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Abstract

If a fiber is stretched, abraded on one side, and then gradually relaxed, it will deform into
a helix. If the two ends are restrained from rotating during the relaxation, it will form
two helical segments of opposite chirality separated by a perversion. Here we investigate
the properties of the perversion using a finite-element solution, and show that an excellent
approximation to both the shape and the associated strain energy can be obtained using a
simple Rayleigh-Ritz approximation. The perversion deviates from the adjacent helices only
in a relatively small region, which suggests the possibility of approximating more complex
geometries by treating perversions as point defects.

Energetically, perversions are predicted only when they are ‘geometrically necessary’ be-
cause of the end restraint against rotation, but this energy differential is small when the
fiber is almost straight and additional perversions can be generated by small perturbations.
Some of these may approach and annihilate each other in pairs as the fiber is relaxed, but in
other cases the additional perversions persist during unloading, despite the increased energy
differential.
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1. Introduction

A recent experimental study of abrasion of non-woven fabrics (Wang et al., 2019) showed

that the formation of pills was generally preceded by individual fiber damage in the form

of waviness, twists, kinks and entanglements. Since in general only one side of the fiber is

abraded, it seems reasonable to assume that the resulting inelastic deformation leads to a

state of intrinsic curvature, and that these shapes are the response of the fiber structure to

end constraints or loads.

A simple experiment that illustrates this is as follows: take a hair, a piece of fiber, or a

ribbon, keep it taut, and use a finger nail to abrade one surface in a central segment. Now,

relax the tension gradually. If the ends were allowed to rotate, the abraded segment would

adopt a helical shape, but if they are prevented from rotating it will exhibit two helical seg-

ments of opposite chirality separated by a ‘perversion’ (Goriely and Tabor, 1998; McMillen

and Goriely, 2002), as shown in Fig. 1.

Long, thin fibers play an important role in many natural and technological systems.

Applications range from microstructures such as supramolecular helices (Yang et al., 2013),

nanobelts (Gao et al., 2005), DNA (Mendelson, 1978), and polymer chains (Wie et al., 2015),

to macro-structures including animal organs (Savin et al., 2011), plant tendrils (Goriely and

Tabor, 1998; Gerbode et al., 2012; Wang et al., 2013), and cables (Goyal et al., 2005).

If a fiber is sufficiently long and thin, its deformation is dominated by bending and twist-

ing, and can be described using the Kirchhoff equations (Goriely and Tabor, 1997; Olson

et al., 2013; Callan-Jones et al., 2012). Analytical solutions exist for an infinitely long fiber

under tension or compression without twist (van der Heijden et al., 2003), and for a fiber
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with uniform intrinsic curvature under tension deforming into a uniform helix (Goriely and

Tabor, 1998; McMillen and Goriely, 2002; Goriely, 2017). If a fiber with intrinsic curva-

ture is straightened and the ends are then prevented from rotating during unloading, the

requirement that the end-to-end twist be zero causes it to form two equal helices of opposite

chirality separated by a perversion, as shown in Fig. 1. This was recognized by Darwin, as

explained by Pieranski et al. (2004). Domokos and Healey (2005) investigated and classified

the equilibrium configurations for a fiber with intrinsic curvature, and showed that a state

with a single perversion bifurcates stably from the straight configuration as the tension is

reduced. They also demonstrated the existence of equilibria involving multiple perversions.

A more general computational approach for problems of this class was developed by Kumar

and Healey (2010).

Goriely and coworkers (McMillen and Goriely, 2002; Goriely and Tabor, 1998, 1996)

obtained an approximate description for the shape of a perversion by perturbing the solution

for a straight fiber. In particular, they showed that this approach defines a shape that is

asymptotically close to the corresponding pure helices. However, it is clear that the shape

illustrated in Figure 1, as well as those of fibers in abrasion experiments (Wang et al., 2019),

do not generally meet the condition of being almost straight. Therefore, in this paper,

we use finite-element solutions and Rayleigh-Ritz approximations to describe the shape of

more relaxed fibers. We also show that the resultant shapes are very sensitive to small

perturbations in the initial conditions and to the loading history.

2. Mathematical model

The Kirchhoff model provides a mathematical framework to describe the deformation of

a thin fiber in bending and torsion. We assume that the fiber is inextensible, and define

a path-length coordinate, s, such that the location of a point on the fiber is defined by
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the position vector r(s). We also define a director basis {d1(s),d2(s),d3(s)}, as shown in

Figure 2, such that d3(s) is the unit vector in direction r′(s), where the prime denotes the

derivative with respect to s. The unit vectors d1(s) and d2(s) are defined so as to align with

the principal axes of the cross-section, for which the second moments of area are I1 and I2,

respectively. The local curvature and twist of the fiber can be combined in a vector k(s),

defined such that

d ′i = k × di ; i = 1, 2, 3 . (1)

In the unloaded state, the shape of the fiber is defined by an intrinsic curvature vector

k(0)(s) = {k(0)1 , k
(0)
2 , k

(0)
3 }.

We consider the case where the fiber is loaded only at the ends by equal and opposite

forces P . In this case the equilibrium of internal force F (s) and moment M (s) leads to the

quasistatic Kirchhoff equations

F ′ = 0 ; M ′ + d3×F = 0 (2)

(McMillen and Goriely, 2002). The moment M (s) is related to the local curvature k(s) by

the constitutive relation

M = EI1(k1 − k(0)1 )d1 + EI2(k2 − k(0)2 )d2 +GK(k3 − k(0)3 )d3 , (3)

where E is Young’s modulus, G is the shear modulus, and K is the torsional stiffness. If

this is substituted into equations (2), it is clear that we will have six ordinary differential

equations for the six unknowns k1, k2, k3, F1, F2 and F3.
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2.1. Dimensionless formulation

It is convenient to introduce dimensionless measures, s̃, F̃ , P̃ , M̃ and k̃, through the

definitions

s = s̃/ko ; F = F̃EI1k
2
o ; P = P̃EI1k

2
o ; M = M̃EI1ko ; k = k̃ko , (4)

where ko is an appropriate scalar measure of intrinsic curvature or twist. Since the numerical

calculations that we discuss later are dynamic in nature, we will also introduce a non-

dimensional form, t̃, for time

t = t̃L
√
E/ρ , (5)

where ρ is the density of the fibers.

The Kirchhoff equations (2) retain the same form with the normalization of the param-

eters, and the constitutive relation reduces to

M̃ = (k̃1 − k̃(0)1 )d1 + Λ(k̃2 − k̃(0)2 )d2 + Γ(k̃3 − k̃(0)3 )d3 , (6)

where Λ = I2/I1 and Γ = GK/EI1.

From the equilibrium equation (2) and the constitutive law (6), we can obtain a rela-

tionship between k1, k2 and k3:

Γ
(
k̃ ′3 − k̃

(0) ′
3

)
−
(
k̃1 − k̃(0)1

)
k̃2 + Λ

(
k̃2 − k̃(0)2

)
k̃1 = 0 , (7)

where the prime now represents the derivative with respect to s̃.

In this paper, we restrict attention to incompressible fibers of circular cross-section with

uniform intrinsic curvature, so that

k(0) =
{
k
(0)
1 , 0, 0

}
; Λ = 1 ; Γ =

2

3
. (8)
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If we further choose ko = k
(0)
1 ,

k̃ ′3 = −3

2
k̃2 , (9)

and the problem is completely characterized by the dimensionless parameters P̃ and k
(0)
1 L,

where L is the length of the fiber.

In this paper, we will also use the result that the elastic strain energy per unit length,

U , is given by

Ũ ≡ U

EI1k2o
=

1

2
(k̃1 − 1)2 +

1

2
k̃22 +

1

3
k̃23 . (10)

2.2. Uniform helix solution

If the ends of a long fiber are pulled apart by a force P , and are not restrained against

rotation, the fiber forms a uniform helix except for a region near the ends. The dimensionless

curvature k̃1 and twist k̃3 of a pure helix are independent of s̃, and hence k̃2 = 0 from Eqn. 9.

The shape of the helix is defined by two parameters: a length scale such as the pitch

p or the coil radius r, and a dimensionless parameter which could be any one of the helix

angle α, the ratio p/r or h/L, where the end-to-end distance h is defined in Fig. 2. Here

the curvature k1 and twist k3 are chosen as the two parameters, in terms of which (O’Neill,

2006),

ĥ =
h

L
=

k3√
k21 + k23

. (11)

This equation retains the same form when it is expressed in terms of the non-dimensional

parameters k̃1, k̃2 and k̃3.
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The total energy per unit length Π consists of the strain energy, U , and the potential

energy, −Ph/L, of the applied force P . The dimensionless total energy for the uniform helix

is therefore (Goriely and Tabor, 1998):

Π̃ = Ũ − P̃ ĥ =
1

2
(k̃1 − 1)2 +

1

3
k̃23 − P̃ ĥ (12)

from equation (10). An equilibrium configuration is one that minimizes the total energy,

with

dΠ̃

dk̃1
= 0 ;

dΠ̃

dk̃3
= 0 . (13)

These equations permit all the dimensionless parameters to be expressed in terms of k̃1, and

we obtain

P̃ =

√
(1− k̃1)(3− k̃1)3

12
; k̃3 =

√
3

2
(k̃1 − k̃21); Ũ =

1− k̃1
2

(14)

(McMillen and Goriely, 2002). The relations between the normalized curvature, k̃1, twist,

k̃3, force, P̃ , strain energy, Ũ , and the end-to-end distance, ĥ, are plotted parametrically in

Fig. 3.

3. Shape of the perversion

When the tensile force at the end of the fiber is zero, it forms a coil in a plane. Then, as

mentioned previously, after the fiber has been pulled into a straight configuration, and the

rotation of the ends is prevented as the force P is reduced again, the fiber deforms into two

similar helices of opposite handiness separated by a perversion, as shown in Fig. 1. If h/L

is only slightly less than unity, an analytical approximation to the shape of the perversion

can be obtained by perturbation methods (McMillen and Goriely, 2002). For lower values of

h/L, a numerical solution must be used. We will also demonstrate the use of a Rayleigh-Ritz

approach in the next section.
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Finite-element simulations were conducted using the software ‘ABAQUS/Explicit’ with

elastic-beam elements.1 The ratio between the fiber diameter and length was chosen to be

very small (10−3), in order to render extensional effects negligible. Automatic time incre-

ments and a small damping coefficient were used. A Python script was written to establish

the shape of fiber by integrating the curvature. The initial set of numerical results that will

be presented were obtained under quasi-static conditions, for which the kinetic energy was

always negligible compared to the strain energy. This condition was relaxed in a subsequent

set of calculations conducted to explore the effects of rate and noise on the formation of

perversions.

To test the accuracy of the finite-element solutions, we allowed end rotation so that the

shape was a pure helix, except near the ends. The strain energy of a central helical segment

is compared to that of the analytical solution in Fig. 4, and shows excellent agreement.

Notice that in this figure, and throughout this section, we present results as functions of

h/L in a helical segment rather than as functions of the force P̃ , since values for h/L show

less uncertainty than those for P̃ in the finite-element solutions. The two parameters are

related through Eqns. 11 and 14, which can be solved to give

P̃ =
6h/L

(3− h2/L2)2
. (15)

Figure 5 shows two views of the shape of a perversion generated in ABAQUS for the case

where h/L = 0.78 for the adjacent helical segments. However, it is easier to characterize

the properties of the perversion by plotting k̃1, k̃2 and k̃3 as functions of s̃. Figure 6(a)

shows this plot for h/L = 0.88 , where the finite-element results are plotted as points. The

1A mesh size of about 0.03k
(0)
1 was used, but a reasonable level of insensitivity to this choice was verified.

A similar insensitivity to the choice of damping coefficient was also verified by using values of 0.06 and 0.6.
Unless specified otherwise, dh̃/dt̃ = 9.7× 10−7 so as to ensure quasi-static conditions.
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curvatures k̃1, k̃2 are symmetric about the midpoint of the perversion, whereas the twist k̃3

is anti-symmetric. The finite-element results tend asymptotically to the appropriate values

of a pure helix away from the mid-point of the perversion, and the decay is fairly rapid,

implying that the form of the perversion is not influenced by the necessarily finite length of

the fiber. There is also a noticeable ‘overshoot’ implying oscillatory decay, particularly in

the results for k̃3.

For comparison, the solid lines in Fig. 6(a) were obtained using McMillen and Goriely’s

perturbation solution (McMillen and Goriely, 2002). However, we note that the correspond-

ing value of their parameter µ = −0.19, equivalent to h/L = 0.88, is outside the range

in which they would claim the perturbation procedure provides a good approximation. In

particular, the perturbation solution does not capture the oscillatory decay observed in the

numerical results.

In Figure 6(b), the same results are plotted in k̃3 − k̃ space, where k̃ =
√
k̃21 + k̃22 is the

magnitude of the curvature. The dashed line represents the locus of fixed points defined by

the relationship for a pure helix (Eqn. 14). In this figure, we also show the same comparison

for h/L = 0.95 (µ = −0.095), confirming that the perturbation solution gives a much better

fit as h/L approaches unity.

3.1. Rayleigh-Ritz approximation to the shape

Domokos and Healey (2005) explored and classified the equilibria of a fiber with uni-

form initial curvature, including configurations involving multiple perversions. They also

determined the stability of small perturbations from the straight configuration, using a bi-

furcation analysis. They defined a vector of labels wi ∈ {−1, 0, 1}, each component of which
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essentially characterizes the chirality of a helical segment comprising a single coil of the

initial undeformed fiber. The sequence of values wi then defines the approximate shape of

the deformed fiber. In particular, perversions are identifiable as locations where adjacent

segments have opposite values of wi.

In our formulation, the chirality of a fiber segment is defined by sgn((k̃3(s̃)) and a closely

related approximation to the shape could be defined by representing k̃3(s̃) as a piecewise

constant function. This is equivalent to idealizing the perversion as a point defect, which

could lead to useful simplifications in the investigation of more complex patterns. There are

clear parallels here with dislocations, and in particular with geometrically necessary dislo-

cations (Arsenlis and Parks, 1999; Nye, 1953), since we have already remarked that at least

one perversion must exist under the conditions of loading such as those in Figure 1.

However, a step function in k̃3(s̃) implies a locally infinite value of k̃2(s̃) from Eqn. 8,

and hence implies a non-integrable singularity in strain-energy density. Of course, a similar

problem is encountered with a discrete dislocation, and it can be avoided by using an ap-

propriate regularization. For example, in the Peierls-Nabarro dislocation model (Joos and

Duesbery, 1997), the relative displacement of the two halves of the crystal is approximated

by an arctan function. In the next section, we shall propose appropriate regularizations for

the functions k̃1(s̃), k̃2(s̃), k̃3(s̃) near a perversion, and determine the values of the corre-

sponding parameters using the Rayleigh-Ritz method.

3.1. Rayleigh-Ritz approximation to the shape

The results in Fig. 6 suggest that the functions k̃1(s), k̃2(s) might be approximated by

k̃1(s̃) = a1 exp (−b1s̃2) cos(c1s̃) + k̃helix1 (ĥ) (15)
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k̃2(s̃) = a2 exp (−b2s̃2) cos(c2s̃) , (16)

where k̃helix1 (ĥ) corresponds to the uniform helix value plotted in Fig. 3(a) and a1, b1, c1, a2, b2, c2

are parameters to be determined. These expressions tend asymptotically to the uniform he-

lix values from Eqns. 10 and 13 with increasing |s̃|.

Equation (9) can be integrated to give

k̃3(s̃) = −3

2

∫ s̃

0

k̃2(s̃)ds̃ = −3
√
πa2

4
√
b2

exp

(
− c22

4b2

)
<
{

erf

(√
b2s̃+

ic2

2
√
b2

)}
, (17)

and, since k̃3(s̃) must tend to the limiting value k̃helix3 (ĥ) as |s̃| → ∞, we obtain

a2 = − 4
√
b2k̃

helix
3 (ĥ)

3
√
π exp (−c22/4b2)

, (18)

which reduces the number of free parameters (degrees of freedom) in Eqns. 15, 16 and 17 to

five (a1, b1, c1, b2, c2).

The Rayleigh-Ritz approximation is then obtained by substituting these trial functions

into Eqn. 10, integrating with respect to s̃, and then minimizing the total energy Π̃ with

respect to the free parameters. We used the MatLab ‘fminsearch’ package which is based

on the Nelder-Mead simplex direct-search algorithm. If the variation of the shape of the

perversion is tracked as the tensile force, P̃ , or the end-to-end length, h/L, is reduced, it is

efficient to use the values of the parameters at the previous step as an initial guess for the

search algorithm. Computationally, the Rayleigh-Ritz algorithm is about 100 times faster

than the direct finite-element solution.

Figure 7 compares the Rayleigh-Ritz approximation (solid lines) with finite-element re-

sults (points) for h/L = 0.88 and 0.78. The agreement is clearly excellent, and this is
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confirmed by a comparison of the three-dimensional shapes for h/L = 0.78 in Fig. 8.

3.1.1. Lower values of h/L

The Rayleigh-Ritz approximation of Eqns. 15, 16 and 17 provides a good fit to the finite-

element results in the range 0.65 < h/L < 1, but significant errors are obtained for lower

values. Figure 9(a) compares the solutions for h/L = 0.32. It can be seen that the finite-

element results exhibit several cycles of oscillation that are not captured by the Rayleigh-Ritz

solution, and the asymptotic approach to the helix value is slower. This should be compared

to the good agreement seen at larger values of h/L in Fig. 7.

An improved fit at these lower values of h/L can be obtained by using a trial function

with more degrees of freedom. For example, Fig. 9(b) shows the fit using the expressions

k̃1 = a11 exp (−b11s̃2) cos(c11s̃) + a12 exp (−b12s̃2) cos(c12s̃
2) + k̃helix1 (ĥ) (19)

k̃2 = a21 exp (−b21s̃2) cos(c21s̃) + a22 exp (−b22s̃2) cos(c22s̃
2) (20)

k̃3(s̃) = −3

2

∫ s̃

0

k̃2(s̃)ds̃ . (21)

As with Eqns. 15, 16 and 17, we can eliminate one parameter by enforcing the condition

that k̃3(s̃)→ k̃helix3 (ĥ) as |s̃| → ∞.

3.2. Energetic considerations

One of the obvious questions that arises when considering the introduction of perversions

into a coil, is whether the introduction of perversions is energetically favorable or not. In

this context, it is important to appreciate that the key concept as to whether a defect such

as a perversion is introduced into a body is always the change in total energy, ∆Π, rather
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than the change in strain energy, ∆U . In this particular situation the number of helical

coils in the fiber is generally going to be sufficiently large for them to control the relation

between the end-to-end length and the force. This means that even if the remote ends of

the fiber are subject to displacement-control, the local process of introducing a perversion

must be considered as occurring under force-control. The energy penalty associated with

the introduction of a perversion must include a potential-energy term, with the change in

total energy being given by ∆Π = ∆U −P∆h, where ∆h is the change in end-to-end length

associated with the introduction of a perversion. To explore this expression, we evaluated

the difference between the properties of a fiber segment containing a perversion and those

of a segment of equal length but in the form of a pure helix. The asymptotic behavior

exhibited by Figs. 7 and 9 shows that these differences can be evaluated by integrating over

a modest region of the fiber near the perversion.

The first question we addressed was the difference in the end-to-end length of a fiber

associated with the introduction of a perversion, ∆h. This is plotted in Fig. 10, in which

∆h is normalized by the intrinsic curvature, i.e., ∆h̃ = k
(0)
1 ∆h. This calculation was per-

formed numerically, and by using both the 5-parameter and the 11-parameter Rayleigh-Ritz

approximation. As can be seen in this figure, the 5-parameter approximation provides an

excellent description of the shape for h/L ≥ 0.7, while the 11-parameter approximation

provides an excellent description of the shape down to at least h/L > 0.3. The important

thing to note from this plot is that while the introduction of a perversion causes an increase

in h while h/L > 0.5, the introduction of a perversion causes the ends of the fiber to move

together when h/L < 0.5.

Figure 11(a) shows the difference in the normalized strain energy, ∆Ũ , between a seg-
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ment of fiber containing a perversion and one that does not. Again, the plot compares the

numerical results with the 5- and 11-parameter approximations, showing the agreement of

each being in the same range as before. It will be noted that Fig. 11(a) shows that the

introduction of a perversion always increases the strain energy in the range h/L > 0.325

over which it was feasible to do the numerical calculations, but it also indicates that the

strain-energy change may be negative if h/L < 0.3. However, as discussed above, it is not

the change in strain energy that controls the energetics of introducing a perversion, but the

change in total energy. Figure 10 indicates that the potential energy change associated with

the introduction of a perversion is positive when h/L < 0.5. This effect is bigger than any

negative change in the strain energy, resulting in the plot of Fig. 11(b) for the change in

total energy. From this plot we can conclude that a perversion is energetically unfavorable

for all values of h/L.

4. Persistence of perversions

Figure 11(b) shows that there is always a positive energy cost associated with a perver-

sion, suggesting that only geometrically-necessary perversions should be observed. However,

it can be seen from this figure that the energy cost is small when the fiber is almost straight

(h/L very close to unity). In practice, this means that there is a range of h/L where the

energy costs of a perversion can be small compared to numerical or experimental noise. This

can lead to the generation of additional perversions. In this section, we explore the persis-

tence of these perversions as h/L is reduced, and the energy cost of the perversions increases.

The formation and persistence of perversions was studied using our finite-element code

to generate examples of coiled fibers. Before presenting the results we first note from Fig. 7

(for example) that k̃1 and k̃2 experience an excursion at a perversion, but then return to the
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original helix value, whereas k̃3 changes sign, because a perversion separates two segments

of opposite chiralities. In more complex morphologies, a perversion is therefore most easily

characterized by a change in sign in the twist k̃3, so in this section we plot this parameter

as a function of distance along the fiber length.

Figure 12 shows a typical progression of a finite-element plot of k̃3 for a fiber of length

L = 80π/k
(0)
1 (i.e., a fiber that would present 40 plane coils if the ends were unloaded) as

h/L is reduced from 1 to 0.967. Additional perversions, beyond the single geometrically

necessary one, were formed in this case, because a much longer fiber was used than for the

earlier results, probably allowing some entropic effects to play a role. In the first plot for

h/L = 0.990, sign changes for k̃3, representing perversions, can be identified at the points

A, B, C, D, E and F. The noise associated with the numerical algorithm can be seen in this

plot, and when h/L ≈ 1 the variation associated with noise was similar to that associated

with a perversion; this is the stage at which perversions were generated. Figures 12(b), (c)

and (d) show the evolution of the pattern as h/L is reduced. The perversion at A moves to

the end of the fiber and has disappeared at h/L = 0.976. The ‘opposite’ perversions at D and

E move closer together as the fiber is relaxed. They have annihilated each other (Liu et al.,

2016) by the time h/L = 0.967. However, if h/L is reduced further, down to h/L = 0.40,

no further annihilation is observed, even though the energetically optimal solution would

involve only a single perversion.

When two perversions are widely separated (i.e., beyond the range in which they in-

teract), there is no energetic advantage in their moving together, so they are expected to

persist under unloading. The process of reaching the most energetically favorable state is

also impeded by the fact that the net twist, and hence the area under the curves in Fig. 12,
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must be zero. Thus, for example, B and C cannot simply move closer together in Fig. 12(d)

without a corresponding motion of F, since otherwise this would increase the net area under

the curve. Notice that when D and E annihilate each other in passing from Figs. 12(a) to

(d), there is a corresponding motion of F to the left, to preserve the zero-net-twist condition.

Reloading

Figure 13 shows the evolution of k̃3(s̃) for the same fiber as h/L is decreased from 0.972

to 0.953, and then increased again to 0.972. Notice that the perversions D and E in Figure

13(a) are not regenerated on reloading, and indeed the perversion at B moves towards the

left end and has disappeared by the time h/L returns to 0.972 in Fig. 13(e). Thus, the fiber

morphology exhibits significant loading-history dependence.

Effects of noise and quenching

The numerical results presented so far in this paper can be thought of as having been

obtained under quasi-static conditions, but with enough noise to generate perversions when

the fiber is almost straight and the energy barrier is low. This raises the possibility of a

potentially interesting future study of how these topological defects might be influenced by

noise, and whether there are any analogies to the effects of temperature for defects in mate-

rials. Although a detailed study is beyond the scope of this present paper, we present some

preliminary observations.

The first set of studies were done to look at the effect of what might be an analogy to

quenching. In this context, quenching can be though of in the following terms. When h/L

is close to 1, the energetic distinction between the helical coils and perversions is small,

and the probability of forming multiple perversions is high. As h/L is reduced, the energy

penalty of a perversion is increased, but co-ordinated motion of the defects is needed for
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them to annihilate each other. Quenching would correspond to a relaxation rate at which

the perversions formed when h/l ≈ 1 are effectively frozen into the fiber.

The effect of quenching was explored by varying dh̃/dt̃ over about two orders of magni-

tude, between 3.50×10−7 and 2.43×10−5. The corresponding results for the distributions of

k3 for h/L = 0.5 are shown in Fig. 14. It was noted that at the lower speeds corresponding to

quasi-static conditions, the number of perversions formed seemed to be constant, although

the location of the defects varied slightly. Unfortunately, numerical limitations associated

with computational time prevented exploring whether three perversions is an asymptotic

limit for this length of fiber for quasi-static conditions, or if a single perversion might ever

be formed at slow-enough relaxation rates. However, it can be seen unambiguously that

rapid relaxation results in many more perversions, and the number of defects increases with

relaxation rate.

Having shown that quenching appears to result in additional defects being frozen into

the structure, the second question that arises is whether these can be annealed by mechan-

ical oscillations, which might be an analogy of temperature. The effects of vibration were

explored by imposing an oscillating displacement on one end of the fiber after it had been

relaxed to h/L = 0.5 at different speeds. The results suggested that a sufficiently strong

mechanical vibration could induce the perversions to move and to annihilate each other, but

no obvious consistency between the magnitude of the oscillations and the resultant defect

density was observed.
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5. Conclusions

We have investigated the generation and evolution of perversions between helical seg-

ments of a fiber with uniform intrinsic curvature when the ends are restrained against ro-

tation. The twist function k̃3(s̃) changes sign in passing through a perversion, and this

provides a convenient way to identify and approximate the morphology in more complex

situations.

The shape of an isolated perversion is well approximated by a simple Rayleigh-Ritz trial

function, and this method also gives accurate results for the associated changes in strain

energy and end-to-end length, with a considerable saving in computational time relative to

a direct finite-element solution.

The lowest energy state is one in which perversions occur only when they are geometri-

cally necessary because of the end restraint against rotation. However, the energy differential

is small when the fiber is almost straight, so additional perversions may be introduced by

noise in the early stages of unloading when the fiber is almost straight. If the fiber is further

unloaded, perversion pairs may approach and annihilate each other, but if the perversions

are too far from each other or from the fiber ends, an effective energy barrier exists so that

they may persist well below the loading conditions where the energy differential is signifi-

cant. A sufficiently rapid unloading resulted in a higher density of perversions being frozen

into the fiber, than that obtained by slower rates of unloading, suggesting an analogy to the

retention of defects in solids after thermal quenching.
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Figure 1: (a) The shape of a fiber abraded in a central segment; (b) Enlarged perspective view of the abraded
segment showing two helices separated by a perversion.

Figure 2: A fiber loaded by equal and opposite forces at its ends. We define a path coordinate s and a
director basis {d1(s),d2(s),d3(s)}. We also define the end-to-end distance h.
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(a) (b)

Figure 3: (a) Normalized curvature k̃1 and twist k̃3, and (b) force P̃ and strain energy Ũ for a uniform helix
as functions of end-to-end distance h/L.

Figure 4: The normalized strain energy of a helix segment as a function of the end-to-end distance from finite-
element calculations (points) and the analytical solution from Eqn. 14(line). The numerical uncertainties in
this plot are smaller than the data points.
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Figure 5: Two views of a typical ABAQUS output showing helical coils of opposite chirality separated by a
perversion. h/L = 0.78.

(a) (b)

Figure 6: (a) Finite-element results (points) for k̃1, k̃2 and k̃3 in the perversion segment as functions of s̃ for
h/L = 0.88. The solid lines are obtained from McMillan and Goriely’s perturbation solution for a value of

µ = −0.19, corresponding to h/L = 0.88. (b) The same results plotted in k̃3− k̃ space, where k̃ =
√
k̃21 + k̃22.

The dashed line represents the locus of fixed points defined by the pure helix relation (14)2. We also present
a similar comparison for h/L = 0.95 (corresponding to µ = −0.095), for which the agreement with the
perturbation solution is much closer. The numerical uncertainties in this plot are smaller than the data
points.
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(a) (b)

Figure 7: Rayleigh-Ritz approximations with five parameters for the curvature and twist functions k̃1, k̃2
and k̃3 (lines) compared with finite element results (points) for (a) h/L = 0.88 and (b) h/L = 0.78. The
numerical uncertainties in these plots are smaller than the data points.

Figure 8: Comparison of the predicted fiber morphology from finite element and Rayleigh-Ritz calculations
for h/L = 0.78.
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(a) (b)

Figure 9: Rayleigh-Ritz solution (solid line) (a) using Eqns. 15, 16 and 17 with five parameters, and (b) using
Eqns. 19, 20 and 21 with eleven parameters, compared with finite-element results (points) for h/L = 0.32.
The numerical uncertainties in these plots are smaller than the data points.

Figure 10: The change in normalized end-to-end distance ∆h̃ = k
(0)
1 ∆h between a pure helix and a coil with

a perversion, showing results obtained by both finite-element calculations and the Rayleigh-Ritz method.
The introduction of a perversion causes shrinkage of the fiber if h/L is less than about 0.5. It should also
be noted that the 5-parameter Rayleigh-Ritz solution works very well for values of h/L greater than about
0.7.
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(a) (b)

Figure 11: (a) The difference in strain energy between a purely helical portion of the fiber and the same
length of fiber containing a single perversion. Once again, the results are well described by the 5-parameter
Rayleigh-Ritz approximation of Eqns. 15, 16 and 17 for 0.65 < h/L < 1, and by the 11-parameter approx-
imation below this range. (b) The difference in total energy between a purely helical portion of the fiber
and the same length of fiber containing a single perversion. This plot is calculated using the 11-parameter
Rayleigh-Ritz solution.
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Figure 12: Perversions are identified by sign changes in k̃3(s̃). Those at A D and E are annihilated as h/L
is reduced.
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Figure 13: Evolution of perversions during unloading to h/L = 0.953 followed by reloading to h/L = 0.972.
Notice that perversions D and E are not regenerated during reloading, and B moves to the left-hand end
and disappears.
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Figure 14: The velocity at which the ends of the fiber are relaxed influences the number of perversions that
are retained at h/L = 0.5. dh̃/dt̃ = (a) 3.5×10−7, (b) 9.7×10−7, (c) 9.7×10−6 and (d) 2.43×10−5. Notice
that (b) corresponds to the conditions under which Fig. 12 was obtained, and the perversions B, C and F
have been retained down to h/L = 0.5.
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