesive tractions.  In particular, if the cohesive 

strength is so low that crack-tip plasticity does not occur, the peel force is given 

by Eqn. 10.  For example, with a mode-independent, 90º-peel test the asymptotic 

peel force in this limit would be equal to Pf / ΓΙ = 1.  For the results shown in 

Fig. 9, this is the limit anticipated for the curve shown for .  Conversely, 

if the cohesive strength is large enough to trigger crack-tip plasticity, then for a 

90º-peel test the asymptotic peel force is given by Pf = Γssy.  A separate set of 

calculations was conducted to estimate the small-scale yielding toughness 

appropriate for  and the other non-dimensional parameters used to 

obtain the results of Fig. 9.  This calculation was conducted for a very thick film 

(σYh/ΓΙ = 4761), but for a simple cantilever-beam geometry where large rotations 

did not need to be considered.  A point load was applied perpendicular to the 

interface at a distance a from the crack tip.  The load, F, required to propagate the 

crack was measured, and the toughness was computed from the LEFM 

expression 

 .       (22) 

As expected, R-curve behavior was exhibited, with the toughness increasing as 

the crack grew.  A steady-state value of about Γ ≈ 1.5ΓI was obtained after the 
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crack had grown by about 5% of h.  Based on this result, it is anticipated that the 

peel force shown for  should reach an asymptotic limit of about 

 when σYh/ΓΙ  is large, as indicated in Fig. 9.  However, the numerical 

difficulties associated with doing the full analysis of the peel test precluded 

examining the peel geometry in this regime.  Nevertheless, it will be noted from 

Fig. 9 that, even for , the calculations were conducted into a regime just 

past the peak load. 

Towards the other limit, with low values of σYh/ΓI, energy is dissipated by 

bending-induced plasticity for both sets of parameters.  A steady-state energy 

balance that ignored shear effects (with clamped boundary conditions at the 

crack tip), and only included the energy dissipated by plasticity in bending 

showed that the peel force should be independent of film thickness [Yang and 

Thouless, 2001].  For a mode-independent interface with small cohesive stresses 

and neglecting any elastic deformation, the peel force is given by this analysis as 

  .       (23) 

For a hardening exponent of n = 0.2, this would correspond to a peel force of 

12.5 ΓΙ.  This analysis that was predicated on three assumptions: (i) neglect of the 

shear contribution, (ii) neglect of the elastic contribution, and (iii) neglecting the 

cohesive-zone-induced plasticity. 

 It was argued in Yang and Thouless [2001] that as the film becomes 

thinner, the loading line moves towards the crack tip, so that transverse shear 

becomes significant relative to bending at the crack tip.  This effect was observed 
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in the numerical calculations done in this study, and reduces the extent of 

bending plasticity.  The reduced level of bending plasticity results in the peel 

force dropping towards ΓΙ.  As was shown in Section 3, shear effects also become 

important as the film becomes thinner under elastic conditions.  When the 

cohesive stresses are large, there are the additional effects of crack-tip plasticity, 

as discussed by Wei and Hutchinson [1998] and Wei [2004].  The full elasto-

plastic numerical analysis presented in this paper that does not rely on an 

assumption of pure bending, and it allows all of these effects to be exhibited in 

the results presented in Fig. 9. 

Figure 10 shows the deformation of the film with and 

 just before the crack propagation.  Significant necking caused by 

local plastic flow at the crack-tip region can be seen.  The von Mises stress 

distribution is not symmetrical about the (local) neutral axis, indicating a strong 

influence of the shear stress.  This is further confirmed by the local grid 

distortion in the near-tip region shown in Figure 10(b). The maximum 

logarithmic shear strain in the immediate crack wake reaches about 200%! 

Alternatively, the distortion of the mesh illustrates how this deformation can also 

be viewed as a root-rotation effect,  although the rotation is not uniform through 

the thickness of the film. 

5. Conclusions 

Existing peel analyses generally neglect the transverse shear force that acts 

at the tip of the interface crack in peel geometries, although some of the effects 

are implicitly introduced through the use of a root-rotation description of the 
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crack-tip deformation.  In this paper, a complete elastic solution has been derived 

for the peel geometry that incorporates the full effects of crack-tip deformation 

and root rotation in a self-consistent manner, through the inclusion of the 

transverse shear force.  The results of this analysis shows that if a strong interface 

requires a reasonably large peel strain, but still remains elastic, there is a 

significant error in the phase angle associated with neglecting the transverse 

shear component of the crack-tip loads.  

The effects of transverse shear on elastic-plastic peel joints were 

investigated numerically, with the interface being simulated using cohesive 

elements.  This numerical analyses included all the effects of transverse shear, 

axial loading, and bending, in conjunction with a full elastic-plastic constitutive 

law for the film.  The numerical analyses showed that if the interface strength is 

too small to induce crack-tip plasticity, the normalized peel force (Pf/ΓI) 

approaches unity for both very thin and very thick films, with a maximum peel 

force occurring at an intermediate thickness.  The limit for thin films is associated 

with transverse shear, rather than bending, dominating the crack tip 

deformation. The limit for thick films is associated with the bending being 

entirely elastic.  When the interface strength is sufficiently large for crack-tip 

plasticity to be induced, the behavior is similar, except the peel forces are 

increased owing to the additional effects of crack-tip plasticity.    



 21 

References  
Andrews, M G. and R. Massabò, "The Effects of Shear and Near Tip 

Deformations on Energy Release Rate and Mode Mixity of Edge-Cracked 
Orthotropic Layers," Engineering Fracture Mechanics, in press (2007). 

Cotterell, B and Z. Chen, "Buckling and Cracking of Thin Films on Compliant 
Substrate under Compression," International Journal of Fracture, 104, 169-179 
(2000). 

Dundurs, J., "Edge-bonded dissimilar orthogonal elastic wedges," Journal of 
Applied Mechanics, 32, 400-402 (1969) 

Gent A. N. and G. R. Hamed, ”Peel mechanics of adhesive joint”, Polymer 
Engineering and Science, 17, 462-466 (1977). 

Kendall, K., "Thin-film Peeling - the Elastic Term," Journal of Applied Physics, 8, 
1449-1452 (1975). 

Kim, K.-S. and N. Aravas, “Elasto-plastic Analysis of the Peel Test,” International 
Journal of Solids and Structures, 24, 417-435 (1988). 

Kim J., K. S. Kim and Y. H. Kim, “Mechanical effects in peel adhesion test”, 
Journal of Adhesion Science and Technology, 3, 175-187 (1989). 

Kinloch, A. J., C. C. Lau and J. G. Williams, “The Peeling of Flexible Laminates,” 
International Journal of Fracture, 66, 45-70 (1994). 

Li, S.,  J. Wang and M. D. Thouless, “The Effects of Shear on Delamination of 
Beam-Like Geometries,” Journal of the Mechanics and Physics of Solids, 52, 193-
214 (2004). 

Parmigiani, J. P and M. D. Thouless, "The Effects of Cohesive Strength and 
Toughness on Mixed-mode Delamination of Beam-Like Geometries," 
Engineering Fracture Mechanics, in press (2007). 

Suo, Z. and J W Hutchinson, “Interface Crack Between Two Elastic Layers,” 
International Journal of Fracture, 43, 1-18, (1990). 



 22 

Thouless, M. D. and H. M. Jensen, “Elastic Fracture Mechanics of the Peel-Test 
Geometry,”  Journal of Adhesion, 38, 185-197 (1992).  

Tvergaard, V. and J. W. Hutchinson, “The Relation between Crack Growth 
Resistance and Fracture Process Parameters in Elastic-Plastic Solids,” Journal 
of the Mechanics and Physics of Solids, 40, 1377-1397 (1992). 

Tvergaard, V. and J. W. Hutchinson, “On the Toughness of Ductile Adhesive 
Joints,” Journal of the Mechanics and Physics of Solids, 44, 789-800 (1996). 

Wei, Y. and J. W. Hutchinson, “Interface Strength, Work of Adhesion and 
Plasticity in the Peel Test,”  International Journal of Fracture, 93, 315-333, (1998). 

Wei, Y., “Modeling Nonlinear Peeling of Ductile Thin Films - Critical Assessment 
of Analytical Bending Models using FE Simulations,” International Journal of 
Solids and Structures, 41, 5087-5104 (2004). 

Yang, Q. D., M. D. Thouless and S. M. Ward, “Analysis of the Symmetrical 900-
Peel Test with Extensive Plastic Deformation,” Journal of Adhesion, 72, 115-132 
(2000). 

Yang, Q. D., M. D. Thouless and S. M. Ward, “Numerical Simulations of 
Adhesively-Bonded Beams Failing with Extensive Plastic Deformation,” 
Journal of the Mechanics and Physics of Solids, 47, 1337-1353 (1999). 

Yang, Q. D. and M. D. Thouless, “Mixed-mode fracture analyses of plastically-
deforming adhesive joints,” International Journal of Fracture, 110, 175-187 
(2001). 

Yu H. H. and J. W. Hutchinson, "Influence of Substrate Compliance on Buckling 
Delamination of Thin Films," International Journal of Fracture, 113, 39-55 (2002). 

Williams, J. G., "Root rotation and plastic work effects in the peel test”, Journal of 
Adhesion, 41, 225 -238 (1993). 



 23 

Figure Captions 

Figure 1 A schematic illustration of the peel-test geometry.  A film of 
thickness h, modulus E and Poisson's ratio ν is bonded to a 
substrate of modulus Es and Poisson's ratio νs.  A force P is applied 
to the remote end of the film at an angle θ to the plane of the 
interface between the film and substrate. 

Figure 2 Mode-I and mode-II traction-separation laws used for the cohesive-
zone model in this paper. 

Figure 3 A beam on an infinite substrate subjected to (a) an axial load, N 
(per unit width), (b) a bending moment, M (per unit width), and (c) 
a transverse shear force, V (per unit width) acting at the crack tip. 

Figure 4 The relationship between the forces and moment acting at the crack 
tip, and the applied load and geometry of a peel test. 

Figure 5 Plots of bending moment as a function of the peel strain for a peel 
angle of 90º and modulus mismatches given by α = −0.8, 0 and 0.8 
(β = 0).  A comparison to the result that neglects the effects of shear 
is shown. 

Figure 6 Plots of root rotation as a function of peel strain for a peel angle of 
90º and modulus mismatches given by α = −0.8, 0 and 0.8 (β = 0).   

Figure 7 Plots of phase angle as a function of the peel angle for different peel 
strains.  

Figure 8 Plots of yield strain against normalized adherend thickness 
showing the regime in which plasticity does not occur.  

Figure 9 The results of cohesive-zone analyses showing how the peel force 
depends on the normalized film thickness for a 90º-peel test.  The 
following dimensionless parameters were used: α = β = 0; n = 0.2; 

θ = 90º; ; ; and ΓΙΙ/ΓΙ = 1.  The uncertainties 
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indicated on this plot are associated with the uncertainties of the 
numerical analyses. 

Figure 10 (a)  Distribution of von Mises stresses in the film at the onset of 

crack propagation during a peel test with   

α = β = 0, n = 0.2, θ = 90º, , , ΓΙΙ/ΓΙ = 1, and 

.  The stresses in this plot have units of MPa, and can 

be normalized by the yield stress of 100 MPa.  (b)  Maximum 
logarithmic shear strain distribution at the same point, showing the 
distortion of the mesh.  The deformation is in true scale, with no 
magnification.   
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